
Part III
References

679

EXAMPLE
C++ By

A

Memory
Addressing,
Binary, and
Hexadecimal
Review

You do not have to understand the concepts in this appendix to

become well-versed in C++. You can master C++, however, only if

you spend some time learning about the behind-the-scenes roles

played by binary numbers. The material presented here is not

difficult, but many programmers do not take the time to study it;

hence, there are a handful of C++ masters who learn this material

and understand how C++ works “under the hood,” and there are

those who will never master the language as they could.

You should take the time to learn about addressing, binary

numbers, and hexadecimal numbers. These fundamental principles

are presented here for you to learn, and although a working knowl-

edge of C++ is possible without knowing them, they greatly enhance

your C++ skills (and your skills in every other programming lan-

guage).

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

680

After reading this appendix, you will better understand why

different C++ data types hold different ranges of numbers. You also

will see the importance of being able to represent hexadecimal

numbers in C++, and you will better understand C++ array and

pointer addressing.

Computer Memory
Each memory location inside your computer holds a single

character called a byte. A byte is any character, whether it is a letter

of the alphabet, a numeric digit, or a special character such as a

period, question mark, or even a space (a blank character). If your

computer contains 640K of memory, it can hold a total of approxi-

mately 640,000 bytes of memory. This means that as soon as you fill

your computer’s memory with 640K, there is no room for an addi-

tional character unless you overwrite something.

Before describing the physical layout of your computer’s

memory, it is best to take a detour and explain exactly what 640K

means.

Memory and Disk Measurements

By appending the K (from the metric word kilo) to memory

measurements, the manufacturers of computers do not have to

attach as many zeros to the end of numbers for disk and memory

storage. The K stands for approximately 1000 bytes. As you will see,

almost everything inside your computer is based on a power of 2.

Therefore, the K of computer memory measurements actually equals

the power of 2 closest to 1000, which is 2 to the 10th power, or 1024.

Because 1024 is very close to 1000, computer-users often think of K
as meaning 1000, even though they know it only approximately

equals 1000.

Think for a moment about what 640K exactly equals. Practi-

cally speaking, 640K is about 640,000 bytes. To be exact, however,

640K equals 640 times 1024, or 655,360. This explains why the PC

DOS command CHKDSK returns 655,360 as your total memory

(assuming that you have 640K of RAM) rather than 640,000.

K means approxi-
mately 1000 bytes
and exactly 1024
bytes.

681

EXAMPLE
C++ By

Because extended memory and many disk drives can hold such

a large amount of data, typically several million characters, there is

an additional memory measurement shortcut called M, which stands

for meg, or megabytes. The M is a shortcut for approximately one

million bytes. Therefore, 20M is approximately 20,000,000 charac-

ters, or bytes, of storage. As with K, the M literally stands for

1,048,576 because that is the closest power of 2 (2 to the 20th power)

to one million.

How many bytes of storage is 60 megabytes? It is approxi-

mately 60 million characters, or 62,914,560 characters to be exact.

Memory Addresses

Each memory location in your computer, just as with each

house in your town, has a unique address. A memory address is

simply a sequential number, starting at 0, that labels each memory

location. Figure A.1 shows how your computer memory addresses

are numbered if you have 640K of RAM.

M means
approximately
1,000,000 bytes
and exactly
1,048,576 bytes.

Figure A.1. Memory addresses for a 640K computer.

By using unique addresses, your computer can track memory.

When the computer stores a result of a calculation in memory, it

finds an empty address, or one matching the data area where the

result is to go, and stores the result at that address.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

682

Your C++ programs and data share computer memory with

DOS. DOS must always reside in memory while you operate your

computer. Otherwise, your programs would have no way to access

disks, printers, the screen, or the keyboard. Figure A.2 shows

computer memory being shared by DOS and a C++ program. The

exact amount of memory taken by DOS and a C++ program is

determined by the version of DOS you use, how many DOS extras

(such as device drivers and buffers) your computer uses, and the

 size and needs of your C++ programs and data.

Figure A.2. DOS, your C++ program, and your program’s data share the
same memory.

Bits and Bytes
You now know that a single address of memory might contain

any character, called a byte. You know that your computer holds

many bytes of information, but it does not store those characters in

the same way that humans think of characters. For example, if you

type a letter W on your keyboard while working in your C++ editor,

you see the W on-screen, and you also know that the W is stored in

a memory location at some unique address. Actually, your com-

puter does not store the letter W; it stores electrical impulses that

stand for the letter W.

683

EXAMPLE
C++ By

Electricity, which runs through the components of your com-

puter and makes it understand and execute your programs, can exist

in only two states—on or off. As with a light bulb, electricity is either

flowing (it is on) or it is not flowing (it is off). Even though you can

dim some lights, the electricity is still either on or off.

Today’s modern digital computers employ this on-or-off con-

cept. Your computer is nothing more than millions of on and off

switches. You might have heard about integrated circuits, transis-

tors, and even vacuum tubes that computers have contained over

the years. These electrical components are nothing more than switches

that rapidly turn electrical impulses on and off.

This two-state on and off mode of electricity is called a binary
state of electricity. Computer people use a 1 to represent an on state

(a switch in the computer that is on) and a 0 to represent an off state

(a switch that is off). These numbers, 1 and 0, are called binary digits.
The term binary digits is usually shortened to bits. A bit is either a 1

or a 0 representing an on or an off state of electricity. Different

combinations of bits represent different characters.

Several years ago, someone listed every single character that

might be represented on a computer, including all uppercase letters,

all lowercase letters, the digits 0 through 9, the many other charac-

ters (such as %, *, {, and +), and some special control characters.

When you add the total number of characters that a PC can repre-

sent, you get 256 of them. The 256 ASCII characters are listed in

Appendix C’s ASCII (pronounced ask-ee) table.

The order of the ASCII table’s 256 characters is basically arbi-

trary, just as the telegraph’s Morse code table is arbitrary. With

Morse code, a different set of long and short beeps represent

different letters of the alphabet. In the ASCII table, a different

combination of bits (1s and 0s strung together) represent each of the

256 ASCII characters. The ASCII table is a standard table used by

almost every PC in the world. ASCII stands for American Standard
Code for Information Interchange. (Some minicomputers and main-

frames use a similar table called the EBCDIC table.)

It turns out that if you take every different combination of eight

0s strung together, to eight 1s strung together (that is, from 00000000,

00000001, 00000010, and so on until you get to 11111110, and finally,

11111111), you have a total of 256 of them. (256 is 2 to the 8th power.)

The binary digits 1
and 0 (called bits)
represent on and off
states of electricity.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

684

Each memory location in your computer holds eight bits each. These

bits can be any combination of eight 1s and 0s. This brings us to the

following fundamental rule of computers.

NOTE: Because it takes a combination of eight 1s and 0s to

represent a character, and because each byte of computer

memory can hold exactly one character, eight bits equals one

byte.

To bring this into better perspective, consider that the bit

pattern needed for the uppercase letter A is 01000001. No other

character in the ASCII table “looks” like this to the computer because

each of the 256 characters is assigned a unique bit pattern.

Suppose that you press the A key on your keyboard. Your

keyboard does not send a letter A to the computer; rather, it looks in

its ASCII table for the on and off states of electricity that represent

the letter A. As Figure A.3 shows, when you press the A key, the

keyboard actually sends 01000001 (as on and off impulses) to the

computer. Your computer simply stores this bit pattern for A in a

memory location. Even though you can think of the memory loca-

tion as holding an A, it really holds the byte 01000001.

Figure A.3. Your computer keeps track of characters by their bit
patterns.

Your Keyboard

Computer

Printer

685

EXAMPLE
C++ By

If you were to print that A, your computer would not send an

A to the printer; it would send the 01000001 bit pattern for an A to the

printer. The printer receives that bit pattern, looks up the correct

letter in the ASCII table, and prints an A.
From the time you press the A until the time you see it on the

printer, it is not a letter A! It is the ASCII pattern of bits that the

computer uses to represent an A. Because a computer is electrical,

and because electricity is easily turned on and off, this is a nice way

for the computer to manipulate and move characters, and it can do

so very quickly. Actually, if it were up to the computer, you would

enter everything by its bit pattern, and look at all results in their bit

patterns. Of course, it would be much more difficult for us to learn

to program and use a computer, so devices such as the keyboard,

screen, and printer are created to work part of the time with letters

as we know them. That is why the ASCII table is such an integral

part of a computer.

There are times when your computer treats two bytes as a

single value. Even though memory locations are typically eight bits

wide, many CPUs access memory two bytes at a time. If this is the

case, the two bytes are called a word of memory. On other computers

(commonly mainframes), the word size might be four bytes (32 bits)

or even eight bytes (64 bits).

Summarizing Bits and Bytes

A bit is a 1 or a 0 representing an on or an off state of electricity.

Eight bits represents a byte.

A byte, or eight bits, represents one character.

Each memory location of your computer is eight bits (a single

byte) wide. Therefore, each memory location can hold one

character of data. Appendix C is an ASCII table listing all

possible characters.

If the CPU accesses memory two bytes at a time, those two bytes

are called a word of memory.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

686

The Order of Bits
To further understand memory, you should understand how

programmers refer to individual bits. Figure A.4 shows a byte and

a two-byte word. Notice that the bit on the far right is called bit 0.

From bit 0, keep counting by ones as you move left. For a byte, the

bits are numbered 0 to 7, from right to left. For a double-byte (a 16-

bit word), the bits are numbered from 0 to 15, from right to left.

Figure A.4. The order of bits in a byte and a two-byte word.

Bit 0 is called the least-significant bit, or sometimes the low-order
bit. Bit 7 (or bit 15 for a two-byte word) is called the most-significant
bit, or sometimes the high-order bit.

Binary Numbers
Because a computer works best with 1s and 0s, its internal

numbering method is limited to a base-2 (binary) numbering system.

People work in a base-10 numbering system in the “real” world. The

base-10 numbering system is sometimes called the decimal number-

ing system. There are always as many different digits as the base in

a numbering system. For example, in the base-10 system, there are

ten digits, 0 through 9. As soon as you count to 9 and run out of digits,

you have to combine some that you already used. The number 10 is

a representation of ten values, but it combines the digits 1 and 0.

687

EXAMPLE
C++ By

The same is true of base-2. There are only two digits, 0 and 1.

As soon as you run out of digits, after the second one, you have to

reuse digits. The first seven binary numbers are 0, 1, 10, 11, 100, 101,

and 110.

It is okay if you do not understand how these numbers were

derived; you will see how in a moment. For the time being, you

should realize that no more than two digits, 0 and 1, can be used to

represent any base-2 number, just as no more than ten digits, 0

through 9, can be used to represent any base-10 number in the

regular numbering system.

You should know that a base-10 number, such as 2981, does not

really mean anything by itself. You must assume what base it is. You

get very used to working with base-10 numbers because you use

them every day. However, the number 2981 actually represents a

quantity based on powers of 10. For example, Figure A.5 shows what

the number 2981 actually represents. Notice that each digit in the

number represents a certain number of a power of 10.

Figure A.5. The base-10 breakdown of the number 2981.

This same concept applies when you work in a base-2 number-

ing system. Your computer does this because the power of 2 is just

as common to your computer as the power of 10 is to you. The only

difference is that the digits in a base-2 number represent powers of

2 and not powers of 10. Figure A.6 shows you what the binary

numbers 10101 and 10011110 are in base-10. This is how you convert

any binary number to its base-10 equivalent.

A binary number
can contain only the
digits 1 and 0.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

688

Figure A.6. The base-2 breakdown of the numbers 10101 and
10011110.

A base-2 number contains only 1s and 0s. To convert any base-

2 number to base-10, add each power of 2 everywhere a 1 appears in

the number. The base-2 number 101 represents the base-10 number

5. (There are two 1s in the number, one in the 2 to the 0 power, which

equals 1, and one in the 2 to the second power, which equals 4.) Table

A.1 shows the first 18 base-10 numbers and their matching base-2

numbers.

689

EXAMPLE
C++ By

Table A.1. The first 17 base-10 and base-2 (binary)
numbers.

Base-10 Base-2

0 0

1 1

2 10

3 11

4 100

5 101

6 110

7 111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

16 10000

17 10001

You do not have to memorize this table; you should be able to

figure the base-10 numbers from their matching binary numbers by

adding the powers of two for each 1 (on) bit. Many programmers do

memorize the first several binary numbers because it comes in

handy in advanced programming techniques.

What is the largest binary number a byte can hold? The answer

is all 1s, or 11111111. If you add the first eight powers of 2, you

get 255.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

690

A byte holds either a number or an ASCII character, depending

on how it is accessed. For example, if you were to convert the base-

2 number 01000001 to a base-10 number, you would get 65. How-

ever, this also happens to be the ASCII bit pattern for the uppercase

letter A. If you check the ASCII table, you see that the A is ASCII code

65. Because the ASCII table is so closely linked with the bit patterns,

the computer knows whether to work with a number 65 or a letter

A—by the context of how the patterns are used.

A binary number is not limited to a byte, as an ASCII character

is. Sixteen or 32 bits at a time can represent a binary number (and

usually do). There are more powers of 2 to add when converting that

number to a base-10 number, but the process is the same. By now you

should be able to figure out that 1010101010101010 is 43,690 in base-

10 decimal numbering system (although it might take a little time to

calculate).

To convert from decimal to binary takes a little more effort.

Luckily, you rarely need to convert in that direction. Converting

from base-10 to base-2 is not covered in this appendix.

Binary Arithmetic
At their lowest level, computers can only add and convert

binary numbers to their negative equivalents. Computers cannot

truly subtract, multiply, or divide, although they simulate these

operations through judicious use of the addition and negative-

conversion techniques.

If a computer were to add the numbers 7 and 6, it could do so

(at the binary level). The result is 13. If, however, the computer were

instructed to subtract 7 from 13, it could not do so. It can, however,

take the negative value of 7 and add that to 13. Because –7 plus 13

equals 6, the result is a simulated subtraction.

To multiply, computers perform repeated addition. To multi-

ply 6 by 7, the computer adds seven 6s together and gets 42 as the

answer. To divide 42 by 7, a computer keeps subtracting 7 from 42

repeatedly until it gets to a 0 answer (or less than 0 if there is a

remainder), then counts the number of times it took to reach 0.

691

EXAMPLE
C++ By

Because all math is done at the binary level, the following

additions are possible in binary arithmetic:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 10

Because these are binary numbers, the last result is not the

number 10, but the binary number 2. (Just as the binary 10 means “no

ones, and carry an additional power of 2,” the decimal number 10

means “no ones, and carry a power of 10.”) No binary digit repre-

sents a 2, so you have to combine the 1 and the 0 to form the new

number.

Because binary addition is the foundation of all other math, you

should learn how to add binary numbers. You will then understand

how computers do the rest of their arithmetic.

Using the binary addition rules shown previously, look at the

following binary calculations:

01000001 (65 decimal)

+00101100 (44 decimal)

01101101 (109 decimal)

The first number, 01000001, is 65 decimal. This also happens to

be the bit pattern for the ASCII A, but if you add with it, the computer

interprets it as the number 65 rather than the character A.
The following binary addition requires a carry into bit 4 and

bit 6:

00101011 (43 decimal)

+00100111 (39 decimal)

01010010 (82 decimal)

Typically, you have to ignore bits that carry past bit 7, or bit 15

for double-byte arithmetic. For example, both of the following

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

692

binary additions produce incorrect positive results:

 10000000 (128 decimal) 1000000000000000

 (65536 decimal)

+10000000 (128 decimal) +1000000000000000

 00000000 (0 decimal) (65536 decimal)

 0000000000000000

 (0 decimal)

There is no 9th or 17th bit for the carry, so both of these seem to

produce incorrect results. Because the byte and 16-bit word cannot

hold the answers, the magnitude of both these additions is not

possible. The computer must be programmed, at the bit level, to

perform multiword arithmetic, which is beyond the scope of this book.

Binary Negative Numbers
Because subtracting requires understanding binary negative

numbers, you need to learn how computers represent them. The

computer uses 2’s complement to represent negative numbers in

binary form. To convert a binary number to its 2’s complement (to

its negative) you must:

1. Reverse the bits (the 1s to 0s and the 0s to 1s).

2. Add 1.

This might seem a little strange at first, but it works very well

for binary numbers. To represent a binary –65, you have to take the

binary 65 and convert it to its 2’s complement, such as

 01000001 (65 decimal)

 10111110 (Reverse the bits)

+1 (Add 1)

 10111111 (–65 binary)

Negative binary
numbers are stored
in their 2’s
complement format.

693

EXAMPLE
C++ By

By converting the 65 to its 2’s complement, you produce –65 in

binary. You might wonder what makes 10111111 mean –65, but by

the 2’s complement definition it means –65.

If you were told that 10111111 is a negative number, how

would you know which binary number it is? You perform the 2’s

complement on it. Whatever number you produce is the positive of

that negative number. For example:

10111111 (–65 decimal)

01000000 (Reverse the bits)

 +1 (Add 1)

01000001 (65 decimal)

Something might seem wrong at this point. You just saw that

10111111 is the binary –65, but isn’t 10111111 also 191 decimal

(adding the powers of 2 marked by the 1s in the number, as

explained earlier)? It depends whether the number is a signed or an

unsigned number. If a number is signed, the computer looks at the

most-significant bit (the bit on the far left), called the sign bit. If the

most-significant bit is a 1, the number is negative. If it is 0, the

number is positive.

Most numbers are 16 bits long. That is, two-byte words are used

to store most integers. This is not always the case for all computers,

but it is true for most PCs.

In the C++ programming language, you can designate num-

bers as either signed integers or unsigned integers (they are signed

by default if you do not specify otherwise). If you designate a

variable as a signed integer, the computer interprets the high-order

bit as a sign bit. If the high-order bit is on (1), the number is negative.

If the high-order bit is off (0), the number is positive. If, however, you

designate a variable as an unsigned integer, the computer uses the

high-order bit as just another power of 2. That is why the range of

unsigned integer variables goes higher (generally from 0 to 65535,

but it depends on the computer) than for signed integer variables

(generally from –32768 to +32767).

After so much description, a little review is in order. Assume

that the following 16-bit binary numbers are unsigned:

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

694

0011010110100101

1001100110101010

1000000000000000

These numbers are unsigned, so the bit 15 is not the sign bit, but

simply another power of 2. You should practice converting these

large 16-bit numbers to decimal. The decimal equivalents are

13733

39338

32768

If, on the other hand, these numbers are signed numbers, the

high-order bit (bit 15) indicates the sign. If the sign bit is 0, the

numbers are positive and you convert them to decimal in the usual

manner. If the sign bit is 1, you must convert the numbers to their 2’s

complement to find what they equal. Their decimal equivalents are

+13733

–26198

–32768

To compute the last two binary numbers to their decimal

equivalents, take their 2’s complement and convert it to decimal. Put

a minus sign in front of the result and you find what the original

number represents.

TIP: To make sure that you convert a number to its 2’s com-

plement correctly, you can add the 2’s complement to its

original positive value. If the answer is 0 (ignoring the extra

carry to the left), you know that the 2’s complement number is

correct. This is similar to the concept that decimal opposites,

such as –72 + 72, add up to zero.

695

EXAMPLE
C++ By

Hexadecimal Numbers
All those 1s and 0s get confusing. If it were up to your com-

puter, however, you would enter everything as 1s and 0s! This is

unacceptable to people because we do not like to keep track of all

those 1s and 0s. Therefore, a hexadecimal numbering system (some-

times called hex) was devised. The hexadecimal numbering system

is based on base-16 numbers. As with other bases, there are 16

unique digits in the base-16 numbering system. Here are the first 19

hexadecimal numbers:

0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12

Because there are only 10 unique digits (0 through 9), the letters

A through F represent the remaining six digits. (Anything could

have been used, but the designers of the hexadecimal numbering

system decided to use the first six letters of the alphabet.)

To understand base-16 numbers, you should know how to

convert them to base-10 so they represent numbers with which

people are familiar. Perform the conversion to base-10 from base-16

the same way you did with base-2, but instead of using powers of 2,

represent each hexadecimal digit with powers of 16. Figure A.7

shows how to convert the number 3C5 to decimal.

Hexadecimal
numbers use 16
unique digits, 0
through F.

Figure A.7. Converting hexadecimal 3C5 to its decimal equivalent.

TIP: There are calculators available that convert numbers

between base-16, base-10, and base-2, and also perform 2’s

complement arithmetic.

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

696

You should be able to convert 2B to its decimal 43 equivalent,

and E1 to decimal 225 in the same manner. Table A.2 shows the first

20 decimal, binary, and hexadecimal numbers.

Table A.2. The first 20 base-10, base-2 (binary),
and base-16 (hexadecimal) numbers.

Base-10 Base-2 Base-16

1 1 1

2 10 2

3 11 3

4 100 4

5 101 5

6 110 6

7 111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

16 10000 10

17 10001 11

18 10010 12

19 10011 13

20 10100 14

697

EXAMPLE
C++ By

Why Learn Hexadecimal?
Because of its close association to the binary numbers your

computer uses, hexadecimal notation is extremely efficient for de-

scribing memory locations and values. It is much easier for you (and

more importantly at this level, for your computer) to convert from

base-16 to base-2 than from base-10 to base-2. Therefore, you some-

times want to represent data at the bit level, but using hexadecimal

notation is easier (and requires less typing) than using binary

numbers.

To convert from hexadecimal to binary, convert each hex digit

to its four-bit binary number. You can use Table A.2 as a guide for

this. For example, the following hexadecimal number

5B75

can be converted to binary by taking each digit and converting it to

four binary numbers. If you need leading zeroes to “pad” the four

digits, use them. The number becomes

0101 1011 0111 0101

It turns out that the binary number 0101101101110101 is exactly

equal to the hexadecimal number 5B75. This is much easier than

converting them both to decimal first.

To convert from binary to hexadecimal, reverse this process. If

you were given the following binary number

1101000011110111111010

you could convert it to hexadecimal by grouping the bits into groups

of four, starting with the bit on the far right. Because there is not an

even number of groups of four, pad the one on the far left with

zeroes. You then have the following:

0011 0100 0011 1101 1111 1010

Now you only have to convert each group of four binary digits

into their hexadecimal number equivalent. You can use Table A.2 to

help. You then get the following base-16 number:

343DFA

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

698

The C++ programming language also supports the base-8 octal
representation of numbers. Because octal numbers are rarely used

with today’s computers, they are not covered in this appendix.

How Binary and Addressing
Relate to C++

The material presented here may seem foreign to many pro-

grammers. The binary and 2’s complement arithmetic reside deep in

your computer, shielded from most programmers (except assem-

bly-language programmers). Understanding this level of your com-

puter, however, makes everything else you learn seem more clear.

Many C++ programmers learn C++ before delving into binary

and hexadecimal representation. For those programmers, much

about the C++ language seems strange, but it could be explained

very easily if they understood the basic concepts.

For example, a signed integer holds a different range of num-

bers than an unsigned integer. You now know that this is because

the sign bit is used in two different ways, depending on whether

the number is designated as signed or unsigned.

The ASCII table (see Appendix C) also should make more sense

to you after this discussion. The ASCII table is an integral part of

your computer. Characters are not actually stored in memory and

variables; rather, their ASCII bit patterns are. That is why C++ can

move easily between characters and integers. The following two

C++ statements are allowed, whereas they probably would not be in

another programming language:

char c = 65; // Places the ASCII letter A in c.

int ci = ‘A’; // Places the number 65 in ci.

The hexadecimal notation also makes much more sense if you

truly understand base-16 numbers. For example, if you see the

following line in a C++ program

char a = ‘\x041’;

699

EXAMPLE
C++ By

you could convert the hex 41 to decimal (65 decimal) if you want to

know what is being assigned. Also, C++ systems programmers find

that they can better interface with assembly-language programs

when they understand the concepts presented in this appendix.

If you gain only a cursory knowledge of this material at this

point, you will be very much ahead of the game when you program

in C++!

Appendix A ♦ Memory Addressing, Binary, and Hexadecimal Review

700

701

EXAMPLE
C++ By

B

Answers to
Review Questions

Chapter 1
1. BCPL or Algol

2. True

3. 1980s

4. False. C++’s compact size makes it an excellent program-

ming language for smaller computers.

5. The hard disk

6. A modem

7. b. Input. By moving the mouse, you give cursor-direction

commands to the computer.

8. NumLock

9. UNIX

Appendix B ♦ Answers to Review Questions

702

10. When you turn off the computer, the contents of RAM are

destroyed.

11. True

12. 524,288 bytes (512 times 1,024)

13. Modulate, demodulate

Chapter 2
1. A set of detailed instructions that tells the computer what

to do.

2. Buy one or write it yourself.

3. False

4. The program produces the output.

5. A program editor

6. The .CPP extension

7. You must first plan the program by deciding which steps

you will take to produce the final program.

8. To get the errors out of your program

9. So your programs work with various compilers and com-

puter equipment

10. False. You must compile a program before linking it. Most

compilers link the program automatically.

Chapter 3
1. Two comment markers (//)

2. A holding place for data that can be changed

3. A value that cannot be changed

4. The +, -, *, and / operators

703

EXAMPLE
C++ By

5. The = assignment operator.

6. False. There are floating-point, double floating-point, short

integers, long integers, and many more variable data types.

7. cout

8. city must be a variable name because it is not enclosed in

quotation marks.

9. All C++ commands must be in lowercase.

Chapter 4
1. my_name and sales_89

2. Characters: ‘X’and ‘0’

Strings: “2.0” and “X”

Integers: 0 and -708

Floating-point literals: -12.0 and 65.4

3. Seven variables are declared: three integers, three characters,

and one floating-point variable.

4. A null zero, also called a binary zero or an ASCII zero.

5. True

6. 1

7. It is stored as a series of ASCII values, representing the

characters and blanks in the string, ending in an ASCII 0.

8. It is stored as a single ASCII 0.

9. The constant value called age cannot be changed.

Chapter 5
1. char my_name[] “This is C++”;

2. The string is 11 characters long.

Appendix B ♦ Answers to Review Questions

704

3. It consumes 12 bytes.

4. All string literals end with a binary zero.

5. Two character arrays are declared, each with 25 elements.

6. False. The keyword char must precede the variable name.

7. True. The binary zero terminates the string.

8. False. The characters do not represent a string because there

is no terminating zero.

Chapter 6
1. False. You can define only constants with the #define prepro-

cessor directive.

2. The #include directive

3. The #define directive

4. True

5. The preprocessor changes your source code before the

compiler reads the source code.

6. The const keyword

7. Use angled brackets when the include files reside in the

compiler’s include subdirectory. Use quotation marks when

the include file resides in the same subdirectory as the source

program.

8. Defined literals are easier to change because you have to

change only the line with #define and not several other lines

in the program.

9. iostream.h

10. False. You cannot define constants enclosed in quotation

marks (as “MESSAGE” is in the cout statement).

11. Amount is 4

705

EXAMPLE
C++ By

Chapter 7
1. cout sends output to the screen, and cin gets input from the

keyboard.

2. The prompt tells the user what is expected.

3. The user enters four values.

4. cin assigns values to variables when the user types them,

whereas the programmer must assign data when using the

assignment operator (=).

5. True. When printing strings, you do not need %s.

6. Arrays

7. The backslash “\” character is special

8. The following value prints, with one leading space: 123.456

Chapter 8
1. a. 5

b. 6

c. 5

2. a. 2

b. 7

3. a. a = (3+3) / (4+4);

b. x = (a-b)*((a-c) * (a-c));

c. f = (a*a)/(b*b*b);

d. d = ((8 - x*x)/(x - 9))-((4*2 - 1)/(x*x*x));

4. The area of a circle:

#include stdio.h>

const float PI = 3.14159;

main()

Appendix B ♦ Answers to Review Questions

706

{

 printf(“%f”, (PI*(4*4));

 return;

}

5. Assignment and printf() statements:

r = 100%4;

cout << r;

Chapter 9
1. The == operator

2. a. True

b. True

c. True

d. True

3. True

4. The if statement determines what code executes when the

relational test is true. The if-else statement determines what

happens for both the True and the False relational test.

5. No

6. a. False

b. False

c. False

Chapter 10
1. The &&, ||, and ! operators are the three logical operators.

2. a. False

b. False

707

EXAMPLE
C++ By

c. True

d. True

3. a. True

b. True

c. True

4. g is 25 and f got changed to 8

5. a. True

b. True

c. False

d. True

6. Yes

Chapter 11
1. The if-else statement

2. The conditional operator is the only C++ operator with three

arguments.

3. if (a == b)

 { ans = c + 2; }

else

 { ans = c + 3; }

4. True

5. The increment and decrement operators compile into single

assembly instructions.

6. A comma operator (,), which forces a left-to-right execution

of the statements on either side

7. The output cannot be determined reliably. Do not pass an

increment operator as an argument.

Appendix B ♦ Answers to Review Questions

708

8. The size of name is 20

9. a. True

b. True

c. False

d. False

Chapter 12
1. The while loop tests for a true condition at the beginning of

the loop. The do-while tests for the condition at the end of the

loop.

2. A counter variable increments by one. A total variable

increments by the addition to the total you are performing.

3. The ++ operator

4. If the body of the loop is a single statement, the braces are

not required. However, braces are always recommended.

5. There are no braces. The second cout always executes, re-

gardless of the result of the while loop’s relational test.

6. The stdlib.h header file

7. One time

8. By returning a value inside the exit() function’s parentheses

9. This is the outer loop

This is the outer loop

This is the outer loop

This is the outer loop

709

EXAMPLE
C++ By

Chapter 13
1. A loop is a sequence of one or more instructions executed

repeatedly.

2. False

3. A nested loop is a loop within a loop.

4. Because the expressions might be initialized elsewhere, such

as before the loop or in the body of the loop

5. The inner loop

6. 10

7

4

1

7. True

8. The body of the for loop stops repeating.

9. False, due to the semicolon after the first for loop

10. There is no output. The value of start is already less than end

when the loop begins; therefore, the for loop’s test is imme-

diately False.

Chapter 14
1. Timing loops force a program to pause.

2. Because some computers are faster than others.

3. If the continue and break statements were unconditional,

there would be little use for them.

4. Because of the unconditional continue statement, there is no

output.

5. *****

Appendix B ♦ Answers to Review Questions

710

6. A single variable rarely can hold a large enough value for

the timer’s count.

Chapter 15
1. The program does not execute sequentially, as it would

without goto.

2. The switch statement

3. A break statement

4. False because you should place the case most likely to

execute at the beginning of the case options.

5. switch (num)

{ case (1) : { cout << “Alpha”;

 break; }

 case (2) : { cout << “Beta”;

 break; }

 case (3) : { cout << “Gamma”;

 break; }

 default : { cout << “Other”;

 break; }

}

6. do

 { cout << “What is your first name? “;

 cin >> name;

 } while ((name[0] < ‘A’) || (name[0] > ‘Z’));

Chapter 16
1. True

2. main()

711

EXAMPLE
C++ By

3. Several smaller functions are better because each function

can perform a single task.

4. Function names always end with a pair of parentheses.

5. By putting separating comments between functions.

6. The function sq_25() cannot be nested in calc_it().

7. A function definition (a prototype).

8. True

Chapter 17
1. True

2. Local variables are passed as arguments.

3. False

4. The variable data types

5. Static

6. You should never pass global variables—they do not need to

be passed.

7. Two arguments (the string “The rain has fallen %d inches”,

and the variable, rainf)

Chapter 18
1. Arrays

2. Nonarray variables are always passed by value, unless you

override the default with & before each variable name.

3. True

4. No

5. Yes

Appendix B ♦ Answers to Review Questions

712

6. The data types of variables x, y, and z are not declared in the

receiving parameter list.

7. c

Chapter 19
1. By putting the return type to the left of the function name.

2. One

3. To prototype built-in functions.

4. int

5. False

6. Prototypes ensure that the correct number of parameters is

being passed.

7. Global variables are already known across functions.

8. The return type is float. Three parameters are passed: a

character, an integer, and a floating-point variable.

Chapter 20
1. In the function prototypes.

2. Overloaded functions

3. Overloaded functions

4. False. You can specify multiple default arguments.

5. void my_fun(float x, int i=7, char ch=’A’);

6. False. Overloaded functions must differ in their argument

lists, not only in their return values.

713

EXAMPLE
C++ By

Chapter 21
1. For portability between different computers

2. False. The standard output can be redirected to any device

through the operating system.

3. getch() assumes stdin for the input device.

4. get

5. > and <

6. getche()

7. False. The input from get goes to a buffer as you type it.

8. Enter

9. True

Chapter 22
1. The character-testing functions do not change the character

passed to them.

2. gets() and fgets()

3. floor() rounds down and ceil() rounds up.

4. The function returns 0 (false) because islower(‘s’) returns a 1

(true) and isalpha(1) is 0.

5. PeterParker

6. 8 9

7. True

8. Prog with a null zero at the end.

9. True

Appendix B ♦ Answers to Review Questions

714

Chapter 23
1. False

2. The array subscripts differentiate array elements.

3. C does not initialize arrays for you.

4. 0

5. Yes. All arrays are passed by address because an array name

is nothing more than an address to that array.

6. C++ initializes all types of global variables (and every other

static variable in your program) to zero or null zero.

Chapter 24
1. False

2. From the low numbers floating to the top of the array like

bubbles.

3. Ascending order

4. The name of an array is an address to the starting element of

that array.

5. a. Eagles

b. Rams

c. les

d. E

e. E

f. The statement prints the character string, s.

g. The third letter of “Eagles” (g) prints.

715

EXAMPLE
C++ By

Chapter 25
1. int scores[5][6];

2. char initials[4][10][20]

3. The first subscript represents rows and the last represents

columns.

4. 30 elements

5. a. 2

b. 1

c. 91

d. 8

6. Nested for loops step through multidimensional tables very

easily.

7. a. 78

b. 100

c. 90

Chapter 26
1. a. Integer pointer

b. Character pointer

c. Floating-point pointer

2. “Address of “

3. The * operator

4. pt_sal = &salary;

5. False

6. Yes

7. a. 2313.54

Appendix B ♦ Answers to Review Questions

716

b. 2313.54

c. invalid

d. invalid

8. b

Chapter 27
1. Array names are pointer constants, not pointer variables.

2. 8

3. a, c, and d are equivalent. Parentheses are needed around

iptr+4 and iptr+1 to make b and e valid.

4. You have to move only pointers, not entire strings.

5. a and d

Chapter 28
1. Structures hold groups of more than one value, each of

which can be a different data type.

2. Members

3. At declaration time and at runtime

4. Structures pass by copy.

5. False. Memory is reserved only when structure variables are

declared.

6. Globally

7. Locally

8. 4

717

EXAMPLE
C++ By

Chapter 29
1. True

2. Arrays are easier to manage.

3. a. inventory[32].price = 12.33;

b. inventory[11].part_no[0] = ‘X’;

c. inventory[96] = inventory[62];

4. a. item is not a structure variable.

b. inventory is an array and must have a subscript.

c. inventory is an array and must have a subscript.

Chapter 30
1. Write, append, and read.

2. Disks hold more data than memory.

3. You can access sequential files only in the same order that

they were originally written.

4. An error condition occurs.

5. The old file is overwritten.

6. The file is created.

7. C++ returns an end-of-file condition.

Chapter 31
1. Records are stored in files and structures are stored in

memory.

2. False

3. The file pointer continually updates to point to the next byte

to read.

Appendix B ♦ Answers to Review Questions

718

4. read() and write()

5. The open() function cannot be called without a filename.

Chapter 32
1. Data members and member functions

2. No

3. No

4. Private

5. Declare it with the public keyword.

719

EXAMPLE
C++ By

C

000 00 0000 0000 null

001 01 0000 0001

002 02 0000 0010

003 03 0000 0011 ♥
004 04 0000 0100 ◆
005 05 0000 0101 ♣
006 06 0000 0110 ♠
007 07 0000 0111

008 08 0000 1000

009 09 0000 1001

010 0A 0000 1010

011 0B 0000 1011

012 0C 0000 1100

013 0D 0000 1101

014 0E 0000 1110

015 0F 0000 1111

016 10 0001 0000

ASCII Table
(Including IBM Extended
Character Codes)

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

Appendix C ♦ ASCII Table

720

017 11 0001 0001

018 12 0001 0010

019 13 0001 0011 !!

020 14 0001 0100 ¶

021 15 0001 0101 §

022 16 0001 0110 –

023 17 0001 0111

024 18 0001 1000 ↑
025 19 0001 1001 ↓
026 1A 0001 1010 →
027 1B 0001 1011 ←
028 1C 0001 1100 FS

029 1D 0001 1101 GS

030 1E 0001 1110 RS

031 1F 0001 1111 US

032 20 0010 0000 SP

033 21 0010 0001 !

034 22 0010 0010 "

035 23 0010 0011 #

036 24 0010 0100 $

037 25 0010 0101 %

038 26 0010 0110 &

039 27 0010 0111 '

040 28 0010 1000 (

041 29 0010 1001)

042 2A 0010 1010 *

043 2B 0010 1011 +

044 2C 0010 1100 ’

045 2D 0010 1101 -

046 2E 0010 1110 .

047 2F 0010 1111 /

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

721

EXAMPLE
C++ By

048 30 0011 0000 0

049 31 0011 0001 1

050 32 0011 0010 2

051 33 0011 0011 3

052 34 0011 0100 4

053 35 0011 0101 5

054 36 0011 0110 6

055 37 0011 0111 7

056 38 0011 1000 8

057 39 0011 1001 9

058 3A 0011 1010 :

059 3B 0011 1011 ;

060 3C 0011 1100 <

061 3D 0011 1101 =

062 3E 0011 1110 >

063 3F 0011 1111 ?

064 40 0100 0000 @

065 41 0100 0001 A

066 42 0100 0010 B

067 43 0100 0011 C

068 44 0100 0100 D

069 45 0100 0101 E

070 46 0100 0110 F

071 47 0100 0111 G

072 48 0100 1000 H

073 49 0100 1001 I

074 4A 0100 1010 J

075 4B 0100 1011 K

076 4C 0100 1100 L

077 4D 0100 1101 M

078 4E 0100 1110 N

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

Appendix C ♦ ASCII Table

722

079 4F 0100 1111 O

080 50 0101 0000 P

081 51 0101 0001 Q

082 52 0101 0010 R

083 53 0101 0011 S

084 54 0101 0100 T

085 55 0101 0101 U

086 56 0101 0110 V

087 57 0101 0111 W

088 58 0101 1000 X

089 59 0101 1001 Y

090 5A 0101 1010 Z

091 5B 0101 1011 [

092 5C 0101 1100 \

093 5D 0101 1101]

094 5E 0101 1110 ^

095 5F 0101 1111 –

096 60 0110 0000 `

097 61 0110 0001 a

098 62 0110 0010 b

099 63 0110 0011 c

100 64 0110 0100 d

101 65 0110 0101 e

102 66 0110 0110 f

103 67 0110 0111 g

104 68 0110 1000 h

105 69 0110 1001 i

106 6A 0110 1010 j

107 6B 0110 1011 k

108 6C 0110 1100 l

109 6D 0110 1101 m

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

723

EXAMPLE
C++ By

110 6E 0110 1110 n

111 6F 0110 1111 o

112 70 0111 0000 p

113 71 0111 0001 q

114 72 0111 0010 r

115 73 0111 0011 s

116 74 0111 0100 t

117 75 0111 0101 u

118 76 0111 0110 v

119 77 0111 0111 w

120 78 0111 1000 x

121 79 0111 1001 y

122 7A 0111 1010 z

123 7B 0111 1011 {

124 7C 0111 1100 |

125 7D 0111 1101 }

126 7E 0111 1110 ~

127 7F 0111 1111 DEL

128 80 1000 0000 Ç

129 81 1000 0001 ü

130 82 1000 0010 é

131 83 1000 0011 â

132 84 1000 0100 ä

133 85 1000 0101 à

134 86 1000 0110 å

135 87 1000 0111 ç

136 88 1000 1000 ê

137 89 1000 1001 ë

138 8A 1000 1010 è

139 8B 1000 1011 ï

140 8C 1000 1100 î

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

Appendix C ♦ ASCII Table

724

º
ª

141 8D 1000 1101 ì

142 8E 1000 1110 Ä

143 8F 1000 1111 Å

144 90 1001 0000 É

145 91 1001 0001 æ

146 92 1001 0010 Æ

147 93 1001 0011 ô

148 94 1001 0100 ö

149 95 1001 0101 ò

150 96 1001 0110 û

151 97 1001 0111 ù

152 98 1001 1000 ÿ

153 99 1001 1001 Ö

154 9A 1001 1010 Ü

155 9B 1001 1011 ¢

156 9C 1001 1100 £

157 9D 1001 1101 ¥

158 9E 1001 1110 Pt

159 9F 1001 1111 ƒ

160 A0 1010 0000 á

161 A1 1010 0001 í

162 A2 1010 0010 ó

163 A3 1010 0011 ú

164 A4 1010 0100 ñ

165 A5 1010 0101 Ñ

166 A6 1010 0110

167 A7 1010 0111

168 A8 1010 1000 ®
169 A9 1010 1001 ©
170 AA 1010 1010 ø
171 AB 1010 1011 ´

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

725

EXAMPLE
C++ By

172 AC 1010 1100 ¨
173 AD 1010 1101 ≠
174 AE 1010 1110 Æ
175 AF 1010 1111 Ø
176 B0 1011 0000 ∞
177 B1 1011 0001 ±
178 B2 1011 0010 ≤
179 B3 1011 0011 |

180 B4 1011 0100 ¥
181 B5 1011 0101 µ
182 B6 1011 0110 ∂
183 B7 1011 0111 ∑
184 B8 1011 1000 ∏
185 B9 1011 1001 π
186 BA 1011 1010 ∫
187 BB 1011 1011 ª
188 BC 1011 1100 º
189 BD 1011 1101 Ω
190 BE 1011 1110 æ
191 BF 1011 1111 ™
192 C0 1100 0000 L

193 C1 1100 0001 ¡
194 C2 1100 0010 ¬
195 C3 1100 0011 √
196 C4 1100 0100 ƒ
197 C5 1100 0101 +
198 C6 1100 0110 ∆
199 C7 1100 0111 «
200 C8 1100 1000 »
201 C9 1100 1001 …
202 CA 1100 1010

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

Appendix C ♦ ASCII Table

726

203 CB 1100 1011

204 CC 1100 1100

205 CD 1100 1101 =

206 CE 1100 1110 Œ
207 CF 1100 1111 œ
208 D0 1101 0000 –
209 D1 1101 0001 —
210 D2 1101 0010 “
211 D3 1101 0011 ”
212 D4 1101 0100 ‘
213 D5 1101 0101 ’
214 D6 1101 0110 ÷
215 D7 1101 0111 ◊
216 D8 1101 1000

217 D9 1101 1001 Ÿ
218 DA 1101 1010 ⁄
219 DB 1101 1011 ¤
220 DC 1101 1100 ‹
221 DD 1101 1101 ›
222 DE 1101 1110 fi
223 DF 1101 1111 fl
224 E0 1110 0000 α
225 E1 1110 0001 β
226 E2 1110 0010 Γ
227 E3 1110 0011 π
228 E4 1110 0100 ‰
229 E5 1110 0101 Â
230 E6 1110 0110 µ

231 E7 1110 0111

232 E8 1110 1000 Φ
233 E9 1110 1001

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

727

EXAMPLE
C++ By

234 EA 1110 1010 Í
235 EB 1110 1011

236 EC 1110 1100 ∞
237 ED 1110 1101 ø

238 EE 1110 1110 Ó
239 EF 1110 1111 ∩
240 F0 1111 0000

241 F1 1111 0001 Ò
242 F2 1111 0010 Ú
243 F3 1111 0011 Û
244 F4 1111 0100 Ù
245 F5 1111 0101 ı
246 F6 1111 0110 ÷

247 F7 1111 0111 ˜
248 F8 1111 1000 °

249 F9 1111 1001 •

250 FA 1111 1010 •

251 FB 1111 1011 √
252 FC 1111 1100

253 FD 1111 1101 2

254 FE 1111 1110

255 FF 1111 1111

Dec Hex Binary ASCII

X
10

X
16

X
2

Character

Appendix C ♦ ASCII Table

728

729

EXAMPLE
C++ By

D

C++ Precedence
Table

Precedence
Level Symbol Description Associativity

1
Highest () Function call Left to right

[] Array subscript

→ C++ indirect component

selector

:: C++ scope access/resolution

 . C++ direct component selector

2
Unary ! Logical negation Right to left

~ Bitwise (1’s) complement

+ Unary plus

- Unary minus

Appendix D ♦ C++ Precedence Table

730

Precedence
Level Symbol Description Associativity

++ Preincrement or postincrement

–– Predecrement or postdecrement

& Address of

* Indirection

sizeof (Returns size of operand, in
bytes.)

new (Dynamically allocates
C++ storage.)

delete (Dynamically deallocates
C++ storage.)

3
Member Left to right
Access .* C++ dereference

→* C++ dereference

4
Multipli-
cative * Multiply Left to right

/ Divide

% Remainder (modulus)

5
Additive + Binary plus Left to right

- Binary minus

6
Shift << Shift left Left to right

>> Shift right

731

EXAMPLE
C++ By

Precedence
Level Symbol Description Associativity

7
Relational < Less than Left to right

<= Less than or equal to

> Greater than

>= Greater than or equal to

8
Equality == Equal to Left to right

!= Not equal to

9 & Bitwise AND Left to right

10 ^ Bitwise XOR Left to right

11 | Bitwise OR Left to right

12 && Logical AND Left to right

13 || Logical OR Left to right

14
Condi-
tional ?: Right to left

15
Assignment = Simple assignment Right to left

*= Assign product

/= Assign quotient

Appendix D ♦ C++ Precedence Table

732

Precedence
Level Symbol Description Associativity

%= Assign remainder Right to left

+= Assign sum

-= Assign difference

&= Assign bitwise AND

^= Assign bitwise XOR

|= Assign bitwise OR

<<= Assign left shift

>>= Assign right shift

16
Comma , Evaluate Left to right

733

EXAMPLE
C++ By

E

Keyword and
Function
Reference

These are the 46 C++ standard keywords:

auto double new* switch

asm* else operator* template

break enum private* this*
case extern protected typedef

catch* float public* union

char for register unsigned

class* friend* return virtual*
const goto short void

continue if signed volatile

default inline* sizeof while

delete* int static

do long struct

* These keywords are specific to C++. All others exist in both C and C++.

Appendix E ♦ Keyword and Function Reference

734

The following are the built-in function prototypes, listed by their

header files. The prototypes describe the parameter data types that

each function requires.

stdio.h

int fclose(FILE *stream);

int feof(FILE *stream);

int ferror(FILE *stream);

int fflush(FILE *stream);

int fgetc(FILE *stream);

char *fgets(char *, int, FILE *stream);

FILE *fopen(const char *filename, const char *mode);

int fprintf(FILE *stream, const char *format, ...);

int fputc(int, FILE *stream);

int fputs(const char *, FILE *stream);

size_t fread(void *, size_t, size_t, FILE *stream);

int fscanf(FILE *stream, const char *format, ...);

int fseek(FILE *stream, long offset, int origin);

size_t fwrite(const void *, size_t, size_t, FILE *stream);

int getc(FILE *stream);

int getchar(void);

char *gets(char *);

void perror(const char *);

int putc(int, FILE *stream);

int putchar(int);

int puts(const char *);

int remove(const char *filename);

void rewind(FILE *stream);

int scanf(const char *format, ...);

ctype.h

int isalnum(unsigned char);

int asalpha(unsigned char);

int iscntrl(unsigned char);

int isdigit(unsigned char);

int isgraph(unsigned char);

int islower(unsigned char);

735

EXAMPLE
C++ By

int isprint(unsigned char);

int ispunct(unsigned char);

int isspace(unsigned char);

int isupper(unsigned char);

int isxdigit(unsigned char);

int tolower(int);

int toupper(int);

string.h

char *strcat(char *, char *);

int strcmp(char *, char *);

int strcpy(char *, char *);

size_t strlen(char *);

math.h

double ceil(double);

double cos(double);

double exp(double);

double fabs(double);

double floor(double);

double fmod(double, double);

double log(double);

double log10(double);

double pow(double, double);

double sin(double);

double sqrt(double);

double tan(double);

stdlib.h

double atof(const char *);

int atoi(const char *);

long atol(const char *);

void exit(int);

int rand(void);

void srand(unsigned int);

Appendix E ♦ Keyword and Function Reference

736

737

EXAMPLE
C++ By

F

The Mailing List
Application

This appendix shows a complete program that contains most the

commands and functions you learned in this book. This program

manages a mailing list for your personal or business needs.

When you run the program, you are presented with a menu

of choices that guides you through the program’s operation.

Comments throughout the program offer improvements you

might want to make. As your knowledge and practice of C++

improve, you might want to expand this mailing list application

into a complete database of contacts and relatives.

Here is the listing of the complete program:

// Filename: MAILING.CPP

// * Mailing List Application *

// ------------------------

//

// This program enables the user to enter, edit, maintain, and

// print a mailing list of names and addresses.

//

// All commands and concepts included in this program are

// explained throughout the text of C++ By Example.

Appendix F ♦ The Mailing List Application

738

//

//

//

// These are items you might want to add or change:

// 1. Find your compiler’s clear screen function to

// improve upon the screen-clearing function.

// 2. Add an entry for the ‘code’ member to track different

// types of names and addresses (i.e., business codes,

// personal codes, etc.)

// 3. Search for a partial name (i.e., typing “Sm” finds

// “Smith” and “Smitty” and “Smythe” in the file).

// 4. When searching for name matches, ignore case (i.e.,

// typing “smith” finds “Smith” in the file).

// 5. Print mailing labels on your printer.

// 6. Allow for sorting a listing of names and address by name

// or ZIP code.

// Header files used by the program:

#include <conio.h>

#include <ctype.h>

#include <fstream.h>

#include <iostream.h>

#include <string.h>

const char FILENAME[] = “ADDRESS.DAT”;

// Prototype all of this program’s functions.

char get_answer(void);

void disp_menu (void);

void clear_sc (void);

void change_na (void);

void print_na (void);

void err_msg (char err_msg[]);

void pause_sc (void);

const int NAME_SIZE = 25;

const int ADDRESS_SIZE = 25;

const int CITY_SIZE = 12;

739

EXAMPLE
C++ By

const int STATE_SIZE = 3;

const int ZIPCODE_SIZE = 6;

const int CODE_SIZE = 7;

// Class of a name and address

class Mail

{

private:

 char name[NAME_SIZE]; // Name stored here, should

 // be Last, First order

 char address[ADDRESS_SIZE];

 char city[CITY_SIZE];

 char state[STATE_SIZE]; // Save room for null zero.

 char zipcode[ZIPCODE_SIZE];

 char code[CODE_SIZE]; // For additional expansion. You

 // might want to use this member

 // for customer codes, vendor codes,

 // or holiday card codes.

public:

 void pr_data(Mail *item)

 {

 // Prints the name and address sent to it.

 cout << “\nName : “ << (*item).name << “\n”;

 cout << “Address: “ << (*item).address << “\n”;

 cout << “City : “ << (*item).city << “\tState: “

 << (*item).state << “ Zipcode: “ << (*item).zipcode

 << “\n”;

 }

 void get_new_item(Mail *item)

 {

 Mail temp_item; // Holds temporary changed input.

 cout << “\nEnter new name and address information below\n(Press the “;

 cout << “Enter key without typing data to retain old "

 “information)\n\n”;

 cout << “What is the new name? “;

 cin.getline(temp_item.name, NAME_SIZE);

 if (strlen(temp_item.name)) // Only save new data if user

 { strcpy((*item).name, temp_item.name); } // types something.

 cout << “What is the address? “;

 cin.getline(temp_item.address, ADDRESS_SIZE);

Appendix F ♦ The Mailing List Application

740

 if (strlen(temp_item.address))

 { strcpy((*item).address, temp_item.address); }

 cout << “What is the city? “;

 cin.getline(temp_item.city, CITY_SIZE);

 if (strlen(temp_item.city))

 { strcpy((*item).city, temp_item.city); }

 cout << “What is the state? (2 letter abbreviation only) “;

 cin.getline(temp_item.state, STATE_SIZE);

 if (strlen(temp_item.state))

 { strcpy((*item).state, temp_item.state); }

 cout << “What is the ZIP code? “;

 cin.getline(temp_item.zipcode, ZIPCODE_SIZE);

 if (strlen(temp_item.zipcode))

 { strcpy((*item).zipcode, temp_item.zipcode); }

 (*item).code[0] = 0; // Null out the code member

 // (unused here).

 }

 void add_to_file(Mail *item);

 void change_na(void);

 void enter_na(Mail *item);

 void getzip(Mail *item);

};

void Mail::change_na(void)

{

// This search function can be improved by using the

// code member to assign a unique code to each person on the

// list. Names are difficult to search for since there are

// so many variations (such as Mc and Mac and St. and Saint).

 Mail item;

 fstream file;

 int ans;

 int s; // Holds size of structure.

 int change_yes = 0; // Will become TRUE if user finds

 char test_name[25]; // a name to change.

 cout << “\nWhat is the name of the person you want to change? “;

 cin.getline(test_name, NAME_SIZE);

 s = sizeof(Mail); // To ensure fread() reads properly.

741

EXAMPLE
C++ By

 file.open(FILENAME, ios::in | ios::out);

 if (!file)

 {

 err_msg(“*** Read error - Ensure file exists before "

 "reading it ***”);

 return;

 }

 do

 {

 file.read((unsigned char *)&item, sizeof(Mail));

 if (file.gcount() != s)

 {

 if (file.eof())

 { break; }

 }

 if (strcmp(item.name, test_name) == 0)

 {

 item.pr_data(&item); // Print name and address.

 cout << “\nIs this the name and address to “ <<

 “change? (Y/N) “;

 ans = get_answer();

 if (toupper(ans) == ‘N’)

 { break; } // Get another name.

 get_new_item(&item); // Enable user to type new

 // information.

 file.seekg((long)-s, ios::cur); // Back up a structure.

 file.write((const unsigned char *)(&item),

 sizeof(Mail)); // Rewrite information.

 change_yes = 1; // Changed flag.

 break; // Finished

 }

 }

 while (!file.eof());

 if (!change_yes)

 { err_msg(“*** End of file encountered before finding the name ***”);}

}

void Mail::getzip(Mail *item) // Ensure that ZIP code

 // is all digits.

{

 int ctr;

Appendix F ♦ The Mailing List Application

742

 int bad_zip;

 do

 {

 bad_zip = 0;

 cout << “What is the ZIP code? “;

 cin.getline((*item).zipcode, ZIPCODE_SIZE);

 for (ctr = 0; ctr < 5; ctr++)

 {

 if (isdigit((*item).zipcode[ctr]))

 { continue; }

 else

 {

 err_msg(“*** The ZIP code must consist of digits only ***”);

 bad_zip = 1;

 break;

 }

 }

 }

 while (bad_zip);

}

void Mail::add_to_file(Mail *item)

{

 ofstream file;

 file.open(FILENAME, ios::app); // Open file in append mode.

 if (!file)

 {

 err_msg(“*** Disk error - please check disk drive ***”);

 return;

 }

 file.write((const unsigned char *)(item), sizeof(Mail));

 // Add structure to file.

}

void Mail::enter_na(Mail *item)

{

 char ans;

743

EXAMPLE
C++ By

 do

 {

 cout << “\n\n\n\n\nWhat is the name? “;

 cin.getline((*item).name, NAME_SIZE);

 cout << “What is the address? “;

 cin.getline((*item).address, ADDRESS_SIZE);

 cout << “What is the city? “;

 cin.getline((*item).city, CITY_SIZE);

 cout << “What is the state? (2 letter abbreviation only)”;

 cin.getline((*item).state, STATE_SIZE);

 getzip(item); // Ensure that ZIP code is all digits.

 strcpy((*item).code, “ “); // Null out the code member.

 add_to_file(item); // Write new information to disk file.

 cout << “\n\nDo you want to enter another name “ <<

 “and address? (Y/N) “;

 ans = get_answer();

 }

 while (toupper(ans) == ‘Y’);

}

//**

// Defined constants

// MAX is total number of names allowed in memory for

// reading mailing list.

const int MAX = 250;

const char BELL = ‘\x07’;

//**

int main(void)

{

 char ans;

 Mail item;

 do

 {

 disp_menu(); // Display the menu for the user.

 ans = get_answer();

 switch (ans)

 {

 case ‘1’:

Appendix F ♦ The Mailing List Application

744

 item.enter_na(&item);

 break;

 case ‘2’:

 item.change_na();

 break;

 case ‘3’:

 print_na();

 break;

 case ‘4’:

 break;

 default:

 err_msg(“*** You have to enter 1 through 4 ***”);

 break;

 }

 }

 while (ans != ‘4’);

 return 0;

}

//**

void disp_menu(void) // Display the main menu of program.

{

 clear_sc(); // Clear the screen.

 cout << “\t\t*** Mailing List Manager ***\n”;

 cout << “\t\t --------------------\n\n\n\n”;

 cout << “Do you want to:\n\n\n”;

 cout << “\t1. Add names and addresses to the list\n\n\n”;

 cout << “\t2. Change names and addresses in the list\n\n\n”;

 cout << “\t3. Print names and addresses in the list\n\n\n”;

 cout << “\t4. Exit this program\n\n\n”;

 cout << “What is your choice? “;

}

//**

void clear_sc() // Clear the screen by sending 25 blank

 // lines to it.

{

 int ctr; // Counter for the 25 blank lines.

 for (ctr = 0; ctr < 25; ctr++)

745

EXAMPLE
C++ By

 { cout << “\n”; }

}

//**

void print_na(void)

{

 Mail item;

 ifstream file;

 int s;

 int linectr = 0;

 s = sizeof(Mail); // To ensure fread() reads properly.

 file.open(FILENAME);

 if (!file)

 {

 err_msg(“*** Error - Ensure file exists before"

 "reading it ***”);

 return;

 }

 do

 {

 file.read((signed char *)&item, s);

 if (file.gcount() != s)

 {

 if (file.eof()) // If EOF, quit reading.

 { break; }

 }

 if (linectr > 20) // Screen is full.

 {

 pause_sc();

 linectr = 0;

 }

 item.pr_data(&item); // Print the name and address.

 linectr += 4;

 }

 while (!file.eof());

 cout << “\n- End of list -”;

 pause_sc(); // Give user a chance to see names

 // remaining on-screen.

}

Appendix F ♦ The Mailing List Application

746

//**

void err_msg(char err_msg[])

{

 cout << “\n\n” << err_msg << BELL << “\n”;

}

//**

void pause_sc()

{

 cout << “\nPress the Enter key to continue...”;

 while (getch() != ‘\r’)

 { ; } // Wait for Enter key.

}

//**

char get_answer(void)

{

 char ans;

 ans = getch();

 while (kbhit())

 { getch(); }

 putch(ans);

 return ans;

}

747

EXAMPLE
C++ By

Glossary

Address. Each memory (RAM) location (each byte) has a unique

address. The first address in memory is 0, the second RAM location’s

address is 1, and so on until the last RAM location (thousands of

bytes later).

ANSI. American National Standards Institute, the committee that

approves computer standards.

Argument. The value sent to a function or procedure. This can be

a constant or a variable and is enclosed inside parentheses.

Array. A list of variables, sometimes called a table of variables.

Array of Structures. A table of one or more structure variables.

ASCII. Acronym for American Standard Code for Information

Interchange.

ASCII File. A file containing characters that can be used by any

program on most computers. Sometimes called a text file or an

ASCII text file.

AUTOEXEC.BAT. A batch file in PCs that executes a series of

commands whenever you start or reset the computer.

Automatic Variables. Local variables that lose their values when

their block (the one in which they are defined) ends.

Glossary ♦

748

Backup File. A duplicate copy of a file that preserves your work in

case you damage the original file. Files on a hard disk are commonly

backed up on floppy disks or tapes.

Binary. A numbering system based on only two digits. The only

valid digits in a binary system are 0 and 1. See also Bit.

Binary zero. Another name for null zero.

Bit. Binary digit, the smallest unit of storage on a computer. Each

bit can have a value of 0 or 1, indicating the absence or presence of

an electrical signal. See also Binary.

Bit Mask. A pattern of bits that changes other bits on and off to

meet a certain logical condition.

Bitwise Operators. C++ operators that manipulate the binary

representation of values.

Block. One or more statements treated as though they are a single

statement. A block is always enclosed in braces, { and }.

Boot. To start a computer with the operating system software in

place. You must boot your computer before using it.

Bubble Sort. A method of sorting data into ascending or descend-

ing order. See also Quicksort, Shell Sort.

Bug. An error in a program that prevents the program from

running correctly. The term originated when a moth short-circuited

a connection in one of the first computers, preventing the computer

from working!

Byte. A basic unit of data storage and manipulation. A byte is

equivalent to eight bits and can contain a value ranging from 0 to 255.

Cathode Ray Tube (CRT). The television-like screen, also called

the monitor. It is one place to which the output of the computer can

be sent.

Central Processing Unit (CPU). The controlling circuit respon-

sible for operations in the computer. These operations generally

include system timing, logical processing, and logical operations. It

controls every operation of the computer system. On PCs, the central

processing unit is called a microprocessor; it is stored on a single

integrated circuit chip.

749

EXAMPLE
C++ By

Code. A set of instructions written in a programming language.

See Source Code.

Comment. A message in a program, ignored by the computer, that

tells users what the program does.

Compile. Process of translating a program written in a program-

ming language such as C++ into machine code that your computer

understands.

Class. A C++ user-defined data type that consists of data members

and member functions. Its members are private by default.

Concatenation. The process of attaching one string to the end of

another or combining two or more strings into a longer string.

Conditional Loop. A series of C++ instructions that occurs a fixed

number of times.

Constant. Data defined with the const keyword that do not change

during a program run.

Constructor Function. The function executed when the program

declares an instance of a class.

CPU. Central Processing Unit.

CRT. Cathode Ray Tube.

Data. Information stored in the computer as numbers, letters, and

special symbols such as punctuation marks. This also refers to the

characters you input into your program so the program can produce

meaningful information.

Data Member. A data component of a class or structure.

Data Processing. What computers really do. They take data and

manipulate it into meaningful output. The meaningful output is

called information.

Data Validation. The process of testing the values entered in a

program. Checking whether a number is negative or positive or

simply ensuring that a number is in a certain range are two examples

of data validation.

Debug. Process of locating an error (bug) in a program and

removing it.

Glossary ♦

750

Declaration. A statement that declares the existence of a data

object or function. A declaration reserves memory.

Default. A predefined action or command that the computer

chooses unless you specify otherwise.

Default Argument List. A list of argument values, specified in a

function’s prototypes, that determine initial values of the arguments

if no values are passed for those arguments.

Definition. A statement that defines the format of a data object or

function. A definition reserves no memory.

Demodulate. To convert an analog signal into a digital signal for

use by a computer. See also Modulate.

Dereference. The process of finding a value to which a pointer

variable is pointing.

Destructor. The function called when a class instance goes out of

scope.

Determinate Loop. A for loop that executes a fixed number of

times.

Digital Computer. A term that comes from the fact that your

computer operates on binary (on and off) digital impulses of elec-

tricity.

Directory. A list of files stored on a disk. Directories within exist-

ing directories are called subdirectories.

Disk. A round, flat magnetic storage medium. Floppy disks are

made of flexible material and enclosed in 5 1/4-inch or 3 1/2-inch

protective cases. Hard disks consist of a stack of rigid disks housed

in a single unit. A disk is sometimes called external memory. Disk

storage is nonvolatile. When you turn off your computer, the disk’s

contents do not go away.

Disk Drive. A device that reads and writes data to a floppy or hard

disk.

Diskettes. Another name for the removable floppy disks.

Display. A screen or monitor.

751

EXAMPLE
C++ By

Display Adapter. Located in the system unit, the display adapter

determines the amount of resolution and the possible number of

colors on-screen.

DOS. Disk Operating System.

Dot-Matrix Printer. One of the two most common PC printers.

The laser printer is the other. A dot-matrix printer is inexpensive and

fast; it uses a series of small dots to represent printed text and

graphics.

Element. An individual variable in an array.

Execute. To run a program.

Expanded Memory. A tricky way of expanding your computer’s

memory capacity beyond the 640K barrier using a technique called

bank switching. See also Extended Memory.

Extended Memory. RAM above 640K, usually installed directly

on the motherboard of your PC. You cannot access this extra RAM

without special programs. See also Expanded Memory.

External Modem. A modem that sits in a box outside your com-

puter. See also Internal Modem.

Field. A member in a data record.

File. A collection of data stored as a single unit on a floppy or hard

disk. Files always have a filename that identifies them.

File Extension. Used by PCs and consists of a period followed by

up to three characters. The file extension follows the filename.

Filename. A unique name that identifies a file. Filenames can be

up to eight characters long, and can have a period followed by an

extension (normally three characters long).

Fixed Disk. See Hard Disk.

Fixed-Length Records. A record where each field takes the same

amount of disk space, even if that field’s data value does not fill the

field.

Floppy Disk. See Disk.

Glossary ♦

752

Format. Process of creating a “map” on the disk that tells the

operating system how the disk is structured. This process is how the

operating system keeps track of where files are stored.

Function. A self-contained coding segment designed to do a spe-

cific task. All C++ programs must have at least one function called

main(). Some functions are library routines that manipulate num-

bers, strings, and output.

Function Keys. The keys labeled F1 through F12 (some keyboards

only have up to F10).

Global Variables. A variable that can be seen from (and used by)

every statement in the program.

Hard Copy. The printout of a program (or its output). Also a safe

backup copy for a program in case the disk is erased.

Hard Disk. Sometimes called fixed disks. These hold much more

data and are many times faster than floppy disks. See Disk.

Hardware. The physical parts of the machine. Hardware has been

defined as “anything you can kick.”

Header Files. Files that contain prototypes of C++’s built-in

functions.

Hexadecimal. A numbering system based on 16 elements. Digits

are numbered 0 through F, as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B,

C, D, E, F.

Hierarchy of Operators. See Order of Operators.

Indeterminate Loop. A loop that continues an indeterminate

amount of times (unlike the for loop, which continues a known

amount of times).

Infinite Loop. The never-ending repetition of a block of C++

statements.

Information. The meaningful product from a program. Data go

into a program to produce meaningful output (information).

Inline Function. A function that compiles as inline code each time

the function is called.

753

EXAMPLE
C++ By

Input. The entry of data into a computer through a device such as

the keyboard.

Input-Process-Output. This model is the foundation of every-

thing that happens in your computer. Data are input, then processed

by your program in the computer, and finally information is output.

I/O. Acronym for Input/Output.

Integer Variable. Variables that can hold integers.

Internal Modem. A modem that resides inside the system unit.

See also External Modem.

Kilobyte (K). A unit of measurement that refers to 1,024 bytes.

Laser Printer. A type of printer that is faster, in general, than dot-

matrix printers. Laser printer output is much sharper than that of a

dot-matrix printer, because a laser beam actually burns toner ink

into the paper. Laser printers are more expensive than dot-matrix

printers.

Least Significant Bit. The rightmost bit of a byte. For example, a

binary 00000111 would have a 1 as the least significant bit.

Line Printer. Another name for your printer.

Link Editing. The last step the C++ compiler performs when

preparing your program for execution.

Literal. Data that remains the same during program execution.

Local Variable. A variable that can be seen from (and used by)

only the block in which it is defined.

Loop. The repeated execution of one or more statements.

Machine Language. The series of binary digits that a microproces-

sor executes to perform individual tasks. People seldom (if ever)

program in machine language. Instead, they program in assembly

language, and an assembler translates their instructions into ma-

chine language.

Main Module. The first function of a modular program called

main() that controls the execution of the other functions.

Glossary ♦

754

Maintainability. The computer industry’s word for the ability to

change and update programs written in a simple style.

Manipulator. A value used by a program to inform the stream to

modify one of its modes.

Math Operator. A symbol used for addition, subtraction, multi-

plication, division, or other calculations.

Megabyte (M). In computer terminology, approximately a mil-

lion bytes (1,048,576 bytes).

Member. A piece of a structure variable that holds a specific type

of data, or a class variable that holds a specific type of data or a

function acting on that data.

Member Function. A function defined inside a class.

Memory. Storage area inside the computer, used to temporarily

store data. The computer’s memory is erased when the power is off.

Menu. A list of commands or instructions displayed on-screen.

These lists organize commands and make a program easier to use.

Menu-Driven. Describes a program that provides menus for choos-

ing commands.

Microchip. A small wafer of silicon that holds computer compo-

nents and occupies less space than a postage stamp.

Microcomputer. A small computer that can fit on a desktop, such

as a PC. The microchip is the heart of the microcomputer. Microcom-

puters are much less expensive than their larger counterparts.

Microprocessor. The chip that does the calculations for PCs. Some-

times it is called the Central Processing Unit (CPU).

Modem. A piece of hardware that modulates and demodulates

signals so your computer can communicate with other computers

over telephone lines. See also External Modems, Internal Modems.

Modular Programming. The process of writing your programs in

several modules rather than as one long program. By breaking a

program into several smaller program-line routines, you can isolate

problems better, write correct programs faster, and produce pro-

grams that are much easier to maintain.

755

EXAMPLE
C++ By

Modulate. Before your computer can transmit data over a tele-

phone line, the information to be sent must be converted (modu-

lated) into analog signals. See also Demodulate.

Modulus. The integer remainder of division.

Monitor. The television-like screen that enables the computer to

display information. It is an output device.

Mouse. A hand-held device that you move across the desktop to

move an indicator, called a mouse pointer, across the screen. Used

instead of the keyboard to select and move items (such as text or

graphics), execute commands, and perform other tasks.

MS-DOS. An operating system for IBM and compatible PCs.

Multidimensional Arrays. Arrays with more than one dimen-

sion. As two-dimensional arrays, they are sometimes called tables or

matrices, which have rows and columns.

Nested Loop. A loop within a loop.

Null String. An empty string with an initial character of null zero

and with a length of 0.

Null Zero. The string-terminating character. All C++ string con-

stants and strings stored in character arrays end in null zero. The

ASCII value for the null zero is 0.

Numeric Functions. Library routines that work with numbers.

Object. C++ class members consisting of both data and member

functions.

Object Code. A “halfway step” between source code and execut-

able machine language. Object code consists mostly of machine

language but is not directly executable by the computer. It must first

be linked in order to resolve external references and address refer-

ences. See also Source Code, Machine Language.

Object-Oriented Programming. A programming approach that

treats data as objects capable of manipulating themselves.

Operator. An operator works on data and performs math calcula-

tions or changes data to other data types. Examples include the +, -, and

sizeof() operators.

Glossary ♦

756

Order of Operators. Sometimes called the hierarchy of operators
or the precedence of operators. It determines exactly how C++ com-

putes formulas.

Output Device. Where the results of a program are output, such

as the screen, the printer, or a disk file.

Overloading. The process of writing more than one function with

the same name. The functions must differ in their argument lists so

C++ can identify which one to call.

Parallel Arrays. Two arrays working side by side. Each element in

each array corresponds to one in the other array.

Parallel Port. A connector used to plug a device such as a printer

into the computer. Transferring data through a parallel port is much

faster than transferring data through a serial port.

Parameter. A list of variables enclosed in parentheses that follow

the name of a function or procedure. Parameters indicate the num-

ber and type of arguments that are sent to the function or procedure.

Passing by Address. Also called passing by reference. When an

argument (a local variable) is passed by address, the variable’s

address in memory is sent to, and is assigned to, the receiving

function’s parameter list. (If more than one variable is passed by

address, each of their addresses is sent to and assigned to the

receiving function’s parameters.) A change made to the parameter

in the function also changes the value of the argument variable.

Passing by Copy. Another name for passing by value.

Passing by Reference. Another name for passing by address.

Passing by Value. By default, all C++ variable arguments are

passed by value. When the value contained in a variable is passed to

the parameter list of a receiving function, changes made to the

parameter in the routine do not change the value of the argument

variable. Also called passing by copy.

Path. The route the computer travels from the root directory to any

subdirectories when locating a file. The path also refers to the

subdirectories that MS-DOS examines when you type a command

that requires it to find and access a file.

757

EXAMPLE
C++ By

Peripheral. A device attached to the computer, such as a modem,

disk drive, mouse, or printer.

Personal Computer. A microcomputer, also called a PC, which

stands for personal computer.

Pointer. A variable that holds the address of another variable.

Precedence of Operators. See Order of Operators.

Preprocessor Directive. A command, preceded by a #, that you

place in your source code that directs the compiler to modify the

source code in some fashion. The two most common preprocessor

directives are #define and #include.

Printer. A device that prints data from the computer to paper.

Private Class Member. A class member inaccessible except to the

class’s member functions.

Program. A group of instructions that tells the computer what

to do.

Programming Language. A set of rules for writing instructions for

the computer. Popular programming languages include BASIC,

C, Visual Basic, C++, and Pascal.

Prototype. The definition of a function; includes its name, return

type, and parameter list.

Public Class Member. A class member accessible to any function.

Quicksort. A method of sorting data values into ascending or

descending order (faster than a Bubble Sort.) See also Bubble Sort,
Shell Sort.

RAM. Random-Access Memory.

Random-Access File. Records in a file that can be accessed in any

order you want.

Random-Access Memory. Memory that your computer uses to

temporarily store data and programs. RAM is measured in kilobytes

and megabytes. Generally, the more RAM a computer has, the more

powerful programs it can run.

Glossary ♦

758

Read-Only Memory. A permanent type of computer memory. It

contains the BIOS (Basic Input/Output System), a special chip used

to provide instructions to the computer when you turn the compu-

ter on.

Real Numbers. Numbers that have decimal points and a frac-

tional part to the right of the decimal.

Record. Individual rows in files.

Relational Operators. Operators that compare data; they tell how

two variables or constants relate to each other. They tell you whether

two variables are equal or not equal, or which one is less than or more

than the other.

ROM. Read-Only Memory.

Scientific Notation. A shortcut method of representing numbers

of extreme values.

Sectors. A pattern of pie-shaped wedges on a disk. Formatting

creates a pattern of tracks and sectors where your data and programs

are stored.

Sequence Point/Comma Operator. This operator ensures that

statements are performed in a left-to-right sequence.

Sequential File. A file that has to be accessed one record at a time

beginning with the first record.

Serial Port. A connector used to plug in serial devices, such as a

modem or a mouse.

Shell Sort. A method of sorting values into ascending or de-

scending order. Named after the inventor of this method. See also

Bubble Sort, Quicksort.

Single-Dimensional Arrays. Arrays that have only one subscript.

Single-dimensional arrays represent a list of values.

Software. The data and programs that interact with your hard-

ware. The C++ language is an example of software.

Sorting. A method of putting data in a specific order (such as

alphabetical or numerical order), even if that order is not the same

order in which the elements were entered.

759

EXAMPLE
C++ By

Source Code. The C++ language instructions, written by pro-

grammers, that the C++ compiler translates into object code. See also

Object Code.

Spaghetti Code. Term used when there are too many gotos in a

program. If a program branches all over the place, it is difficult to

follow and trying to follow the logic resembles a “bowl of spaghetti.”

Static Variables. Variables that do not lose their values when the

block in which they are defined ends. See also Automatic Variables.

Standard Input Device. The target of each cout and output func-

tion. Normally the screen unless rerouted to another device at the

operating system’s prompt.

Standard Output Device. The target of each cin and input func-

tion. Normally the keyboard unless rerouted to another device at the

operating system’s prompt.

Stream. Literally, a stream of characters, one following another,

flowing among devices in your computer.

String. One or more characters terminated with a null zero.

String Constant. One or more groups of characters that end in a

null zero.

String Delimiter. See Null Zero.

String Literal. Another name for a String Constant.

Structure. A unit of related information containing one or more

members, such as an employee number, employee name, employee

address, employee pay rate, and so on.

Subscript. A number inside brackets that differentiates one ele-
ment of an array from another.

Syntax Error. The most common error a programmer makes.

Often a misspelled word.

System Unit. The large box component of the computer. The

system unit houses the PC’s microchip (the CPU).

Timing Loop. A loop used to delay the computer for a specific

amount of time.

Glossary ♦

760

Tracks. A pattern of paths on a disk. Formatting creates a pattern

of tracks and sectors where your data and programs go.

Truncation. The fractional part of a number (the part of the

number to the right of the decimal point) is taken off the number. No

rounding is done.

Two’s Complement. A method your computer uses to take the

negative of a number. This method, plus addition, allows the

computer to simulate subtraction.

Unary Operator. The addition or subtraction operator used before

a single variable or constant.

User-Friendliness. A program is user-friendly if it makes the user

comfortable and simulates an atmosphere that the user is already

familiar with.

Variable. Data that can change as the program runs.

Variable-Length Records. A record that takes up no wasted space

on the disk. As soon as a field’s data value is saved to the file, the next

field’s data value is stored after it. There is usually a special separat-

ing character between the fields so your programs know where the

fields begin and end.

Variable Scope. Sometimes called the visibility of variables, this

describes how variables are “seen” by your program. See also Global
Variables and Local Variables.

Volatile. Temporary state of memory. For example, when you

turn the computer off, all the RAM is erased.

Word. In PC usage, two consecutive bytes (16 bits) of data.

EXAMPLE

761

C++ By

Index

761

* (dereferencing) pointer opera-

tor, 542

* (multiplication) math operator,

64, 164

*= (compound operator), 177

+ (addition) math operator, 64,

164

++ (increment) operator, 225

+= (compound operator), 177

- (hyphen), 336

– (subtraction) math operator, 64,

164

-- (decrement) operator, 225

-= (compound operator), 177

. (dot) operator, 592, 608, 616

/ (division) math operator, 64,

164, 167-168

// (slashes), 46

/= (compound operator), 177

: (colon), 321

; (semicolon), 56, 114, 120, 190,

339

Symbols

! (NOT) logical operator, 208, 452

!= (not equal to) relational

operator, 186

(pound sign), 114

#define directive, 94, 120-128

#include directive, 61, 107,

115-120

% (modulus) math operator, 164,

167-168

%= (compound operator), 177

& (address of) pointer operator,

542

& (ampersand), 155, 391

&& (AND) logical operator, 208

() (parentheses), 46, 336, 365

“ ” (double quotation marks),

85, 117

‘ ’ (quotation marks), 89

, comma operator, 232-234, 758

* (asterisks), 345

Index ♦

762

< (input redirection symbol), 435

< (less than) relational operators,

186

< > (angled brackets), 117

<= (less than or equal to) rela-

tional operator, 186

= (assignment operator), 63,

174-178

= (equal sign), 80, 105, 400

== (equal to) relational operator,

186

> (greater than) relational opera-

tor, 186

> (output redirection symbol),

435

>= (greater than or equal to)

relational operator, 186

[] (brackets), 46, 100, 523

\ (backslash), 91

\n (newline character), 91,

135-136, 433, 635

\t (tab character), 138, 433

_ (underscore), 336

{ } (braces), 46, 56, 340

functions, 336

initializing arrays, 527

|| (OR) logical operator, 208

~Sphere() function, 663-670

2's complement, 692, 760

A

absolute values, 420-421, 461

access modes

random file, 648

read, 639

accessing

disks, 625

elements (arrays), 101

files, 627-628

modes, 630

random access, 627

sequential file access,

625-627

text mode, 630

members, classes, 675

RAM, 627

adapters, display, 24, 751

addition (+) math operator, 64,

164

address of (&) pointer operator,

542

addresses, 32, 559

& (address of) pointer opera-

tor, 542

arrays, passing, 386

integers, assigning floating-

point variables, 549

memory, 385, 681-682, 747

passing

nonarrays, 391-396

variables, 374, 385-394, 756

pointers, 542

addressing, 679

Algol programming language, 15

allocating memory, dynamic

allocation, 665

alphabetic testing functions,

450-451

Alt keys, 25

American National Standards

Insitute (ANSI), 13, 747

American Standard Code for

Information Interchange, see
ASCII

ampersand (&), 155, 391

analog signals, 29

AND (&&) logical operator, 208

angled brackets (< >), 117

ANSI (American National

Standards Institute), 747

appending

cout operator, 93

files, 628, 638-639

application-specific keys, 27

EXAMPLE

763

C++ By

arguments, 747

alphabetical, testing for, 451

default

lists, 415-417, 750

multiple, 417-420

member functions, 670-674

mismatched, 407

numeric, testing for, 451

passing, 364-366

receiving, 550

see also variables

arithmetic

binary, 690-692

pointers, 568-574

arrays, 100, 474-479, 747

as sizeof argument, 231

assigning to arrays, 486

brackets ([]), printing, 102

character pointers, 574

character, see character arrays

contents, changing, 563

data types, mixing, 609

declaring, 100, 475

strings, 478

subscripts, 482

defining, data type, 475

elements, 101, 751

accessing, 101

initializing all to zero, 481

inputting to, 611

subscripts, 101-102

filling

random values, 497

user input, 389

global, see global arrays

individual characters, 105

initializing, 104-105, 479-490

assignment operator, 480

braces ({ }), 527

brackets [], 480

multidimensional, 529

mapping to memory, 524-526

members, 615-622

multidimensional, see multidi-

mensional arrays

names

as pointers, 558-559

changing, 560

notation, 608-610

parallel, 756

passing, 388

by address, 386

functions, 387

to functions, 484

(of) pointers, 551-553

pointers, 493

printing with cout operator,

102

ragged-edge, 574

referencing, 508-515, 558

reserving memory, 476

searching, 494-495

for statement, 496

for values, 496-501

if statement, 496

sizes, 128, 476-477, 480

sorting, 494-495, 501-508, 758

ascending sort, 506

bubble sort, 502-505, 748

character arrays, 508

descending sort, 494, 506

nested loops, 504

numeric arrays, 508

quicksort, 502, 757

shell sort, 502, 758

(of) strings, 574-578

strings

printing, 563

storing, 574

(of) structures, 589, 747

structures, declaring, 606-615

subscripts, 474

two-dimensional, 525

type, specifying, 390

values, assigning, 103

see also nonarrays

Index ♦

764

arrow keys, 27

ascending sort, 506

ASCII (American Std. Code for

Information Interchange), 747

characters, 683

returning, 409

files, 747

text files, 115, 630

values, printing, 154

ASCII Table, 719, 722-727

ascii() function, 409

assigning

arrays to arrays, 486

floating-point variables, 549

literals

character, 89-93

integer, 83-84

string, 85

string values to character

arrays, 105

values

arrays, 103

elements, 479

members, 602

out-of-range subscripts, 479

strings, 107

to pointers, 545-546

to variables, 145

variables, 80-82

assignment operator (=), 63,

174-178, 480

assignment statements, 80, 105

pointers, initializing, 548

start expressions, 274

assignments

associating, 175-176

compound, 176-178

multiple, 175-176

statements, 174-178

associating assignments, 175-176

asterisks (*), 345

AT & T, 12

atof() function, 460

atoi() function, 460

atol() function, 460

auto keyword, 369

AUTOEXEC.BAT file, 747

automatic variables, 369-374, 747

B

backslash (\), 91

backup files, 748

base-2 numbers, 686

base-10 numbers, 689

base-16 numbers, 695

BCPL programming language, 15

BEEP, 314

binary

arithmetic, 690-692

digits, 683, 748

file format, 631

modes, 631

operations, 165

states of electricity, 21

zeros, 88, 748

binary numbers, 17, 165, 679,

686-690, 748

converting

from hexadecimal numbers,

697

to 2's complement, 692

to hexadecimal, 697

negative, 692-694

binary state of electricity, 683

bit mask, 240, 748

bits, 682-685, 748

high-order, 686

least-significant, 686, 753

low-order, 686

most-significant, 686

order, 686

sign, 693

bitwise operators, 235-244, 748

truth tables, 235-236

EXAMPLE

765

C++ By

blank

characters, 680

expressions, see null expres-

sion

lines, 136

blocks, 55

braces ({ }), 56

case, break statements, 312

statements, 246, 748

body (program)

functions, 336, 345

loops, indenting, 279

statements, 189, 342

boilerplates, 117

booting, 748

braces ({ }), 46, 56-57, 340

functions, 336

initializing arrays, 527

loops, 287

brackets ([]), 46, 100

angled (< >), 117

arrays, initializing, 480

dimensions, 523

printing arrays, 102

branching, 321

break statement, 256-260, 298-303

case blocks, 312

nested loops, 299

unconditional, 299

breaks, conditional, 257-258

bubble sort, see sorting arrays

buffered input functions, 440-442

bugs, see debugging

built-in editors, 40

built-in functions, prototypes,

734-735

bytes, 20, 682-685, 748

K (kilobytes), 20, 753

M (megabytes), 24, 754

reserving, arrays, 476

C

C++

comparing to other languages,

16

origination, 15-16

calculations

data types, mixing, 178-182

strings, 460

structure members, 597

called functions, 364

recognizing, 368-369

return values, 398

variables, changing, 387

calling functions, 337-349

repeatedly, 417

carriage returns, 439

case blocks, break statements,

312

case expressions, 312

case statements, 313, 319

cathode ray tube (CRT), 24, 748

ceil(x) function, 461

ceiling function, 461

central processing unit (CPU),

20-22, 748

cfront (UNIX) compiler, 43

CGA display adapter, 24

character arrays, 100-103

control_string, 149

erasing, passing to functions,

390

filenames, storing, 633

initializing, 480

pointing, to new strings, 563

reserving, 100, 480

sorting, 508

string values, assigning, 105

strings

comparing, 103-110

multiple, 512

printing, 135, 510

storing, 104

Index ♦

766

character formatting constants,

defining, 440

character functions, 450-455

conversion, 453-455

tolower(c), 454

toupper(c), 454

isalnum(c), 451

isalpha(c), 450

isdigit(c), 451

islower(c), 450

isupper(c), 450

isxdigit(c), 451

passing to, 451

testing, 450-453

for digits, 451

iscntrl(c), 453

isgraphic(c), 453

isprint(c), 453

ispunct(c), 453

isspace(c), 453

character I/O functions, 432-446

character literals, 64, 89-93

character pointers, 563-568

arrays

defining, 574

storing, 574

filenames, 633

string constants, changing, 566

character strings, variables, 100

character variables, 75

character-based literals, 62

characters

\t (tab), 138

ASCII, 683, 409

comparing, 199

conversion, 151-154

individual, arrays, 105

newline (\n), 135-136

string-terminating, 101,

457-458

cin, 144-148, 248-249

input, keyboard, 144

values, variables, 145

classes, 661-670, 749

functions, defining, 754

member functions, 662-676

members

accessing, 675

data, 662

private, 674, 757

public, 757

visibility, 674-675

objects, 663

public, 662, 674

close() function, 629

closing files, 629-634

code, 749

modules, see functions

object, 755

source, see source code

spaghetti, 759

unreachable, 305

colon (:), 321

columns, printing, 139-140, 534

combining functions, cout and

ofstream, 437

combining redirection symbols,

436

comma (,) operator, 232-234, 758

comments, 46, 57-61, 749

comparing

characters, 199

data, relational operators, 186

internal data, bit-by-bit, 235

literals to variables, 192

loops, if vs. while, 255

numbers, 199

variables, 192

compatibility,

AT & T, 12

with other computers, 433

compile-time operator, 231

compiled languages, 37

compilers, 37, 42-44

C++, 11

cfront (UNIX), 43

EXAMPLE

767

C++ By

compiling, 43, 113, 749

compound assignments, 176-178

compound operators, 177

compound relational operators,

see logical operators

compound relational tests, 207

computers

digital, 29, 750

microcomputers, 754

personal (PCs), 757

see also microcomputers

concatenation, 456, 749

conditional breaks, 257-258

conditional loops, 749

conditional operators, 222-225

CONFIG.SYS file, FILES= state-

ment, 629

console, 434

const keyword, 94, 120, 749

constant variables, 94-95

constants, 94, 749, 759

defining

character formatting, 440

variables as, 120

numeric, printing, 151

pointers, 560-562

string

changing, 566

printing, 150

see also literals and pointer

constants

construct statements, 246

constructor functions, 663, 749

multiple, 673

overloading, 673

constructs, loops, 276

continue statement, 303-307

control characters, I/O functions,

433

control operators, 139-144

control_string, 149, 155

controlling

format string, 149

function calls, 338

statements conditionally, 185

conversion characters, 151-154

floating-point, 151

functions, 453-455

for printing, 297

setw manipulator, 140

converting

binary numbers

to 2's complement, 692

to hexadecimal, 697

data types automatically, 179

hexadecimal numbers to

binary numbers, 697

strings to numbers, 460-461

to floating-point number,

460

to integers, 460

to uppercase, 240

copy, passing by, 379, 547, 756

copying

literals, in strings, 107

members, structure variables,

598

cos(x) function, 464

count expressions

increments, 281

loops, 274, 278

counter variables, 262, 265, 360

nested loops, 288

counters, 260-268

cout, 65, 85

\n, 91

appending, 93

combining with ofstream, 437

format, 134

labeling output, 136

literals, printing, 83

printing

arrays, 102

strings, 134-144

Index ♦

768

CPU (central processing unit),

20-22, 748

creating files, 628, 648

CRT (cathode-ray tube), 24

Ctrl keys, 25

ctype.h header file, 450, 734

cube() function, 674

cursor, 24, 27

D

data

hiding, 675

passive, 663

data comparison, 186

data members, 662, 749

data processing, 29

data types, 75-79

arrays

defining, 475

mixing, 609

casting, 179-182

converting automatically, 179

int, 400

members, 584

mixing, 82

in calculations, 178-182

variables, 179

pointers, 542

values, truncating, 179

variables, 72-73

weak, 16

data validation, 195, 749

data-driven programs, 185

debugging, 47, 748-749

decision statements, 189

declaring, 750

arrays, 100, 475

of pointers, 551

strings, 478

of structures, 606-615

subscripts, 482

automatic local variables, 369

elements and initializing,

479-486

global variables, 358

pointers, 543-545

file, 632

global, 542

local, 542

while initializing, 545

statements, 101

structures, 591

types, parameters, 366

variables, 62, 73

signed prefix, 166

static, 370

decrement (--) operator, 225, 233

decrementing

expressions, 228

pointers, 568

variables, 225-230, 282

default argument list, 415-420,

750

default line, switch statement,

312

defaults, 750

defined literals, 121

arrays, sizes, 128

replacing, 126

variables, 122

defining

arrays

character pointers, 574

data types, 475

of structures, 589

constants, character format-

ting, 440

floating-point literals, 127

functions, 340, 365

in classes, 754

in functions, 341

literals, 365

structures, 587-591

globally, 595

nested, 602

EXAMPLE

769

C++ By

variables, 365

after opening brace, 355

as constants, 120

outside functions, 355

structure, 595

definition line, 406, 750

Del key, 27

delay value, 296

delimiters, strings, 88, 759

demodulated signals, 29, 750

dereferencing (*) pointer opera-

tor, 542, 750

descending sort, 494, 506

see also sorting arrays

designating literals

floating-point, 79

long, 79

unsigned, 79

designing programs, 38-39

destructor function, 665, 750

determinate loops, 750

devices

default, overriding, 436

flushing, 458

get() function, 438

I/O (standard), 434

input, standard, 759

output, 134, 756, 759

redirecting from MS-DOS,

435-436

standard, 434

digital computer, 29, 750

digital testing, functions, 451

digits

binary, 683

testing for, character func-

tions, 451

dimensions, designating with

braces ({ }), 523, 527

directives, 757

#define, 94

#include, 61

directories, 750

paths, 756

subdirectories, 750

disk drives, 23, 750

disk operating system (DOS), 751

diskettes, see floppy disks

disks, 22-24, 626-627, 750

files

accessing, 625-628

appending, 628

creating, 628

opening/closing, 629-634

fixed, see hard disks

floppy, see floppy disks

formatting, 23, 752

hard, see hard disks

measurements, 680-681

sectors, 758

size, 24

tracks, 23, 760

disk drives, 23

see also hard disks

display adapters, 24, 751

CGA, 24

EGA, 24

MCGA, 24

VGA, 24

see also monitors; screens

displaying error messages,

nested loops, 296

division (/) math operator, 64,

164, 167-168

do-while loop, 252-255

DOS (disk operating system),

30-32, 751

dot (.) operator, 592, 608, 616

dot-matrix printer, 25, 751, 753

double subscripts, 616

dynamic memory allocation, 665

Index ♦

770

E

EDIT editor, 41

editing, linking, 753

editors, 37-42

built-in, 40

EDIT, 41

EDLIN, 41

ISPF, 42

EGA display adapters, 24

electricity (states), 21, 683

elements (arrays), 101, 751

accessing, 101

assigning values, 479

initializing, 486-492

all to zero, 481

at declaration time,

479-486

inputting, 611

members, 584

referencing with subscripts,

476

reserving, 103

space between, 476

storing, 476

subscripts, 101-102, 474

elements (pointers),

dereferencing, 576

else statement, 198-203

embedding functions, 668

endless loops, 323

environments

integrated, 40-41

variables, 256

equal sign (=), 80, 105, 400

equal to (==) relational operator,

186

equality testing, 187

erasing character arrays by

passing to functions, 390

error messages, 46-48

displaying, nested loops, 296

illegal initialization, 102

syntax, 46

escape key, 25

escape-sequence characters,

91-92

executable files, 42

executing, 751

functions repeatedly, 347

programs

falling through, 312

stopping, manually, 250

see also running programs

exit() function, 256-260

isolating, 256

stdlib.h header file, 256

exiting

conditional breaks, 257-258

loops, 256-260, 303

exp(x) function, 465

expanded memory, 21, 751

see also extended memory

expressions

case, 312

count, 274

increments, 281

loops, 278

incrementing/decrementing,

228

loops

start, 278

test, 275, 283

nonconditional, 190

null, 285

start, 274

switch statement, 312

test, 274

parentheses, 246

extended memory, 21, 681, 751

see also expanded memory

extensions (filenames), 42, 751

external functions, 117

external memory, 22

external modem, 28, 751

EXAMPLE

771

C++ By

F

fabs(x) function, 461

factorial, 290

fflush() function, 458

fgets() function, 457

fields, 751

file pointers, 631, 650

declaring globally, 632

positioning, 650-656

file_ptr pointer, 629

filenames, 751

#include directive, 115

character pointers, 633

conventions, 43

extensions, 42, 751

recommended, 43

storing character arrays, 633

files, 751

accessing, 627-628

modes, 630, 639, 648

random access, 627

sequential file access,

625-627

text mode, 630

appending, 628, 638-639

ASCII, 630, 747

AUTOEXEC.BAT, 747

backup, 748

CONFIG.SYS, FILES= state-

ment, 629

creating, 648

directories, 750

disk, creating, 628

executable, 42

formats, binary, 631

header, see header files

include, order, 118

opening/closing, 629-634, 647

pointing, 629

random, see random files

random-access, 628, 757

reading, 639-642

reading to specific points,

649-656

records, 635, 758

fields, 646

fixed-length, 647

sequential, 627-629, 758

string.h, 107

writing to, 634-637

FILES= statement, 629

fill_structs() function, 597

filling arrays

random values, 497

user input, 389

fixed disks, see hard disks

fixed-length records, 647, 751

floating-point

conversion characters, 151

literals, 79

defining, 127

designating, 79

numbers, 63, 76

converting to, 460

printing, 140

value, 138

variables, 100, 142

assigning to integer

addresses, 549

printing, 152

floor(x) mathematical function,

462

floppy disks, 22, 750-751

flushing devices, 458

fmod(x, y) function, 462

for loops, 273-286

body, 279

expressions

count, 274

start, 274

test, 274

nested, 286-291

tables, multidimensional,

530-537

Index ♦

772

for statement, 274, 290, 298-303,

496

format statements, assignment,

80

formats

#include directive, 115

conditional operator, 222

cout, 134

files, binary, 631

programs, 53-54

multiple-function, 338

strings (controlling), 149

formatted output, printing,

436-437

formatting

disks, 23, 752

output, 437-446

formulas, subscripts, referencing

elements, 476

fputs(s, dev) function, 457

fractions, rounding, 140

function calls, 332, 337-339

controlling, 338

increment/decrement

operators, 233

invocation, 339

nested, 402

return values, 401

tracing, 340

function invocation, 339

function keys, 27, 752

function-calling statements, 337

functions, 331-332, 752

{ } (braces), 336

~Sphere(), 663-670

arrays

filling with user input, 389

passing, 387

ascii(), 409

atof(), 460

atoi(), 460

atol(), 460

body, 336, 345

buffered/nonbuffered, 444

built-in, prototypes, 734-735

called, changing variables, 387

calling, 337-349, 364

recognizing, 368-369

repeatedly, 417

character, 450-455

conversion, 453-455

isalnum(c), 451

isalpha(c), 450

iscntrl(c), 453

isdigit(c), 451

isgraph(c), 453

islower(c), 450

isprint(c), 453

ispunct(c), 453

isspace(c), 453

isupper(c), 450

isxdigit(c), 451

passing to, 451

prototypes, 450

testing, 450, 453

testing for digits, 451

tolower(c), 454

toupper(c), 454

character arrays, erasing, 390

cin, 248

close(), 629

constructor, 663, 673, 749

cube(), 674

defining, 340, 365

in classes, 754

in functions, 341

definition line, 406

destructor, 665, 750

embedding, 668

exit(), 256-260

isolating, 256

stdlib.h header file, 256

external, 117

fflush(), 458

fill_structs(), 597

EXAMPLE

773

C++ By

get(), 438-444

getch(), 444-446

I/O, 656-658

character, 437-446

control characters, 433

fgets(s, len, dev), 457

fputs(s, dev), 457

gets(), 457, 635

puts(), 457, 635

read(array, count), 656

remove(filename), 656

write(array, count), 656

in-line, 668-670, 752

input

buffered, 440

building, 442

mirror-image, 637

keyboard values, 392

length, 335

logarithmic, 465

exp(x), 465

log(x), 465

log10(x), 465

main, 56

main(), 56-57, 61, 332, 335

OOP, 665

prototyping, 409

mathematical, 461-464

ceil(x), 461

fabs(x), 461

floor(x), 462

fmod(x, y), 462

pow(), 463

pow(x, y), 462

sqrt(x), 462

member, 754

arguments, 670-674

classes, 662-676

multiple execution, 347

naming, 335-337

_ (underscore), 336

name-mangling, 422

rules, 335

next_fun(), 338

nonbuffered, 444

numeric, 461-467, 755

ofstream, 436-437

open(), 629, 648

overloading, 415, 420-425, 756

parentheses, 336, 365

passing arrays, 484

pr_msg(), 416

print_it(), 525

printf(), 65, 126, 149-150,

191, 407

prototypes, 338, 397, 405-411

ctype.h header file, 734

math.h header file, 461, 735

self-prototyping, 406

stdio.h header file, 734

stdlib.h header file, 460, 735

string.h header file, 735

put(), 438-444

putch(), 444-446

rand(), 465-466, 497

receiving, 364, 382

redefining, 121-126

return statements, 337, 345

return values, 398-405

returning, 337-349

scanf(), 126, 149, 154-157

passing variables, 546

prototyping, 407

seekg(), 649-656

separating, 345

setw(), 140

sizeof(), 476-477

sort, saving, 508

Sphere(), 663-670

square(), 674

strcat(), 456

strcpy(), 107, 408

string, 455-461

fgets(s, len, dev), 457

fputs(s, dev), 457

Index ♦

774

gets(s), 457

I/O, 456-459

puts(s), 457

strcat(s1, s2), 456

strcmp(s1, s2), 456

strlen(s1), 456

testing, 456

strlen(), 251

surface_area(), 663-670

testing

alphabetic conditions,

450-451

digits, 451

numeric arguments, 451

third_fun(), 338

trigonometric

cos(x), 464

sin(x), 464

tan(x), 464

values, returning, 374

variables, types, 152

volume(), 663-670

writing, 332-337

see also routines

G

get() function, 438-444

getch() function, 444-446

gets() function, 457, 635

global arrays, initializing, 479

global pointers, declaring, 542

global variables, 73, 354-369, 752

declaring, 358

passing, 364

returning, 398

goto statement, 321-326

graphics monitors, 24

greater than (>) relational ope-

rator, 186

greater than or equal to (>=)

relational operator, 186

H

hard copy, 752

hard disks, 22, 751-752

see also disk drives

hardware, 17-29, 752

disks, 22-24

indepedence, 17

memory, 20-22

modems, 28-29

monitors, 24

mouse, 28

printers, 25

system unit, 20-22

header files, 117-118, 752

ctype.h

function prototypes, 734

prototypes, 450

iomanip.h, 408

iostream.h, 117, 408

math.h

function prototypes, 735

prototypes, 461

stdio.h

function prototypes, 408,

734

printf() function, 150

stdlib.h

exit() function, 256

function prototypes, 735

prototypes, 460

string.h, 118

function prototypes, 735

prototypes, 456

hexadecimals, 17, 83, 695-698, 752

converting

from binary, 697

to binary numbers, 697

hiding data, 675

hierarchy of operators, see order

of precedence

high-order bit, 686

hyphen (-), 336

EXAMPLE

775

C++ By

I

I/O (input/output), 753

character, 432-436

devices (standard), 434

functions, 656-658

character, 437-446

control characters, 433

fgets(s, len, dev), 457

fputs(s, dev), 457

gets(), 635

gets(s), 457

puts(), 457, 635

read(array, count), 656

remove(filename), 656

strings, 456-459

write(array, count), 656

rerouting, 434

statements, 17

stream, 432-436

strings, 457

if loop, 189-199, 255, 496

if tests, relational, 209

illegal initialization, 102

in-line functions, 668-670

include files, order, 118

increment (++) operator, 225, 233

incrementing

expressions, 228

pointers, 568

variables, 225-230

increments as count expressions,

281

indeterminate loops, 752

infinite loops, 246, 752

initial values of static variables,

370

initializing

arrays, 104-105, 479-490

assignment operator, 480

braces ({ }), 527

brackets [], 480

global, 479

multidimensional, 529

character arrays, reserved, 480

elements, 479-492

illegal, 102

members individually, 591

multidimensional arrays,

526-530

pointers, 545

assignment statements, 548

while declaring, 545

structures, 591

dot (.) operator, 592

members, 591-600

variables

structures, 591

to zero, 176

inline functions, 752

input, 30, 753

arrays, filling, 389

buffered, 441-442

characters, echoing, 444

devices, standard, 759

functions

buffered, 440

building, 442

mirror-image, 637

keyboard, 435

statements, 17

stdin, 434-435

stream header, 117

terminating

fgets(), 457

gets(), 457

values, 248

input redirection symbol (<), 435

input-output-process model, 30

input/output, see I/O

Ins key, 27

int data type, 400

integer literals, 83-84

integer variables, 73, 152, 753

Index ♦

776

integers, 63

address, assigning floating-

point variables, 549

converting to, 460

integrated environments, 40, 41

internal modem, 28, 753

internal truths, 210

interpreted languages, 37

iomanip.h header file, 139, 408

iostream.h header file, 117, 408

isalnum(c) function, 451

isalpha(c) function, 450

iscntrl(c) function, 453

isdigit(c) function, 451

isgraph(c) function, 453

islower(c) function, 450

ISPF editor, 42

isprint(c) function, 453

ispunct(c) function, 453

isspace(c) function, 453

isupper(c) function, 450

isxdigit(c) function, 451

iterations, 282, 296

J–K

justification, 140, 574-575

K (kilobytes), 680

keyboard, 25-28

Alt keys, 25

application-specific keys, 27

arrow keys, 27

Ctrl keys, 25

Del key, 27

escape key, 25

function keys, 27

input, 435

inputting, 144

Ins key, 27

numeric keypad, 27

PgDn, 27

PgUp key, 27

Shift keys, 25

values, 392

keys, function, 752

keywords, 733

auto, 369

const, 94, 120, 749

void, 406

kilobytes (K), 20, 680, 753

L

labels

output, 86, 136

statement, 321-322

languages

Algol, 15

BCPL, 15

C, 13

compiled, 37

interpreted, 37

machine, 753

weakly typed, 16

laser printers, 25, 751, 753

least-significant bit, 686, 753

length

functions, 335

strings, 89, 251

less than (<) relational operators,

186

less than or equal to (<=) rela-

tional operator, 186

line printer, 753

link editing, 753

linking, 43-44

lists

arguments, default, 416-417,

750

prototypes, multiple default

arguments, 417

variables, 474

see also arrays

literals, 62, 82-93, 94, 103, 753, 759

character, 64, 89-93

character-based, 62

comparing to variables, 192

copying in strings, 107

EXAMPLE

777

C++ By

defined, 121, 365

replacing, 126

variables, 122

designating

floating-point, 79

long, 79

unsigned, 79

floating-point, 79, 127

integer, 83-84

numeric

defining, 127

overriding default, 79

octal, 83

printing with cout operator, 83

relational operators, 186

string

assigning, 85

defining, 127

endings, 87-89

printing, 85

suffixes, 79

local pointers, 542

local variables, 354-369, 753

automatic, 369, 747

changing, 354

defining, 355

multiple functions, 363

names, overlapping, 360

passing, 363-364

receiving functions, 368

value, losing, 355

log(x) function, 465

log10(x) function, 465

logarithmic functions, 465

exp(x), 465

log(x), 465

log10(x), 465

logic, 211-215, 222

logical operators, 207-215

! (NOT), 208

&& (AND), 208

|| (OR), 208

bitwise, 235-244

order of precedence, 216

truth tables, 208

loop variables, 282

loop-counting variables, 361

looping statements, 246

loops, 247-252, 753

conditional, 749

constructs, 276

conversion characters for

printing, 297

determinate, 750

do-while, 252-255

endless, 323

exiting, 256-260, 303

expressions

count, 274, 278

start, 274, 278

test, 274-275, 283

for, 273-286

body, indenting, 279

multidimensional tables,

530-537

nested, 286-291

if (compared to while loop),

255

indeterminate, 752

infinite, 246, 752

nested, 755

braces, 287

break statement, 299

counter variables, 288

multidimensional tables,

530

sorting arrays, 504

timing loops, 296

statements, 277

timing, 295-298, 759

iterations, 296

nested loops, 296

while, 245, 255

low-order bit, 686

lowercase letters, 55, 122

Index ♦

778

M

M (megabytes), 681

machine language, 753

mailing list program, 737-746

main module, 753

main() function, 56-57, 61, 332,

335

OOP, 665

prototyping, 409

maintainability of programs, 174

manipulators, 754

mapping arrays to memory,

524-526

masking, 240

matching braces ({ }), 56

math hierarchy, see order of

precedence

math operators, 754

% (modulus or remainder),

164, 167-168

* (multiplication), 64, 164

+ (addition), 64, 164

- (subtraction), 64, 164

/ (division), 64, 164, 167-168

order of precendence, 168-174

math.h header file, function

prototypes, 461, 735

mathematical calculations on

strings, 460

mathematical functions

ceil(x), 461

fabs(x), 461

floor(x), 462

fmod(x, y), 462

pow(), 463

pow(x, y), 462

sqrt(x), 462

mathematical summation

symbol, 290

mathematics, factorial, 290

matrices, see multidimensional

arrays; tables

MCGA display adapter, 24

measurements

disks, 680-681

memory, 680-681

megabytes (M), 24, 754

member functions, 662, 754

arguments, 670-674

classes, 662-676

members, 584, 749, 754

arrays, 615-622

classes

accessing, 675

constructor functions, 663

data, 662

functions, 662

private, 674, 757

public, 757

visibility, 674-675

data types, 584

initializing individually, 591

structures

copying, 598

initializing, 591-600

values, assigning with dot

operator, 602

memory, 20-22, 680-682, 754

& (address of) pointer opera-

tor, 543

addresses, 32, 385, 681-682,

747

arrays, mapping, 524-526

bytes, 680, 748

dynamic allocation, 665

expanded, 21, 751

extended, 21, 681, 751

external, 22

K (kilobytes), 20, 680, 753

M (megabytes), 24, 681, 754

measurements, 680-681

padding, 476

reserving

arrays, 476

structure tags, 585

volatility, 22, 760

EXAMPLE

779

C++ By

menu-driven programs, 754

menus, 754

messages, error, see error

messages

microchips, 18, 754

microcomputers, 17, 754

microprocessors, 754

minimum routine, 224

mirror-image input functions,

637

models, see prototypes

modems, 28-29, 754

external, 751

internal, 753

modes

binary, 631

file access, 630

text, 630

modifers, setprecision, 408

modular programming, 332, 754

modulated signals, 29

modules of code, 331

modulus (%) math operator, 164,

167-168, 755

monitors, 24

graphics, 24

monochrome, 24

see also displays; screens

most-significant bit, 686

mouse, 28, 755

moving cursor with arrow keys,

27

MS-DOS, 30-32, 435-436, 755

multidimensional arrays,

520-522, 755

for loops, 530-537

initializing, 526-530

reserving, 522-524

storing, row order, 526

subscripts, 520-522

see also tables; matrices

multiple-choice statement, 312

multiplication (*) math operator,

64, 164

N

name-mangling, 422

naming

arrays

as pointers, 558-559

changing, 560

disks drives, 23

files, 751

functions, 335-337

overloading, 415

rules, 335

pointers, 542, 543

structures, 585

variables, 70-71, 360

invalid names, 71

local, overlapping, 360

spaces, 71

negative numbers, 166

binary, 692-694

nested

function calls, 402

structures, 600-603

nested loops, 755

braces, 287

break statement, 299

counter variables, 288

error messages, displaying,

296

for, 286-291

multidimensional tables, 530

sorting arrays, 504

timing loops, 296

newline (\n) character, 135-136,

433, 635

next_fun() function, 338

nonarrays, passing by address,

391-396

nonbuffered functions, 444

nonconditional expressions, 190

nonzero values, 451

NOT (!) logical operator, 208, 452

not equal to (!=) relational

operator, 186

Index ♦

780

notation

array, 608-610

mixing, 609

scientific, 758

see also pointer notation

null

character, 88

expression, 285

strings, 755

zero, 101, 755

numbers

2's complement, 692

absolute value, 461

binary, 17, 165, 748

see also binary numbers

comparing, 199

converting from strings,

460-461

floating-point, 63, 76, 140

hexadecimal, see hexadecimal

numbers

integers, 63

justification, 140

negative, 166, 692-694

printing, 139

random-number processing,

465-469

real, 76, 758

rounding, 461-462

signed, 693

square, 196

tables, printing, 138

unsigned, 693

numeric

arguments, testing functions,

451

arrays, sorting, 508

constants, printing, 151

functions, 461-467, 755

keypad, 27

literals

defining, 127

overriding default, 79

variables, printing, 151

O

object code, 755

object-oriented programming, see
OOP

objects, 663, 755

octal literals, 83

ofstream function, 436-437

on-screen printing, 125

OOP (object-oriented program-

ming), 14, 661, 665, 755

open() function, 629, 648

opening files, 629-634, 647-649

operations

binary, 165

direction, 175-176

operators, 16-17, 408, 755

! (NOT), 452

. (dot), 608, 616

assignment (=), 174-178

arrays, initializing, 480

binary, 165

bitwise, 234-241, 748

logical, 235-244

cin, 144-148

comma (,), 232-234, 758

compile-time, 231

compound, 177

conditional, 222-225

control, 139-144

cout, 83, 93, 134-148

decrement (--), 225, 233

dot (.), 592

increment (++), 225, 233

logical, 207-215

! (NOT), 208

&& (AND), 208

|| (OR), 208

truth tables, 208

math, 754

* (multiplication), 64

+ (addition), 64

- (subtraction), 64

/ (division), 64

EXAMPLE

781

C++ By

order of precedence, 216, 752

overloaded, 542

pointers

& (address of), 542

* (dereferencing), 542

postfix, 225-227

precedence, 16, 756

prefix, 225-227

primary, order of

precendence, 169

relational, 185-189, 209, 758

see also relational operators

sizeof, 230-232

ternary, 222

unary, 165-166, 760

OR (||) logical operator, 208

order of case statements, 319

order of bits, 686

order of precedence, 752, 756-757

logical operators, 216

math operators, 168-174

parentheses, 170-174

primary operators, 169

table, 729-732

origin values, 650

origins of C++, 15-16

output

controlling, operators, 139-144

devices, 134, 756

standard, 759

formatting

carriage returns, 439

printing, 436-437

labeling, 86, 136

redirecting, 134

rerouting to printer, 436

screen, 24

stdout, 435

stream, 434

output redirection symbol (>),

435

output statements, 17

overlapping names of local

variables, 360

overloading, 756

constructor functions, 673

functions, 415, 420-425

name-mangling, 422

operators, 542

overriding

keyboard default device, 436

passing by copy, 547

overwriting variables, 354, 363

P

padding memory, 476

parallel arrays, 756

parallel port, 756

parameters, 756

passing, 374-375

pointers, 546-551

receiving, 364

types, declaring, 366

see also variables

parentheses (), 46

conditional_expression, 223

empty, 365

functions, 336

order of precedence, 170-174,

216

type casting, 180

passing

arguments, see passing vari-

ables

arrays, 388

by address, 386

functions, 387

to functions, 484

by copy, overriding, 547

local variables, 364

nonarrays by address, 391-396

one-way, 398

parameters, 374-375

values to character functions,

451

Index ♦

782

variables, 363-369

by address, 374, 385-394,

756

by copy, 379, 756

by reference, 374, 385, 756

by value, 379-384, 756

global, 364

structure, 595

to scanf() function, 546

passive data, 663

paths, 756

PCs (personal computers), 18,

757

percent sign (%), 167

peripherals, 757

personal computers (PCs), 757

PgDn key, 27

PgUp key, 27

placeholders, 246

pointer arithmetic, 568-574

pointer constants, 560-562

pointer notation, 558, 561, 568,

609

pointer variables, 155

pointers, 493, 541, 757

addresses, 542

arrays, 552-553

declaring, 551

names, 558-559

assigning values, 545-546

changing, 560-562

character, see character

pointers

data types, 542

declaring, 543-545

decrementing, 568

elements, dereferencing, 576

file, 631, 650

declaring globally, 632

positioning, 650-656

file_ptr, 629

global, declaring, 542

incrementing, 568

initializing, 545

assignment statements, 548

while declaring, 545

local, declaring, 542

naming, 542-543

operators

& (address of), 542

* (dereferencing), 542

parameters, 546-551

prefixing, 548

reference, as arrays, 561

to files, 629

ports

parallel, 756

serial, 758

positioning pointers (file),

650-656

positive relational tests, 252

postfix operator, 225-227

pound sign (#), 114

pow() function, 463

pow(x, y) function, 462

pr_msg() function, 416

precedence, see order of prece-

dence

precedence table, 729-732

prefix operators, 225-227

prefixes

pointers, 548

signed, declaring variables,

166

preprocessor directives, 113-115,

757

#define, 120-128

#include, 115-120

; (semi-colon), 114

see also individual listings

preprocessors, 43

primary operators, order of

precendence, 169

print_it() function, 525

printers, 25, 757

dot-matrix, 25, 751-753

laser, 25, 751-753

EXAMPLE

783

C++ By

line, 753

rerouting, 436

writing to, 637-638

printf() function, 65, 126,

149-150, 191

prototyping, 407

stdio.h header file, 150

strings, constants, 150

printing

arrays

brackets ([]), 102

cout operator, 102

blank lines, 136

columns, 534

setw manipulator, 139-140

constants, numeric, 151

conversion characters, 297

floating-point values, zeros,

153

literals

cout operator, 83

string, 85

numbers, 139-140

on-screen, 125

output, formatted, 436-437

rows, 534

strings, 102

cout operator, 134-144

from character arrays, 135

in arrays, 563

in character arrays, 510

printf() function, 150

tables, numbers, 138

titles, 535

values, ASCII, 154

variables

floating-point, 152

integer, 152

numeric, 151

private class members, 757

program editors, see editors

program listings, 38

programming, object-oriented,

see OOP

programming languages, see
languages

programs, 30, 36-38, 757

comments, 749

data-driven, 185

designing, 38-39

formats, 53-54

mailing list, 737-746

maintainability, 174

menu-driven, 754

modular programming, 332

multiple-function formats, 338

readability, 54-55

routines, 332

sample, 44-46

skeleton, 333

string length, 250

structured programming, 332

typing, 37

prototypes, 338, 757

built-in functions, 397,

405-411, 734-735

character functions, 450

ctype.h header file, 734

character functions, 450

fill_structs() function, 597

header files, 408

lists, multiple default argu-

ments, 417

main() function, 409

math.h header file, 461, 735

printf() function, 407

scanf() function, 407

self-prototyping functions, 406

string.h header file, 735

stdio.h header file, 408, 734

stdlib.h header file, 460, 735

ato() function, 460

string.h header file (string

functions), 456

public class members, 662, 674,

757

put() function, 438-444

putch() function, 444-446

puts() function, 457, 635

Index ♦

784

Q–R

quicksort, see sorting arrays

quotation marks (“ ”), 85, 89, 117

ragged-edge arrays, 574

RAM (random-access memory),

20-22, 747, 757

accessing, 627

rand() function, 465-466, 497

random files, 628, 757

accessing, 627, 648

creating, 648

opening, 647-649

records, 646

fields, 646

fixed-length, 647

random-number processing,

465-469

read access mode, 639

read(array, count) function, 656

read-only memory (ROM), 758

reading

files, 639-642

to files, specific points, 649-656

real numbers, 76, 758

receiving arguments (& prefix),

550

receiving functions, 364

local variables, 368

variables, renaming passed,

382

records, 635, 646, 758

fields, 646, 751

fixed-length, 647, 751

variable-length, 760

redefining

functions, 121-126

statements, 121-126

redirection

< (input redirection symbol),

435

> (output redirection symbol),

435

combining symbols, 436

devices from MS-DOS,

435-436

output, 134

reference, passing variables, 374,

385, 756

reference pointers as arrays, 561

referencing

* (dereferencing) pointer

operator, 542

addresses (%c control code),

512

arrays, 508-515

subscripts, 558

elements, subscripts, 476-474

relational if tests, 209

relational logic, 187

relational operators, 185-189, 758

!= (not equal to), 186

< (less than), 186

<= (less than or equal to), 186

== (equal to), 186

> (greater than), 186

>= (greater than or equal to),

186

compound, 209

relational tests, 252

internal truths, 210

positive, 252

remainder (%) math operator, 164

remove(filename) function, 656

renaming variables, passed, 382

replacing defined literals, 126

reserving

arrays

character, 100, 480

multidimensional, 522-524

of pointers, 551

elements, 103

memory

arrays, 476

structure tags, 585

uppercase letters, 55

variables, 365

EXAMPLE

785

C++ By

resolution (screens), 24

return statements, 337, 345

return values, 374, 402

calling functions, 398

function calls, 401

functions, 398-405

global variables, 398

type, 400

returning functions, 337-349

ROM (read-only memory), 758

rounding

fractions, 140

numbers, 461-462

routines, 332

minimum, 224

see also functions

row order, multidimensional

arrays, 526

rows, printing, 534

running programs, see executing

programs

S

sample programs, 44-46

saving sort functions, 508

scanf() function, 126, 149,

154-157

& (ampersand), 155

passing variables, 546

pointer variables, 155

prototyping, 407

variable names

scientific notation, 758

scope, variable, 760

screens

cursor, 24

output, 24

resolution, 24

see also displays; monitor

scrolling text, 24

searching arrays, 494-495

for statement, 496

for values, 496-501

if statement, 496

sections, see blocks

sectors, 758

seekg() function, 649-656

self-prototyping function, 406

semicolon (;), 56, 114, 120, 190,

339

separating functions, 345

sequence point, see comma

operator

sequential files, 625-629, 758

serial ports, 758

setprecision modifier, 408

setw manipulator, 408

conversion characters, 140

printing columns, 139-140

string width, 140

setw() function, 140

shell sort, see sorting arrays

Shift keys, 25

sign bit, 693

signals

analog, 29

demodulated, 29, 750

modulated, 29

signed

numbers, 693

prefix, variables, declaring,

166

variables, numeric, 78

sin(x) function, 464

size

arrays, 476-477, 480

variables, 76-77

sizeof operator, 230-232

sizeof() function, 476-477

skeleton programs, 333

slashes (//), 46

software, 19, 29-34, 758

sort functions, saving, 508

sort_ascend file, 508

sort_descend file, 508

Index ♦

786

sorting arrays, 494-495, 501-508,

758

ascending sort, 506

bubble sort, 502-505, 748

character arrays, 508

descending sort, 494, 506

nested loops, 504

numeric arrays, 508

quicksort, 502, 757

shell sort, 502, 758

source code, 40, 759

modifying, 113-115

text, including, 117

space

between elements, 476

in variable names, 71

spaghetti code, 759

specifying types in arrays, 390

Sphere() function, 663-670

sqrt(x) function, 462

square numbers, 196

square root, 462

square() function, 674

standard input device, 434, 759

see also stdin

standard output device, 759

see also stdout

standards, ANSI, 13

start expressions, loops, 274, 278

statements

assignment, 80, 105, 174-178

initializing pointers, 548

start expressions, 274

assignments, multiple, 175-176

blocks, 246-748

body, 189

break, 256-260, 298-303

case, 313, 319

construct, 246

continue, 303-307

controlling, conditionally, 185

cout, 85, 102

decision, 189

declaration, 101

do-while, 252-255

else, 198-203

FILES=, 629

for, 274, 290, 298-303

function-calling, 337

goto, 321-326

I/O (input/output), 17

if, 189-199

input, 17

labels, 321-322

looping, 246, 277

multiple-choice, 312

output, 17

redefining, 121-126

return functions, 337

semicolon (;), 56

separating, 232

struct, 587-591

switch, 312-321, 342

while, 246-247

states of electricity, 21, 683

static variables, 369-374, 759

declaring, 370

initial values, 370

stdin, 434-435

stdio.h header file

function prototypes, 408, 734

printf() function, 150

stdlib.h header file

exit() function, 256

function prototypes, 460, 735

stdout, 434-435

storage, disks, 750

storing

arrays

character pointers, 574

strings, 574

elements (arrays), 476

filenames, character arrays,

633

multidimensional arrays, 526

EXAMPLE

787

C++ By

strings, 100, 104, 563

user input, strings, 565

variables, 385-386

strcat() function, 456

strcmp() function, 456

strcpy() function, 107, 408

stream I/O, 432-436

streams, 434, 759

string constants, 566

string delimiter, 88, 759

string functions, 455-461

fgets(s, len, dev), 457

fputs(s, dev), 457

gets(s), 457

I/O, 456-459

prototypes, string.h header

file, 456

puts(s), 457

testing, 456

strcat(), 456

strcmp(), 456

strlen(), 456

string length programs, 250

string literals

assigning, 85

defining, 127

endings, 87-89

printing, 85

string variables, 100

string-terminating characters,

457-458, 755

string.h header file, 107, 118

function prototypes, 456, 735

strings, 759

arrays

declaring, 478

printing, 563

storing, 574

arrays of, 574-578

character variables, 100

character arrays

comparing, 103-110

multiple, 512

concatenating, 456

constants, 759

control_string, 149, 155

converting to numbers,

460-461

empty, 755

format, controlling, 149

I/O, 457

inputting, 442

length, 89, 251

literals, 107, 759

mathematical calculations, 460

null, 755

printing, 102

cout operator, 134-144

from character arrays, 135

in character arrays, 510

printf() function, 150

reserving elements, 103

shortening, 107

storing, 100, 104, 563

terminating character, 101

user input, storing, 565

values

assigning, 107

assigning to character

arrays, 105

width, 140

strlen() function, 251, 456

struct statement, 587-591

structured programming, 332

structures, 584-587, 759

arrays, declaring, 606-615

arrays of, 747

declaring, 591

defining, 587-591

arrays of, 589

globally, 595

initializing, 591-592

members

calculations, 597

initializing, 591-600

names, 585

Index ♦

788

nested, 600-603

tags, 585

variables

copying members, 598

defining, 595

initializing, 591

passing, 595

specifying, 588

subdirectories, 750

subfunctions, 398

subroutines, 398

subscripts, 101-102, 474, 759

arrays

declaring, 482

referencing, 558

double, 616

formulas, referencing

elements, 476

multidimensional arrays, 522

multiple (multidimensional

arrays), 520

out-of-range (nonreserved),

assigning values, 479

referencing, 474

subtraction (-) math operator, 64,

164

suffixes, literals, 79

summation symbol, 290

surface_area() function,

663-670

swapping variables, 502, 550

switch statements, 312-321

body, 342

default line, 312

expressions, 312

syntax errors, 46, 759

system unit, 20-22

T

tab (\t) character, 138, 433

tables

arrays of structure variables,

747

hierarchy, 511

justification, 574, 575

multidimensional, 530-537

numbers, printing, 138

see also arrays; matrices;

multidimensional arrays

tan(x) function, 464

terminating

string-terminating characters,

457-458

strings, 101

ternary operators, 222

test expressions

expressions, 283

loops, 274-275

parentheses, 246

testing

alphabetic conditions,

functions, 450-451

character testing functions,

450, 453

compound relational tests, 207

digital, functions, 451

equality, 187

if, relational, 209

strings, functions, 456

relational, 252

internal truths, 210

positive, 252

values, 749

text

boilerplates, 117

scrolling, 24

source code, including, 117

text mode, 630

third_fun() function, 338

timing loops, 295-298, 759

iterations, 296

nested loop, 296

titles, printing, 535

tolower(c) function, 454

totals, 260-270

toupper(c) function, 454

tracing function calls, 340

tracks (disks), 23, 760

EXAMPLE

789

C++ By

transistors (electricity), 21

trigonometric functions

cos(x), 464

sin(x), 464

tan(x), 464

truncation, 179, 760

truth tables, 208, 235-236

truths, internal, 210

two-dimensional arrays, 525

see also multidimensional

arrays

two's complement, 692

type casting (data types), 179-182

types

arrays, specifying, 390

parameters, declaring, 366

return values, 400

variables, 584

see also structures

see also data types

typing programs, 37

U

unary operators, 165-166, 760

unconditional break statements,

299

underscore (_), 336

UNIX, cfront compiler, 43

unreachable code, 305

unsigned literals, designating, 79

unsigned numbers, 693

unsigned variables, 84

uppercase letters, 55, 240

V

validating data, 195

values

arrays, searching for, 495,

496-501

ASCII, printing, 154

assigning

arrays, 103

elements, 479

out-of-range subscripts, 479

to pointers, 545-546

to variables, 145

data types, truncating, 179

delay, 296

floating-point, 138

initial, static variables, 370

keyboard, 392

members, assigning with dot

operator, 602

nonzero, 451

origin, 650

local variables, 355

passing variables by, 379-384,

756

passing to character functions,

451

returning from functions, 374

strings, assigning, 105-107

testing, 749

totaling, 265

variables

assigning, 80-82

assignment operator (=), 63

cin function, 145

entering directly, 154

updating, 176

see also return values

variable scope, 353-362, 760

variable-length records, 760

variables, 62-63, 70-82, 760

addresses, 385-386

arrays, 747, 751

automatic, 369-374, 747

changing, called functions, 387

character, 75

character strings, 100

comparing to literals, 192

constant, 94-95

counter, 262, 265, 288, 360

data types, 179

declaring, 62, 73, 166

decrementing, 225-230

defined literals, 122

Index ♦

790

defining, 365

after opening brace, 355

as constants, 120

outside functions, 355

environment, 256

equality, determining, 186

floating-point, 100, 142, 152

global, see global variables

incrementing, 225-230

initializing to zero, 176

integer, 73, 152, 753

local, see local variables

loop, decrementing, 282

loop-counting, 361

lowercase letters, 122

naming, 70-71, 360

& (ampersand), 155

invalid names, 71

spaces, 71

numeric, signed, 78

overwriting, 354, 363

parameters, 756

passing, 363-369

by address, 374, 385-394,

756

by copy, 379, 756

by reference, 374, 385, 756

by value, 379-384, 756

renaming, 382

to scanf() function, 546

pointer, 155, 757

scanf() function, 155

printing, numeric, 151

ranges, 76-77

relational operators, 186

reserving, 365

size, 76-77

static, 369-374, 759

storing, 385-386

string, 100

see also string variables

structure

copying members, 598

defining, 595

initializing, 591

passing, 595

specifying, 588

swapping, 502, 550

types, 72-79, 584

functions, 152

long, 77

see also structures

unsigned, 84

values

assigning, 80-82, 145

assignment operator (=), 63

cin function, 145

entering directly, 154

updating, 176

VGA display adapters, 24

void keyword, 406

volatile (memory), 22, 760

volume() function, 663-670

W

weakly typed (language), 16

see also data types

while loops, 245-247, 255

white space, 55

width, strings, 140

width specifiers, 153

words, 760

write(array, count) function,

656

writing

functions, 332-337

to files, 635-637

to printers, 637-638

X–Y–Z

zeros, 87-89, 101

binary, 88, 748

floating-point values, 138, 153

null, 103, 755

subscripts, 102

variables, initializing, 176

Order Your Disk Program Today!
You can save yourself hours of tedious, error-prone typing by

ordering the companion disk to C++ By Example. The disk contains

the source code for all the complete programs and many of the

shorter samples in the book. Appendix F’s complete mailing-list

application is also included on the disk, as well as the answers to

many of the review exercises.

You will get code that shows you how to use most the features of

C++. Samples include code for keyboard control, screen control, file

I/O, control statements, structures, pointers, and more.

Disks are available in 3 1/2-inch format (high density). The cost is

$10 per disk. (When ordering outside the US, please add $5 for

shipping and handling.)

Just make a copy of this page, fill in the blanks, and mail it with your

check or money order to:

C++ Disk
Greg Perry

P.O. Box 35752

Tulsa, OK 74135-0752

Please print the following information:

Payment method: Check_____ Money Order_____

Number of Disks:____________@ $10.00 =___________

Name:__

Street Address:__

City:_______________________________________State:_______________

ZIP:_______________

(On foreign orders, please use a separate page to give your mailing

address in the format required by your post office.)

Checks and money orders should be made payable to:

Greg Perry

(This offer is made by Greg Perry, not by Que Corporation.)

493

EXAMPLE
C++ By

24

Array Processing

C++ provides many ways to access arrays. If you have programmed

in other computer languages, you will find that some of C++’s array

indexing techniques are unique. Arrays in the C++ language are

closely linked with pointers. Chapter 26, “Pointers,” describes the

many ways pointers and arrays interact. Because pointers are so

powerful, and because learning about arrays provides a good foun-

dation for learning about pointers, this chapter attempts to describe

in detail how to reference arrays.

This chapter discusses the different types of array processing.

You learn how to search an array for one or more values, find the

highest and lowest values in an array, and sort an array into

numerical or alphabetical order.

This chapter introduces the following concepts:

♦ Searching arrays

♦ Finding the highest and lowest values in arrays

♦ Sorting arrays

♦ Advanced subscripting with arrays

Many programmers see arrays as a turning point. Gaining an

understanding of array processing makes your programs more

accurate and allows for more powerful programming.

Chapter 24 ♦ Array Processing

494

Searching Arrays
Arrays are one of the primary means by which data is stored in

C++ programs. Many types of programs lend themselves to process-

ing lists (arrays) of data, such as an employee payroll program, a

scientific research of several chemicals, or customer account pro-

cessing. As mentioned in the previous chapter, array data usually is

read from a disk file. Later chapters describe disk file processing. For

now, you should understand how to manipulate arrays so you see

the data exactly the way you want to see it.

Chapter 23, “Introducing Arrays,” showed how to print arrays

in the same order that you entered the data. This is sometimes done,

but it is not always the most appropriate method of looking at data.

For instance, suppose a high school used C++ programs for its

grade reports. Suppose also that the school wanted to see a list of the

top 10 grade-point averages. You could not print the first 10 grade-

point averages in the list of student averages because the top 10

GPAs might not (and probably will not) appear as the first 10 array

elements. Because the GPAs would not be in any sequence, the

program would have to sort the array into numeric order, from high

GPAs to low, or else search the array for the 10 highest GPAs.

You need a method for putting arrays in a specific order. This

is called sorting an array. When you sort an array, you put that array

in a specific order, such as in alphabetical or numerical order. A

dictionary is in sorted order, and so is a phone book.

When you reverse the order of a sort, it is called a descending
sort. For instance, if you wanted to look at a list of all employees in

descending salary order, the highest-paid employees would be

printed first.

Figure 24.1 shows a list of eight numbers in an array called

unsorted. The middle list of numbers is an ascending sorted version

of unsorted. The third list of numbers is a descending version of

unsorted.

Array elements do
not always appear in
the order in which
they are needed.

495

EXAMPLE
C++ By

Figure 24.1. A list of unsorted numbers sorted into an ascending and a
descending order.

Before you learn to sort, it would be helpful to learn how to

search an array for a value. This is a preliminary step in learning to

sort. What if one of those students received a grade change? The

computer must be able to access that specific student’s grade to

change it (without affecting the others). As the next section shows,

programs can search for specific array elements.

NOTE: C++ provides a method for sorting and searching lists

of strings, but you will not understand how to do this until you

learn about pointers, starting in Chapter 26, “Pointers.” The

sorting and searching examples and algorithms presented in

this chapter demonstrate sorting and searching arrays of num-

bers. The same concepts will apply (and will actually be much

more usable for “real-world” applications) when you learn

how to store lists of names in C++.

Chapter 24 ♦ Array Processing

496

Searching for Values
You do not have to know any new commands to search an array

for a value. Basically, the if and for loop statements are all you need.

To search an array for a specific value, look at each element in that

array, and compare it to the if statement to see whether they match.

If they do not, you keep searching down the array. If you run out of

array elements before finding the value, it is not in the array.

You can perform several different kinds of searches. You might

have to find the highest or the lowest value in a list of numbers. This

is informative when you have much data and want to know the

extremes of the data (such as the highest and lowest sales region in

your division). You also can search an array to see whether it

contains a matching value. For example, you can see whether an

item is already in an inventory by searching a part number array for

a match.

The following programs illustrate some of these array-

searching techniques.

Examples

1. To find the highest number in an array, compare each

element with the first one. If you find a higher value, it

becomes the basis for the rest of the array. Continue until

you reach the end of the array and you will have the highest

value, as the following program shows.

Identify the program and include the I/O header file. You want to
find the highest value in an array, so define the array size as a
constant, then initialize the array.

Loop through the array, comparing each element to the highest
value. If an element is higher than the highest value saved, store
the element as the new high value. Print the highest value found in
the array.

// Filename: C24HIGH.CPP

// Finds the highest value in the array.

#include <iostream.h>

const int SIZE = 15;

void main()

You do not have to
sort an array to find
its extreme values.

497

EXAMPLE
C++ By

{

 // Puts some numbers in the array.

 int ara[SIZE]={5,2,7,8,36,4,2,86,11,43,22,12,45,6,85};

 int high_val, ctr;

 high_val = ara[0]; // Initializes with first

 // array element.

 for (ctr=1; ctr<SIZE; ctr++)

 { // Stores current value if it is

 // the higher than the highest.

 if (ara[ctr] > high_val)

 { high_val = ara[ctr]; }

 }

 cout << “The highest number in the list is “

 << high_val << “\n”;

 return;

}

The output of the program is the following:

The highest number in the list is 86.

You have to save the element if and only if it is higher than

the one you are comparing. Finding the smallest number in

an array is just as easy, except that you determine whether

each succeeding array element is less than the lowest value

found so far.

2. The following example expands on the previous one by

finding the highest and the lowest value. First, store the first

array element in both the highest and the lowest variable to

begin the search. This ensures that each element after that

one is tested to see whether it is higher or lower than the

first.

This example also uses the rand() function from Chapter 22,

“Character, String, and Numeric Functions,” to fill the array

with random values from 0 to 99 by applying the modulus

operator (%) and 100 against whatever value rand() produces.

The program prints the entire array before starting the

search for the highest and the lowest.

Chapter 24 ♦ Array Processing

498

// Filename: C24HILO.CPP

// Finds the highest and the lowest value in the array.

#include <iostream.h>

#include <stdlib.h>

const int SIZE = 15;

void main()

{

 int ara[SIZE];

 int high_val, low_val, ctr;

 // Fills array with random numbers from 0 to 99.

 for (ctr=0; ctr<SIZE; ctr++)

 { ara[ctr] = rand() % 100; }

 // Prints the array to the screen.

 cout << “Here are the “ << SIZE << “ random numbers:\n”;

 for (ctr=0; ctr<SIZE; ctr++)

 { cout << ara[ctr] << “\n”; }

 cout << “\n\n”; // Prints a blank line.

 high_val = ara[0]; // Initializes first element to

 // both high and low.

 low_val = ara[0];

 for (ctr=1; ctr<SIZE; ctr++)

 { // Stores current value if it is

 // higher than the highest.

 if (ara[ctr] > high_val)

 { high_val = ara[ctr]; }

 if (ara[ctr] < low_val)

 { low_val = ara[ctr]; }

 }

 cout << “The highest number in the list is “ <<

 high_val << “\n”;

 cout << “The lowest number in the list is “ <<

 low_val << “\n”;

 return;

}

499

EXAMPLE
C++ By

Here is the output from this program:

Here are the 15 random numbers:

46

30

82

90

56

17

95

15

48

26

4

58

71

79

92

The highest number in the list is 95

The lowest number in the list is 4

3. The next program fills an array with part numbers from an

inventory. You must use your imagination, because the

inventory array normally would fill more of the array, be

initialized from a disk file, and be part of a larger set of

arrays that hold descriptions, quantities, costs, selling prices,

and so on. For this example, assignment statements initialize

the array. The important idea from this program is not the

array initialization, but the method for searching the array.

NOTE: If the newly entered part number is already on file, the

program tells the user. Otherwise, the part number is added to

the end of the array.

// Filename: C24SERCH.CPP

// Searches a part number array for the input value. If

Chapter 24 ♦ Array Processing

500

// the entered part number is not in the array, it is

// added. If the part number is in the array, a message

// is printed.

#include <iostream.h>

const int MAX = 100;

void fill_parts(long int parts[MAX]);

void main()

{

 long int search_part; // Holds user request.

 long int parts[MAX];

 int ctr;

 int num_parts=5; // Beginning inventory count.

 fill_parts(parts); // Fills the first five elements.

 do

 {

 cout << “\n\nPlease type a part number...”;

 cout << “(-9999 ends program) “;

 cin >> search_part;

 if (search_part == -9999)

 { break; } // Exits loop if user wants.

 // Scans array to see whether part is in inventory.

 for (ctr=0; ctr<num_parts; ctr++) // Checks each item.

 { if (search_part == parts[ctr]) // If it is in

 // inventory...

 { cout << “\nPart “ << search_part <<

 “ is already in inventory”;

 break;

 }

 else

 { if (ctr == (num_parts-1)) // If not there,

 // adds it.

 { parts[num_parts] = search_part; // Adds to

 // end of array.

 num_parts++;

 cout << search_part <<

 “ was added to inventory\n”;

501

EXAMPLE
C++ By

 break;

 }

 }

 }

 } while (search_part != -9999); // Loops until user

 // signals end.

 return;

}

void fill_parts(long int parts[MAX])

{

 // Assigns five part numbers to array for testing.

 parts[0] = 12345;

 parts[1] = 24724;

 parts[2] = 54154;

 parts[3] = 73496;

 parts[4] = 83925;

 return;

}

Here is the output from this program:

Please type a part number...(-9999 ends program) 34234

34234 was added to inventory

Please type a part number...(-9999 ends program) 83925

Part 83925 is already in inventory

Please type a part number...(-9999 ends program) 52786

52786 was added to inventory

Please type a part number...(-9999 ends program) -9999

Sorting Arrays
There are many times when you must sort one or more arrays.

Suppose you were to take a list of numbers, write each number on

a separate piece of paper, and throw all the pieces of paper into the

air. The steps you take—shuffling and changing the order of the

Chapter 24 ♦ Array Processing

502

pieces of paper and trying to put them in order—are similar to what

your computer goes through to sort numbers or character data.

Because sorting arrays requires exchanging values of elements

back and forth, it helps if you first learn the technique for swapping

variables. Suppose you had two variables named score1 and score2.

What if you wanted to reverse their values (putting score2 into the

score1 variable, and vice versa)? You could not do this:

score1 = score2; // Does not swap the two values.

score2 = score1;

Why doesn’t this work? In the first line, the value of score1 is

replaced with score2’s value. When the first line finishes, both score1

and score2 contain the same value. Therefore, the second line cannot

work as desired.

To swap two variables, you have to use a third variable to hold

the intermediate result. (This is the only function of this third

variable.) For instance, to swap score1 and score2, use a third variable

(called hold_score in this code), as in

hold_score = score1; // These three lines properly

score1 = score2; // swap score1 and score2.

score2 = hold_score;

This exchanges the values in the two variables.

There are several different ways to sort arrays. These methods

include the bubble sort, the quicksort, and the shell sort. The basic goal

of each method is to compare each array element to another array

element and swap them if the higher value is less than the other.

The theory behind these sorts is beyond the scope of this book,

however, the bubble sort is one of the easiest to understand. Values

in the array are compared to each other, a pair at a time, and

swapped if they are not in back-to-back order. The lowest value

eventually “floats” to the top of the array, like a bubble in a glass of

soda.

Figure 24.2 shows a list of numbers before, during, and after a

bubble sort. The bubble sort steps through the array and compares

pairs of numbers to determine whether they have to be swapped.

Several passes might have to be made through the array before it is

The lowest values in
a list “float” to the
top with the bubble
sort algorithm.

503

EXAMPLE
C++ By

finally sorted (no more passes are needed). Other types of sorts

improve on the bubble sort. The bubble sort procedure is easy to

program, but it is slower compared to many of the other methods.

Figure 24.2. Sorting a list of numbers using the bubble sort.

Chapter 24 ♦ Array Processing

504

The following programs show the bubble sort in action.

Examples

1. The following program assigns 10 random numbers between

0 and 99 to an array, then sorts the array. A nested for loop is

perfect for sorting numbers in the array (as shown in the

sort_array() function). Nested for loops provide a nice mech-

anism for working on pairs of values, swapping them if

needed. As the outside loop counts down the list, referenc-

ing each element, the inside loop compares each of the

remaining values to those array elements.

// Filename: C24SORT1.CPP

// Sorts and prints a list of numbers.

const int MAX = 10;

#include <iostream.h>

#include <stdlib.h>

void fill_array(int ara[MAX]);

void print_array(int ara[MAX]);

void sort_array(int ara[MAX]);

void main()

{

 int ara[MAX];

 fill_array(ara); // Puts random numbers in the array.

 cout << “Here are the unsorted numbers:\n”;

 print_array(ara); // Prints the unsorted array.

 sort_array(ara); // Sorts the array.

 cout << “\n\nHere are the sorted numbers:\n”;

 print_array(ara); // Prints the newly sorted array.

 return;

}

void fill_array(int ara[MAX])

{

505

EXAMPLE
C++ By

 // Puts random numbers in the array.

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { ara[ctr] = (rand() % 100); } // Forces number to

 // 0-99 range.

 return;

}

void print_array(int ara[MAX])

{

 // Prints the array.

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { cout << ara[ctr] << “\n”; }

 return;

}

void sort_array(int ara[MAX])

{

 // Sorts the array.

 int temp; // Temporary variable to swap with

 int ctr1, ctr2; // Need two loop counters to

 // swap pairs of numbers.

 for (ctr1=0; ctr1<(MAX-1); ctr1++)

 { for (ctr2=(ctr1+1); ctr2<MAX; ctr2++) // Test pairs.

 { if (ara[ctr1] > ara[ctr2]) // Swap if this

 { temp = ara[ctr1]; // pair is not in order.

 ara[ctr1] = ara[ctr2];

 ara[ctr2] = temp; // “Float” the lowest

 // to the highest.

 }

 }

 }

 return;

}

The output from this program appears next. If any two ran-

domly generated numbers were the same, the bubble sort

would work properly, placing them next to each other in the

list.

Chapter 24 ♦ Array Processing

506

Here are the unsorted numbers:

46

30

82

90

56

17

95

15

48

26

Here are the sorted numbers:

15

17

26

30

46

48

56

82

90

95

2. The following program is just like the previous one, except it

prints the list of numbers in descending order.

A descending sort is as easy to write as an ascending sort.

With the ascending sort (from low to high values), you

compare pairs of values, testing to see whether the first is

greater than the second. With a descending sort, you test to

see whether the first is less than the second one.

// Filename: C24SORT2.CPP

// Sorts and prints a list of numbers in reverse

// and descending order.

const int MAX = 10;

#include <iostream.h>

#include <stdlib.h>

void fill_array(int ara[MAX]);

To produce a
descending sort, use
the less-than (<)
logical operator
when swapping array
elements.

507

EXAMPLE
C++ By

void print_array(int ara[MAX]);

void sort_array(int ara[MAX]);

void main()

{

 int ara[MAX];

 fill_array(ara); // Puts random numbers in the array.

 cout << “Here are the unsorted numbers:\n”;

 print_array(ara); // Prints the unsorted array.

 sort_array(ara); // Sorts the array.

 cout << “\n\nHere are the sorted numbers:\n”;

 print_array(ara); // Prints the newly sorted array.

 return;

}

void fill_array(int ara[MAX])

{

 // Puts random numbers in the array.

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { ara[ctr] = (rand() % 100); } // Forces number

 // to 0-99 range.

 return;

}

void print_array(int ara[MAX])

{

 // Prints the array

 int ctr;

 for (ctr=0; ctr<MAX; ctr++)

 { cout << ara[ctr] << “\n”; }

 return;

}

void sort_array(int ara[MAX])

{

 // Sorts the array.

 int temp; // Temporary variable to swap with.

Chapter 24 ♦ Array Processing

508

 int ctr1, ctr2; // Need two loop counters

 // to swap pairs of numbers.

 for (ctr1=0; ctr1<(MAX-1); ctr1++)

 { for (ctr2=(ctr1+1); ctr2<MAX; ctr2++) // Test pairs

 // Notice the difference in descending (here)

 // and ascending.

 { if (ara[ctr1] < ara[ctr2]) // Swap if this

 { temp = ara[ctr1]; // pair is not in order.

 ara[ctr1] = ara[ctr2];

 ara[ctr2] = temp; // “Float” the lowest

 // to the highest.

 }

 }

 }

 return;

}

TIP: You can save the previous programs’ sort functions in two

separate files named sort_ascend and sort_descend. When you

must sort two different arrays, #include these files inside your

own programs. Even better, compile each of these routines

separately and link the one you need to your program. (You

must check your compiler’s manual to learn how to do this.)

You can sort character arrays just as easily as you sort numeric

arrays. C++ uses the ASCII character set for its sorting comparisons.

If you look at the ASCII table in Appendix C, you will see that

numbers sort before letters and that uppercase letters sort before

lowercase letters.

Advanced Referencing
of Arrays

The array notation you have seen so far is common in computer

programming languages. Most languages use subscripts inside

brackets (or parentheses) to refer to individual array elements. For

instance, you know the following array references describe the first

509

EXAMPLE
C++ By

and fifth element of the array called sales (remember that the

starting subscript is always 0):

sales[0]

sales[4]

C++ provides another approach to referencing arrays. Even

though the title of this section includes the word “advanced,” this

array-referencing method is not difficult. It is very different, how-

ever, especially if you are familiar with another programming

language’s approach.

There is nothing wrong with referring to array elements in the

manner you have seen so far, however, the second approach, unique

to C and C++, will be helpful when you learn about pointers in

upcoming chapters. Actually, C++ programmers who have pro-

grammed for several years rarely use the subscript notation you

have seen.

In C++, an array’s name is not just a label for you to use in

programs. To C++, the array name is the actual address where the

first element begins in memory. Suppose you define an array called

amounts with the following statement:

int amounts[6] = {4, 1, 3, 7, 9, 2};

Figure 24.3 shows how this array is stored in memory. The

figure shows the array beginning at address 405,332. (The actual

addresses of variables are determined by the computer when you

load and run your compiled program.) Notice that the name of the

array, amounts, is located somewhere in memory and contains the

address of amounts[0], or 405,332.

You can refer to an array by its regular subscript notation, or by

modifying the address of the array. The following refer to the third

element of amounts:

amounts[3] and (amounts + 3)[0]

Because C++ considers the array name to be an address in

memory that contains the location of the first array element, nothing

keeps you from using a different address as the starting address and

referencing from there. Taking this one step further, each of the

following also refers to the third element of amounts:

An array name is
the address of the
starting element of
the array.

Chapter 24 ♦ Array Processing

510

(amounts+0)[3] and (amounts+2)[1] and (amounts-2)[5]

(1+amounts)[2] and (3+amounts)[0] and (amounts+1)[2]

You can print any of these array elements with cout.

Figure 24.3. The array name amounts holds the address of amounts[0].

When you print strings inside character arrays, referencing the

arrays by their modified addresses is more useful than with integers.

Suppose you stored three strings in a single character array. You

could initialize this array with the following statement:

char names[]={‘T’,’e’,’d’,’\0',’E’,’v’,’a’,’\0',’S’,‘a’,’m’,’\0'};

Figure 24.4 shows how this array might look in memory. The

array name, names, contains the address of the first element, names[0]

(the letter T).

511

EXAMPLE
C++ By

CAUTION: The hierarchy table in Appendix D, “C++ Prece-

dence Table,” shows that array subscripts have precedence

over addition and subtraction. Therefore, you must enclose

array names in parentheses if you want to modify the name as

shown in these examples. The following are not equivalent:

(2+amounts)[1] and 2+amounts[1]

The first example refers to amounts[3] (which is 7). The second

example takes the value of amounts[1] (which is 1 in this ex-

ample array) and adds 2 to it (resulting in a value of 3).

This second method of array referencing might seem like more

trouble than it is worth, but learning to reference arrays in this

fashion will make your transition to pointers much easier. An

array name is actually a pointer, because the array contains the

address of the first array element (it “points” to the start of the

array).

Figure 24.4. Storing more than one string in a single character array.

Chapter 24 ♦ Array Processing

512

You have yet to see a character array that holds more than one

string, but C++ allows it. The problem with such an array is how

you reference, and especially how you print, the second and third

strings. If you were to print this array using cout:

cout << names;

C++ would print the following:

Ted

Because cout requires a starting address, you can print the three

strings with the following couts:

cout << names; // Prints Ted

cout << (names+4); // Prints Eva

cout << (names+8); // Prints Sam

To test your understanding, what do the following couts print?

cout << (names+1);

cout << (names+6);

The first cout prints ed. The characters ed begin at (names+1) and

the cout stops printing when it reaches the null zero. The second cout

prints a. Adding six to the address at names produces the address

where the a is located. The “string” is only one character long

because the null zero appears in the array immediately after the a.

To sum up character arrays, the following refer to individual

array elements (single characters):

names[2] and (names+1)[1]

The following refer to addresses only, and as such, you can print the

full strings with cout:

names and (names+4)

CAUTION: Never use the printf()’s %c control code to print an

address reference, even if that address contains a character.

Print strings by specifying an address with %s, and single

characters by specifying the character element with %c.

cout prints strings
in arrays starting at
the array’s address
and continuing until
it reaches the null
zero.

513

EXAMPLE
C++ By

The following examples are a little different from most you

have seen. They do not perform “real-world” work, but were

designed as study examples for you to familiarize yourself with this

new method of array referencing. The next few chapters expand on

these methods.

Examples

1. The following program stores the numbers from 100 to 600

in an array, then prints elements using the new method of

array subscripting.

// Filename: C24REF1.CPP

// Print elements of an integer array in different ways.

#include <iostream.h>

void main()

{

 int num[6] = {100, 200, 300, 400, 500, 600};

 cout << “num[0] is \t” << num[0] << “\n”;

 cout << “(num+0)[0] is \t” << (num+0)[0] << “\n”;

 cout << “(num-2)[2] is \t” << (num-2)[2] << “\n\n”;

 cout << “num[1] is \t” << num[1] << “\n”;

 cout << “(num+1)[0] is \t” << (num+1)[0] << “\n\n”;

 cout << “num[5] is \t” << num[5] << “\n”;

 cout << “(num+5)[0] is \t” << (num+5)[0] << “\n”;

 cout << “(num+2)[3] is \t” << (num+2)[3] << “\n\n”;

 cout << “(3+num)[1] is \t” << (3+num)[1] << “\n”;

 cout << “3+num[1] is \t” << 3+num[1] << “\n”;

 return;

}

Here is the output of this program:

num[0] is 100

(num+0)[0] is 100

(num-2)[2] is 100

Chapter 24 ♦ Array Processing

514

num[1] is 200

(num+1)[0] is 200

num[5] is 600

(num+5)[0] is 600

(num+2)[3] is 600

(3+num)[1] is 500

3+num[1] is 203

2. The following program prints strings and characters from a

character array. The couts all print properly.

// Filename: C24REF2.CPP

// Prints elements and strings from an array.

#include <iostream.h>

void main()

{

 char names[]={‘T’,’e’,’d’,’\0',’E’,’v’,’a’,’\0',

 ’S’, ‘a’,’m’,’\0'};

 // Must use extra percent (%) to print %s and %c.

 cout << “names “ << names << “\n”;

 cout << “names+0 “ << names+0 << “\n”;

 cout << “names+1 “ << names+1 << “\n”;

 cout << “names+2 “ << names+2 << “\n”;

 cout << “names+3 “ << names+3 << “\n”;

 cout << “names+5 “ << names+5 << “\n”;

 cout << “names+8 “ << names+8 << “\n\n”;

 cout << “(names+0)[0] “ << (names+0)[0] << “\n”;

 cout << “(names+0)[1] “ << (names+0)[1] << “\n”;

 cout << “(names+0)[2] “ << (names+0)[2] << “\n”;

 cout << “(names+0)[3] “ << (names+0)[3] << “\n”;

 cout << “(names+0)[4] “ << (names+0)[4] << “\n”;

 cout << “(names+0)[5] “ << (names+0)[5] << “\n\n”;

 cout << “(names+2)[0] “ << (names+2)[0] << “\n”;

 cout << “(names+2)[1] “ << (names+2)[1] << “\n”;

 cout << “(names+1)[4] “ << (names+1)[4] << “\n\n”;

 return;

}

515

EXAMPLE
C++ By

Study the output shown below by comparing it to the pro-

gram. You will learn more about strings, characters, and

character array referencing from studying this one example

than from 20 pages of textual description.

names Ted

names+0 Ted

names+1 ed

names+2 d

names+3

names+5 va

names+8 Sam

(names+0)[0] T

(names+0)[1] e

(names+0)[2] d

(names+0)[3]

(names+0)[4] E

(names+0)[5] v

(names+2)[0] d

(names+2)[1]

(names+1)[4] v

Review Questions
The answers to the review questions are in Appendix B.

1. True or false: You must access an array in the same order

you initialized it.

2. Where did the bubble sort get its name?

3. Are the following values sorted in ascending or descending

order?

33 55 78 78 90 102 435 859

976 4092

4. How does C++ use the name of an array?

Chapter 24 ♦ Array Processing

516

5. Given the following array definition:

char teams[] = {‘E’,’a’,’g’,’l’,’e’,’s’,’\0',

 ’R’, ‘a’,’m’,’s’,’\0'};

What is printed with each of these statements? (Answer

“invalid” if the cout is illegal.)

a. cout << teams;

b. cout << teams+7;

c. cout << (teams+3);

d. cout << teams[0];

e. cout << (teams+0)[0];

f. cout << (teams+5);

Review Exercises
1. Write a program to store six of your friends’ ages in a single

array. Assign the ages in random order. Print the ages, from

low to high, on-screen.

2. Modify the program in Exercise 1 to print the ages in de-

scending order.

3. Using the new approach of subscripting arrays, rewrite the

programs in Exercises 1 and 2. Always put a 0 in the sub-

script brackets, modifying the address instead (use

(ages+3)[0] rather than ages[3]).

4. Sometimes parallel arrays are used in programs that must

track more than one list of values that are related. For in-

stance, suppose you had to maintain an inventory, tracking

the integer part numbers, prices, and quantities of each item.

This would require three arrays: an integer part number

array, a floating-point price array, and an integer quantity

array. Each array would have the same number of elements

(the total number of parts in the inventory). Write a program

to maintain such an inventory, and reserve enough elements

517

EXAMPLE
C++ By

for 100 parts in the inventory. Present the user with an input

screen. When the user enters a part number, search the part

number array. When you locate the position of the part,

print the corresponding price and quantity. If the part does

not exist, enable the user to add it to the inventory, along

with the matching price and quantity.

Summary
You are beginning to see the true power of programming

languages. Arrays give you the ability to search and sort lists of

values. Sorting and searching are what computers do best; comput-

ers can quickly scan through hundreds and even thousands of

values, looking for a match. Scanning through files of paper by hand,

looking for just the right number, takes much more time. By step-

ping through arrays, your program can quickly scan, print, sort, and

calculate a list of values. You now have the tools to sort lists of

numbers, as well as search for values in a list.

You will use the concepts learned here for sorting and search-

ing lists of character string data as well, when you learn a little more

about the way C++ manipulates strings and pointers. To help build

a solid foundation for this and more advanced material, you now

know how to reference array elements without using conventional

subscripts.

Now that you have mastered this chapter, the next one will be

easy. Chapter 25, “Multidimensional Arrays,” shows you how you

can keep track of arrays in a different format called a matrix. Not all

lists of data lend themselves to matrices, but you should be prepared

for when you need them.

Chapter 24 ♦ Array Processing

518

519

EXAMPLE
C++ By

25

Multidimensional
Arrays

Some data fits in lists, such as the data discussed in the previous two

chapters, and other data is better suited for tables of information.

This chapter takes arrays one step further. The previous chapters

introduced single-dimensional arrays; arrays that have only one

subscript and represent lists of values.

This chapter introduces arrays of more than one dimension,

called multidimensional arrays. Multidimensional arrays, sometimes

called tables or matrices, have at least two dimensions (rows and

columns). Many times they have more than two.

This chapter introduces the following concepts:

♦ Multidimensional arrays

♦ Reserving storage for multidimensional arrays

♦ Putting data in multidimensional arrays

♦ Using nested for loops to process multidimensional arrays

If you understand single-dimensional arrays, you should have

no trouble understanding arrays that have more than one dimen-

sion.

Chapter 25 ♦ Multidimensional Arrays

520

Multidimensional Array
Basics

A multidimensional array is an array with more than one

subscript. Whereas a single-dimensional array is a list of values, a

multidimensional array simulates a table of values, or multiple

tables of values. The most commonly used table is a two-

dimensional table (an array with two subscripts).

Suppose a softball team wanted to keep track of its players’

batting records. The team played 10 games, and there are 15 players

on the team. Table 25.1 shows the team’s batting record.

Table 25.1. A softball team’s batting record.

Player Game
Name 1 2 3 4 5 6 7 8 9 10

Adams 2 1 0 0 2 3 3 1 1 2

Berryhill 1 0 3 2 5 1 2 2 1 0

Downing 1 0 2 1 0 0 0 0 2 0

Edwards 0 3 6 4 6 4 5 3 6 3

Franks 2 2 3 2 1 0 2 3 1 0

Grady 1 3 2 0 1 5 2 1 2 1

Howard 3 1 1 1 2 0 1 0 4 3

Jones 2 2 1 2 4 1 0 7 1 0

Martin 5 4 5 1 1 0 2 4 1 5

Powers 2 2 3 1 0 2 1 3 1 2

Smith 1 1 2 1 3 4 1 0 3 2

Smithtown 1 0 1 2 1 0 3 4 1 2

Townsend 0 0 0 0 0 0 1 0 0 0

Ulmer 2 2 2 2 2 1 1 3 1 3

Williams 2 3 1 0 1 2 1 2 0 3

A multidimensional
array has more than
one subscript.

521

EXAMPLE
C++ By

Do you see that the softball table is a two-dimensional table? It

has rows (the first dimension) and columns (the second dimension).

Therefore, this is called a two-dimensional table with 15 rows and 10

columns. (Generally, the number of rows is specified first.)

Each row has a player’s name, and each column has a game

number associated with it, but these are not part of the actual data.

The data consists of only 150 values (15 rows by 10 columns). The

data in a two-dimensional table always is the same type of data; in

this case, every value is an integer. If it were a table of salaries, every

element would be a floating-point decimal.

The number of dimensions, in this case two, corresponds to the

dimensions in the physical world. The single-dimensioned array is

a line, or list of values. Two dimensions represent both length and

width. You write on a piece of paper in two dimensions; two

dimensions represent a flat surface. Three dimensions represent

width, length, and depth. You have seen 3-D movies. Not only do the

images have width and height, but they also seem to have depth.

Figure 25.1 shows what a three-dimensional array looks like if it has

a depth of four, six rows, and three columns. Notice that a three-

dimensional table resembles a cube.

It is difficult to visualize more than three dimensions. How-

ever, you can think of each dimension after three as another occur-

rence. In other words, a list of one player’s season batting record can

be stored in an array. The team’s batting record (as shown in Table

25.1) is two-dimensional. The league, made of up several teams’

batting records, represents a three-dimensional table. Each team

(the depth of the table) has rows and columns of batting data. If there

is more than one league, it is another dimension (another set of data).

C++ enables you to store several dimensions, although “real-

world” data rarely requires more than two or three.

A three-dimensional
table has three
dimensions: depth,
rows, and columns.

Chapter 25 ♦ Multidimensional Arrays

522

Figure 25.1. Representing a three-dimensional table (a cube).

Reserving Multidimensional
Arrays

When you reserve a multidimensional array, you must inform

C++ that the array has more than one dimension by putting more

than one subscript in brackets after the array name. You must put a

separate number, in brackets, for each dimension in the table. For

example, to reserve the team data from Table 25.1, you use the

following multidimensional array declaration.

3 columns

4 deep

6 rows

523

EXAMPLE
C++ By

Declare an integer array called teams with 15 rows and 10 columns.

int teams[15][10]; // Reserves a two-dimensional table.

CAUTION: Unlike other programming languages, C++ re-

quires you to enclose each dimension in brackets. Do not

reserve multidimensional array storage like this:

int teams[15,10]; // Invalid table declaration.

Properly reserving the teams table produces a table with 150

elements. Figure 25.2 shows what each element’s subscript looks

like.

columns

Figure 25.2. Subscripts for the softball team table.

rows

Chapter 25 ♦ Multidimensional Arrays

524

If you had to track three teams, each with 15 players and 10

games, the three-dimensional table would be created as follows:

int teams[3][15][10]; // Reserves a three-dimensional table.

When creating a two-dimensional table, always put the maxi-

mum number of rows first, and the maximum number of columns

second. C++ always uses 0 as the starting subscript of each dimen-

sion. The last element, the lower-right element of the teams table, is

teams[2][14][9].

Examples

1. Suppose you wanted to keep track of utility bills for the

year. You can store 12 months of four utilities in a two-

dimensional table of floating-point amounts, as the follow-

ing array declaration demonstrates:

float utilities[12][4]; // Reserves 48 elements.

You can compute the total number of elements in a multi-

dimensional array by multiplying the subscripts. Because

12 times 4 is 48, there are 48 elements in this array (12 rows,

4 columns). Each of these elements is a floating-point data

type.

2. If you were keeping track of five years’ worth of utilities,

you have to add an extra dimension. The first dimension is

the years, the second is the months, and the last is the indi-

vidual utilities. Here is how you reserve storage:

float utilities[5][12][4]; // Reserves 240 elements.

Mapping Arrays to Memory
C++ approaches multidimensional arrays a little differently

than most programming languages do. When you use subscripts,

you do not have to understand the internal representation of multi-

dimensional arrays. However, most C++ programmers think a

deeper understanding of these arrays is important, especially when

programming advanced applications.

The far-right
dimension always
represents columns,
the next represents
rows, and so on.

525

EXAMPLE
C++ By

A two-dimensional array is actually an array of arrays. You

program multidimensional arrays as though they were tables with

rows and columns. A two-dimensional array is actually a single-

dimensional array, but each of its elements is not an integer, floating-

point, or character, but another array.

Knowing that a multidimensional array is an array of other

arrays is critical when passing and receiving such arrays. C++

passes all arrays, including multidimensional arrays, by address.

Suppose you were using an integer array called scores, reserved as a

5-by-6 table. You can pass scores to a function called print_it(), as

follows:

print_it(scores); // Passes table to a function.

The function print_it() has to identify the type of parameter

being passed to it. The print_it() function also must recognize that

the parameter is an array. If scores were one-dimensional, you could

receive it as

print_it(int scores[]) // Works only if scores

 // is one-dimensional.

or

print_it(int scores[10]) // Assuming scores

 // has 10 elements.

If scores were a multidimensional table, you would have to

designate each pair of brackets and put the maximum number of

subscripts in its brackets, as in

print_it(int scores[5][6]) // Inform print_it() of

 // the array’s dimensions.

or

print_it(int scores[][6]) // Inform print_it() of

 // the array’s dimensions.

Notice you do not have to explicitly state the maximum sub-

script on the first dimension when receiving multidimensional

Chapter 25 ♦ Multidimensional Arrays

526

arrays, but you must designate the second. If scores were a three-

dimensional table, dimensioned as 10 by 5 by 6, you would receive

it with print_it() as

print_it(int scores[][5][6]) // Only first dimension

 // is optional.

or

print_it(int scores[10][5][6]) // Inform print_it() of

 // array’s dimensions.

You should not have to worry too much about the way tables

are physically stored. Even though a two-dimensional table is

actually an array of arrays (and each of those arrays contains another

array if it is a three-dimensional table), you can use subscripts to

program multidimensional arrays as if they were stored in row-and-

column order.

Multidimensional arrays are stored in row order. Suppose you

want to keep track of a 3-by-4 table. The top of Figure 25.3 shows

how that table (and its subscripts) are visualized. Despite the

two-dimensional table organization, your memory is still sequen-

tial storage. C++ has to map multidimensional arrays to single-

dimensional memory, and it does so in row order.

Each row fills memory before the next row is stored. Figure 25.3

shows how a 3-by-4 table is mapped to memory.

The entire first row (table[0][0] through table[0][3]) is stored

first in memory before any of the second row. A table is actually an

array of arrays, and, as you learned in previous chapters, array

elements are always stored sequentially in memory. Therefore, the

first row (array) completely fills memory before the second row.

Figure 25.3 shows how two-dimensional arrays map to memory.

Defining Multidimensional
Arrays

C++ is not picky about the way you define a multidimensional

array when you initialize it at declaration time. As with single-

dimensional arrays, you initialize multidimensional arrays with

C++ stores
multidimensional
arrays in row order.

527

EXAMPLE
C++ By

braces that designate dimensions. Because a multidimensional ar-

ray is an array of arrays, you can nest braces when you initialize

them.

Figure 25.3. Mapping a two-dimensional table to memory.

The following three array definitions fill the three arrays ara1,

ara2, and ara3, as shown in Figure 25.4:

int ara1[5] = {8, 5, 3, 25, 41}; // One-dimensional array.

int ara2[2][4]={{4, 3, 2, 1},{1, 2, 3, 4}};

int ara3[3][4]={{1, 2, 3, 4},{5, 6, 7, 8},{9, 10, 11, 12}};

Memory

First row

Second row

Third row

Fourth row

Chapter 25 ♦ Multidimensional Arrays

528

Figure 25.4. After initializing a table.

Notice that the multidimensional arrays are stored in row

order. In ara3, the first row receives the first four elements of the

definition (1, 2, 3, and 4).

ara1

ara2

ara3

529

EXAMPLE
C++ By

TIP: To make a multidimensional array initialization match

the array’s subscripts, some programmers like to show how

arrays are filled. Because C++ programs are free-form, you can

initialize ara2 and ara3 as

int ara2[2][4]={{4, 3, 2, 1}, // Does exactly the same

 {1, 2, 3, 4}}; // thing as before.

int ara3[3][4]={{1, 2, 3, 4},

 {5, 6, 7, 8},

 {9, 10, 11, 12}; // Visually more

 // obvious.

You can initialize a multidimensional array as if it were single-

dimensional in C++. You must keep track of the row order if you do

this. For instance, the following two definitions also reserve storage

for and initialize ara2 and ara3:

int ara2[2][4]={4, 3, 2, 1, 1, 2, 3, 4};

int ara3[3][4]={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13};

There is no difference between initializing ara2 and ara3 with or

without the nested braces. The nested braces seem to show the

dimensions and how C++ fills them a little better, but the choice of

using nested braces is yours.

TIP: Multidimensional arrays (unless they are global) are not

initialized to specific values unless you assign them values at

declaration time or in the program. As with single-dimensional

arrays, if you initialize one or more of the elements, but not all

of them, C++ fills the rest with zeros. If you want to fill an entire

multidimensional array with zeros, you can do so with the

following:

float sales[3][4][7][2] = {0}; // Fills all sales

 // with zeros.

Chapter 25 ♦ Multidimensional Arrays

530

One last point to consider is how multidimensional arrays are

viewed by your compiler. Many people program in C++ for years,

but never understand how tables are stored internally. As long as

you use subscripts, a table’s internal representation should not

matter. When you learn about pointer variables, however, you

might want to know how C++ stores your tables in case you want to

reference them with pointers (as shown in the next few chapters).

Figure 25.5 shows the way C++ stores a 3-by-4 table in memory.

Unlike single-dimensional arrays, each element is stored contigu-

ously, but notice how C++ views the data. Because a table is an array

of arrays, the array name contains the address of the start of the

primary array. Each of those elements points to the arrays it contains

(the data in each row). This coverage of table storage is for your

information only, at this point. As you become more proficient in

C++, and write more powerful programs that manipulate internal

memory, you might want to review this table storage method.

Tables and for Loops
As the following examples show, nested for loops are useful

when you want to loop through every element of a multidimen-

sional table.

For instance, the section of code,

for (row=0; row<2; row++)

 { for (col=0; col<3; col++)

 { cout << row << “ “ << col “\n”; }

 }

produces the following output:

0 0

0 1

0 2

1 0

1 1

1 2

531

EXAMPLE
C++ By

ara name

An array of arrays

First row

Third
row

Second
row

Fourth
row

Figure 25.5. Internal representation of a two-dimensional table.

Chapter 25 ♦ Multidimensional Arrays

532

These numbers are the subscripts, in row order, for a two-row

by three-column table dimensioned with

int table[2][3];

Notice there are as many for loops as there are subscripts in the

array (two). The outside loop represents the first subscript (the

rows), and the inside loop represents the second subscript (the

columns). The nested for loop steps through each element of the

table.

You can use cin, gets(), get, and other input functions to fill a

table, and you also can assign values to the elements when declaring

the table. More often, the data comes from data files on the disk.

Regardless of what method stores the values in multidimensional

arrays, nested for loops are excellent control statements to step

through the subscripts. The following examples demonstrate how

nested for loops work with multidimensional arrays.

Examples

1. The following statements reserve enough memory elements

for a television station’s ratings (A through D) for one week:

char ratings[7][48];

These statements reserve enough elements to hold seven

days (the rows) of ratings for each 30-minute time slot (48 of

them in a day).

Every element in a table is always the same type. In this case,

each element is a character variable. Some are initialized

with the following assignment statements:

shows[3][12] = ‘B’; // Stores B in 4th row, 13th column.

shows[1][5] = ‘A’ ; // Stores C in 2nd row, 6th column.

shows[6][20] = getch(); // Stores the letter the user types.

2. A computer company sells two sizes of disks: 3 1/2-inch and

5 1/4-inch. Each disk comes in one of four capacities: single-

sided double-density, double-sided double-density, single-

sided high-density, and double-sided high-density.

Nested loops work
well with multi-
dimensional arrays.

533

EXAMPLE
C++ By

The disk inventory is well-suited for a two-dimensional

table. The company determined that the disks have the

following retail prices:

Double Density High Density

Single Double Single Double

3 1/2-inch 2.30 2.75 3.20 3.50

5 1/4-inch 1.75 2.10 2.60 2.95

The company wants to store the price of each disk in a table

for easy access. The following program stores the prices with

assignment statements.

// Filename: C25DISK1.CPP

// Assigns disk prices to a table.

#include <iostream.h>

#include <iomanip.h>

void main()

{

 float disks[2][4]; // Table of disk prices.

 int row, col; // Subscript variables.

 disks[0][0] = 2.39; // Row 1, column 1

 disks[0][1] = 2.75; // Row 1, column 2

 disks[0][2] = 3.29; // Row 1, column 3

 disks[0][3] = 3.59; // Row 1, column 4

 disks[1][0] = 1.75; // Row 2, column 1

 disks[1][1] = 2.19; // Row 2, column 2

 disks[1][2] = 2.69; // Row 2, column 3

 disks[1][3] = 2.95; // Row 2, column 4

 // Print the prices.

 for (row=0; row<2; row++)

 { for (col=0; col<4; col++)

 { cout << “$” << setprecision(2) <<

 disks[row][col] << “\n”; }

 }

 return;

}

Chapter 25 ♦ Multidimensional Arrays

534

This program displays the prices as follows:

$2.39

$2.75

$3.29

$3.59

$1.75

$2.19

$2.69

$2.95

It prints them one line at a time, without any descriptive

titles. Although the output is not labeled, it illustrates how

you can use assignment statements to initialize a table, and

how nested for loops can print the elements.

3. The preceding disk inventory would be displayed better if

the output had descriptive titles. Before you add titles, it is

helpful for you to see how to print a table in its native row

and column format.

Typically, you use a nested for loop, such as the one in the

previous example, to print rows and columns. You should

not output a newline character with every cout, however. If

you do, you see one value per line, as in the previous

program’s output, which is not the row and column format

of the table.

You do not want to see every disk price on one line, but you

want each row of the table printed on a separate line. You

must insert a cout << “\n”; to send the cursor to the next line

each time the row number changes. Printing newlines after

each row prints the table in its row and column format, as

this program shows:

// Filename: C25DISK2.CPP

// Assigns disk prices to a table

// and prints them in a table format.

#include <iostream.h>

#include <iomanip.h>

void main()

{

535

EXAMPLE
C++ By

 float disks[2][4]; // Table of disk prices.

 int row, col;

 disks[0][0] = 2.39; // Row 1, column 1

 disks[0][1] = 2.75; // Row 1, column 2

 disks[0][2] = 3.29; // Row 1, column 3

 disks[0][3] = 3.59; // Row 1, column 4

 disks[1][0] = 1.75; // Row 2, column 1

 disks[1][1] = 2.19; // Row 2, column 2

 disks[1][2] = 2.69; // Row 2, column 3

 disks[1][3] = 2.95; // Row 2, column 4

 // Print the prices

 for (row=0; row<2; row++)

 { for (col=0; col<4; col++)

 { cout << “$” << setprecision(2) <<

 disks[row][col] << “\t”;

 }

 cout << “\n”; // Prints a new line after each row.

 }

 return;

}

Here is the output of the disk prices in their native table

order:

$2.39 $2.75 $3.29 $3.59

$1.75 $2.19 $2.69 $2.95

4. To add the titles, simply print a row of titles before the first

row of values, then print a new column title before each

column, as shown in the following program:

// Filename: C25DISK3.CPP

// Assigns disk prices to a table

// and prints them in a table format with titles.

#include <iostream.h>

#include <iomanip.h>

Chapter 25 ♦ Multidimensional Arrays

536

void main()

{

 float disks[2][4]; // Table of disk prices.

 int row, col;

 disks[0][0] = 2.39; // Row 1, column 1

 disks[0][1] = 2.75; // Row 1, column 2

 disks[0][2] = 3.29; // Row 1, column 3

 disks[0][3] = 3.59; // Row 1, column 4

 disks[1][0] = 1.75; // Row 2, column 1

 disks[1][1] = 2.19; // Row 2, column 2

 disks[1][2] = 2.69; // Row 2, column 3

 disks[1][3] = 2.95; // Row 2, column 4

 // Print the column titles.

 cout << “\tSingle-sided\tDouble-sided\tSingle-sided\t” <<

 “Double-sided\n”;

 cout << “\tDouble-density\tDouble-density\tHigh-density” <<

 “\tHigh-density\n”;

 // Print the prices

 for (row=0; row<2; row++)

 { if (row == 0)

 { cout << “3-1/2\”\t”; } // Need \” to

 // print quotation.

 else

 { cout << “5-1/4\”\t”; }

 for (col=0; col<4; col++) // Print the current row.

 { cout << setprecision(2) << “$” << disks[row][col]

 << “\t\t”;

 }

 cout << “\n”; // Print a newline after each row.

 }

 return;

}

537

EXAMPLE
C++ By

Here is the output from this program:

 Single-sided Double-sided Single-sided Double-sided

 Double-density Double-density High-density High-density

3-1/2" $2.39 $2.75 $3.29 $3.59

5-1/4" $1.75 $2.19 $2.69 $2.95

Review Questions
The answers to the review questions are in Appendix B.

1. What statement reserves a two-dimensional table of integers

called scores with five rows and six columns?

2. What statement reserves a three-dimensional table of four

character arrays called initials with 10 rows and 20 columns?

3. In the following statement, which subscript (first or second)

represents rows and which represents columns?

int weights[5][10];

4. How many elements are reserved with the following

statement?

int ara[5][6];

5. The following table of integers is called ara:

4 1 3 5 9

10 2 12 1 6

25 42 2 91 8

What values do the following elements contain?

a. ara[2][2]

b. ara[0][1]

c. ara[2][3]

d. ara[2][4]

Chapter 25 ♦ Multidimensional Arrays

538

6. What control statement is best for stepping through multi-

dimensional arrays?

7. Notice the following section of a program:

int grades[3][5] = {80,90,96,73,65,67,90,68,92,84,70,

 55,95,78,100};

What are the values of the following:

a. grades[2][3]

b. grades[2][4]

c. grades[0][1]

Review Exercises
1. Write a program that stores and prints the numbers from 1

to 21 in a 3-by-7 table. (Hint: Remember C++ begins sub-

scripts at 0.)

2. Write a program that reserves storage for three years’ worth

of sales data for five salespeople. Use assignment statements

to fill the table with data, then print it, one value per line.

3. Instead of using assignment statements, use the cin function

to fill the salespeople data from Exercise 2.

4. Write a program that tracks the grades for five classes, each

having 10 students. Input the data using the cin function.

Print the table in its native row and column format.

Summary
You now know how to create, initialize, and process multidi-

mensional arrays. Although not all data fits in the compact format

of tables, much does. Using nested for loops makes stepping through

a multidimensional array straightforward.

539

EXAMPLE
C++ By

One of the limitations of a multidimensional array is that each

element must be the same data type. This keeps you from being able

to store several kinds of data in tables. Chapter 28, “Structures,”

shows you how to store data in different ways to overcome this

limitation.

Chapter 25 ♦ Multidimensional Arrays

540

541

EXAMPLE
C++ By

26

Pointers

C++ reveals its true power through pointer variables. Pointer vari-

ables (or pointers, as they generally are called) are variables that

contain addresses of other variables. All variables you have seen so

far have held data values. You understand that variables hold

various data types: character, integer, floating-point, and so on.

Pointer variables contain the location of regular data variables; they

in effect point to the data because they hold the address of the data.

When first learning C++, students of the language tend to shy

away from pointers, thinking that pointers will be difficult. Pointers

do not have to be difficult. In fact, after you work with them for a

while, you will find they are easier to use than arrays (and much

more flexible).

This chapter introduces the following concepts:

♦ Pointers

♦ Pointers of different data types

♦ The “address of” (&) operator

♦ The dereferencing (*) operator

♦ Arrays of pointers

Chapter 26 ♦ Pointers

542

Pointers offer a highly efficient means of accessing and chang-

ing data. Because pointers contain the actual address of your data,

your compiler has less work to do when finding that data in

memory. Pointers do not have to link data to specific variable names.

A pointer can point to an unnamed data value. With pointers, you

gain a “different view” of your data.

Introduction to Pointer
Variables

Pointers are variables. They follow all the normal naming rules

of regular, nonpointer variables. As with regular variables, you

must declare pointer variables before using them. There is a type of

pointer for every data type in C++; there are integer pointers,

character pointers, floating-point pointers, and so on. You can

declare global pointers or local pointers, depending on where you

declare them.

About the only difference between pointer variables and regu-

lar variables is the data they hold. Pointers do not contain data in the

usual sense of the word. Pointers contain addresses of data. If you

need a quick review of addresses and memory, see Appendix A,

“Memory Addressing, Binary, and Hexadecimal Review.”

There are two pointer operators in C++:

& The “address of” operator

* The dereferencing operator

Don’t let these operators throw you; you might have seen them

before! The & is the bitwise AND operator (from Chapter 11, “Addi-

tional C++ Operators”) and the * means, of course, multiplication.

These are called overloaded operators. They perform more than one

function, depending on how you use them in your programs. C++

does not confuse * for multiplication when you use it as a

dereferencing operator with pointers.

Pointers contain
addresses of other
variables.

543

EXAMPLE
C++ By

Any time you see the & used with pointers, think of the words

“address of.” The & operator always produces the memory address

of whatever it precedes. The * operator, when used with pointers,

either declares a pointer or dereferences the pointer’s value. The

next section explains each of these operators.

Declaring Pointers

Because you must declare all pointers before using them, the

best way to begin learning about pointers is to understand how to

declare and define them. Actually, declaring pointers is almost as

easy as declaring regular variables. After all, pointers are variables.

If you must declare a variable that holds your age, you could do

so with the following variable declaration:

int age=30; // Declare a variable to hold my age.

Declaring age like this does several things. It enables C++ to

identify a variable called age, and to reserve storage for that variable.

Using this format also enables C++ to recognize that you will store

only integers in age, not floating-point or double floating-point data.

The declaration also requests that C++ store the value of 30 in age

after it reserves storage for age.

Where did C++ store age in memory? As the programmer, you

should not really care where C++ stores age. You do not have to

know the variable’s address because you will never refer to age by its

address. If you want to calculate with or print age, you call it by its

name, age.

TIP: Make your pointer variable names meaningful. The name

file_ptr makes more sense than x13 for a file-pointing variable,

although either name is allowed.

Suppose you want to declare a pointer variable. This pointer

variable will not hold your age, but it will point to age, the variable

that holds your age. (Why you would want to do this is explained in

this and the next few chapters.) p_age might be a good name for the

pointer variable. Figure 26.1 illustrates what you want to do. The

Chapter 26 ♦ Pointers

544

figure assumes C++ stored age at the address 350,606. Your C++

compiler, however, arbitrarily determines the address of age, so it

could be anything.

Figure 26.1. p_age contains the address of age; p_age points to the age
variable.

The name p_age has nothing to do with pointers, except that it

is the name you made up for the pointer to age. Just as you can name

variables anything (as long as the name follows the legal naming

rules of variables), p_age could just as easily have been named house,

x43344, space_trek, or whatever else you wanted to call it. This

reinforces the idea that a pointer is just a variable you reserve in your

program. Create meaningful variable names, even for pointer vari-

ables. p_age is a good name for a variable that points to age (as would

be ptr_age and ptr_to_age).

To declare the p_age pointer variable, you must program the

following:

int * p_age; // Declares an integer pointer.

Similar to the declaration for age, this declaration reserves a

variable called p_age. The p_age variable is not a normal integer

variable, however. Because of the dereferencing operator, *, C++

knows this is to be a pointer variable. Some C++ programmers

prefer to declare such a variable without a space after the *, as

follows:

int *p_age; // Declares an integer pointer.

545

EXAMPLE
C++ By

Either method is okay, but you must remember the * is not part

of the name. When you later use p_age, you will not prefix the name

with the *, unless you are dereferencing it at the time (as later

examples show).

TIP: Whenever the dereferencing operator, *, appears in a

variable definition, the variable being declared is always a

pointer variable.

Consider the declaration for p_age if the asterisk were not there:

C++ would think you were declaring a regular integer variable. The

* is important, because it tells C++ to interpret p_age as a pointer

variable, not as a normal, data variable.

Assigning Values to Pointers

p_age is an integer pointer. This is very important. p_age can

point only to integer values, never to floating-point, double floating-

point, or even character variables. If you needed to point to a

floating-point variable, you might do so with a pointer declared as

float *point; // Declares a floating-point pointer.

As with any automatic variable, C++ does not initialize point-

ers when you declare them. If you declared p_age as previously

described, and you wanted p_age to point to age, you would have to

explicitly assign p_age to the address of age. The following statement

does this:

p_age = &age; // Assign the address of age to p_age.

What value is now in p_age? You do not know exactly, but you

know it is the address of age, wherever that is. Rather than assign the

address of age to p_age with an assignment operator, you can declare

and initialize pointers at the same time. These lines declare and

initialize both age and p_age:

int age=30; // Declares a regular integer

 // variable, putting 30 in it.

Pointers can point
only to data of their
own type.

Chapter 26 ♦ Pointers

546

int *p_age=&age; // Declares an integer pointer,

 // initializing it with the address

 // of p_age.

These two lines produce the variables described in Figure 26.1.

If you wanted to print the value of age, you could do so with the

following cout:

cout << age; // Prints the value of age.

You also can print the value of age like this:

cout << *p_age; // Dereferences p_age.

The dereference operator produces a value that tells the pointer

where to point. Without the *, the last cout would print an address

(the address of age). With the *, the cout prints the value at that

address.

You can assign a different value to age with the following

statement:

age=41; // Assigns a new value to age.

You also can assign a value to age like this:

*p_age=41;

This declaration assigns 41 to the value to which p_age points.

TIP: The * appears before a pointer variable in only two

places—when you declare a pointer variable, and when you

dereference a pointer variable (to find the data it points to).

Pointers and Parameters

Now that you understand the pointer’s * and & operators, you

can finally see why scanf()’s requirements were not as strict as they

first seemed. While passing a regular variable to scanf(), you had to

prefix the variable with the & operator. For instance, the following

scanf() gets three integer values from the user:

scanf(“ %d %d %d”, &num1, &num2, &num3);

547

EXAMPLE
C++ By

This scanf() does not pass the three variables, but passes the

addresses of the three variables. Because scanf() knows the exact

locations of these parameters in memory (because their addresses

were passed), it goes to those addresses and puts the keyboard input

values into those addresses.

This is the only way scanf() could work. If you passed these

variables by copy, without putting the “address of” operator (&)

before them, scanf() would get the keyboard input and fill a copy of

the variables, but not the actual variables num1, num2, and num3. When

scanf() then returned control to your program, you would not have

the input values. Of course, the cin operator does not have the

ampersand (&) requirement and is easier to use for most C++

programs.

You might recall from Chapter 18, “Passing Values,” that you

can override C++’s normal default of passing by copy (or “by

value”). To pass by address, receive the variable preceded by an & in

the receiving function. The following function receives tries by

address:

pr_it(int &tries); // Receive integer tries in pr_it() by

 // address (pr it would normally receive

 // tries by copy).

Now that you understand the & and * operators, you can

understand completely the passing of nonarray parameters by

address to functions. (Arrays default to passing by address without

requiring that you use &.)

Examples

1. The following section of code declares three regular vari-

ables of three different data types, and three corresponding

pointer variables:

char initial= ‘Q’; // Declares three regular variables

int num=40; // of three different types.

float sales=2321.59;

Chapter 26 ♦ Pointers

548

char *p_initial=&initial; // Declares three pointers.

int * ptr_num=# // Pointer names and spacing

float * sales_add = &sales; // after * are not critical.

2. Just like regular variables, you can initialize pointers with

assignment statements. You do not have to initialize them

when you declare them. The next few lines of code are

equivalent to the code in Example 1:

char initial; // Declares three regular variables

int num; // of three different types.

float sales;

char *p_initial; // Declares three pointers but does

int * ptr_num; // not initialize them yet.

float * sales_add;

initial=’Q’; // Initializes the regular variables

num=40; // with values.

sales=2321.59;

p_initial=&initial; // Initializes the pointers with

ptr_num=# // the addresses of their

sales_add=&sales; // corresponding variables.

Notice that you do not put the * operator before the pointer

variable names when assigning them values. You would

prefix a pointer variable with the * only if you were

dereferencing it.

NOTE: In this example, the pointer variables could have been

assigned the addresses of the regular variables before the

regular variables were assigned values. There would be no

difference in the operation. The pointers are assigned the

addresses of the regular variables no matter what the data in

the regular variables are.

549

EXAMPLE
C++ By

Keep the data type of each pointer consistent with its corre-

sponding variable. Do not assign a floating-point variable to

an integer’s address. For instance, you cannot make the

following assignment statement:

p_initial = &sales; // Invalid pointer assignment.

because p_initial can point only to character data, not to

floating-point data.

3. The following program is an example you should study

closely. It shows more about pointers and the pointer opera-

tors, & and *, than several pages of text can do.

// Filename: C26POINT.CPP

// Demonstrates the use of pointer declarations

// and operators.

#include <iostream.h>

void main()

{

 int num=123; // A regular integer variable.

 int *p_num; // Declares an integer pointer.

 cout << “num is “ << num << “\n”; // Prints value of num.

 cout << “The address of num is “ << &num << “\n”;

 // Prints num’s location.

 p_num = # // Puts address of num in p_num,

 // in effect making p_num point

 // to num.

 // No * in front of p_num.

 cout << “*p_num is “ << *p_num << “\n”; // Prints value

 // of num.

 cout << “p_num is “ << p_num << “\n”; // Prints location

 // of num.

 return;

}

Chapter 26 ♦ Pointers

550

Here is the output from this program:

num is 123

The address of num is 0x8fbd0ffe

*p_num is 123

p_num is 0x8fbd0ffe

If you run this program, you probably will get different

results for the value of p_num because your compiler will

place num at a different location, depending on your memory

setup. The value of p_num prints in hexadecimal because it is

an address of memory. The actual address does not matter,

however. Because the pointer p_num always contains the

address of num, and because you can dereference p_num to get

num’s value, the actual address is not critical.

4. The following program includes a function that swaps the

values of any two integers passed to it. You might recall that

a function can return only a single value. Therefore, before

now, you could not write a function that changed two

different values and returned both values to the calling

function.

To swap two variables (reversing their values for sorting, as

you saw in Chapter 24, “Array Processing”), you need the

ability to pass both variables by address. Then, when the

function reverses the variables, the calling function’s vari-

ables also are swapped.

Notice the function’s use of dereferencing operators before

each occurrence of num1 and num2. It does not matter at which

address num1 and num2 are stored, but you must make sure

that you dereference whatever addresses were passed to the

function.

Be sure to receive arguments with the prefix & in functions

that receive by address, as done here.

551

EXAMPLE
C++ By

Identify the program and include the I/O header file. This program swaps
two integers, so initialize two integer variables in main(). Pass the variables
to the swapping function, called swap_them, then switch their values. Print
the results of the swap in main().

// Filename: C26SWAP.CPP

// Program that includes a function that swaps

// any two integers passed to it

#include <iostream.h>

void swap_them(int &num1, int &num2);

void main()

{

 int i=10, j=20;

 cout << “\n\nBefore swap, i is “ << i <<

 “ and j is “ << j << “\n\n”;

 swap_them(i, j);

 cout << “\n\nAfter swap, i is “ << i <<

 “ and j is “ << j << “\n\n”;

 return;

}

void swap_them(int &num1, int &num2)

{

 int temp; // Variable that holds

 // in-between swapped value.

 temp = num1; // The calling function’s variables

 num1 = num2; // (and not copies of them) are

 num2 = temp; // changed in this function.

 return;

}

Arrays of Pointers
If you have to reserve many pointers for many different values,

you might want to declare an array of pointers. You know that you

can reserve an array of characters, integers, long integers, and

floating-point values, as well as an array of every other data type

available. You also can reserve an array of pointers, with each

pointer being a pointer to a specific data type.

Chapter 26 ♦ Pointers

552

Figure 26.2. An array of 10 integer pointers.

The following reserves an array of 20 character pointer

variables:

char *cpoint[20]; // Array of 20 character pointers.

Again, the asterisk is not part of the array name. The asterisk

lets C++ know that this is an array of integer pointers and not just

an array of integers.

The following reserves an array of 10 integer pointer variables:

int *iptr[10]; // Reserves an array of 10 integer pointers

Figure 26.2 shows how C++ views this array. Each element

holds an address (after being assigned values) that points to other

values in memory. Each value pointed to must be an integer. You can

assign an element from iptr an address just as you would for

nonarray pointer variables. You can make iptr[4] point to the

address of an integer variable named age by assigning it like this:

iptr[4] = &age; // Make iptr[4] point to address of age.

553

EXAMPLE
C++ By

Some beginning C++ students get confused when they see such

a declaration. Pointers are one thing, but reserving storage for arrays

of pointers tends to bog novices down. However, reserving storage

for arrays of pointers is easy to understand. Remove the asterisk

from the previous declaration as follows,

char cpoint[20];

and what do you have? You have just reserved a simple array of 20

characters. Adding the asterisk tells C++ to go one step further:

rather than an array of character variables, you want an array of

character pointing variables. Rather than having each element be a

character variable, you have each element hold an address that

points to characters.

Reserving arrays of pointers will be much more meaningful

after you learn about structures in the next few chapters. As with

regular, nonpointing variables, an array makes processing several

pointer variables much easier. You can use a subscript to reference

each variable (element) without having to use a different variable

name for each value.

Review Questions
Answers to review questions are in Appendix B.

1. What type of variable is reserved in each of the following?

a. int *a;

b. char * cp;

c. float * dp;

2. What words should come to mind when you see the &

operator?

3. What is the dereferencing operator?

4. How would you assign the address of the floating-point

variable salary to a pointer called pt_sal?

5. True or false: You must define a pointer with an initial value

when declaring it.

Chapter 26 ♦ Pointers

554

6. In both of the following sections of code:

int i;

int * pti;

i=56;

pti = &i;

and

int i;

int * pti;

pti = &i; // These two lines are reversed

i=56; // from the preceding example.

is the value of pti the same after the fourth line of each

section?

7. In the following section of code:

float pay;

float *ptr_pay;

pay=2313.54;

ptr_pay = &pay;

What is the value of each of the following (answer “invalid”

if it cannot be determined):

a. pay

b. *ptr_pay

c. *pay

d. &pay

8. What does the following declare?

double *ara[4][6];

a. An array of double floating-point values

b. An array of double floating-point pointer variables

c. An invalid declaration statement

555

EXAMPLE
C++ By

NOTE: Because this is a theory-oriented chapter, review exer-

cises are saved until you master Chapter 27, “Pointers and

Arrays.”

Summary
Declaring and using pointers might seem troublesome at this

point. Why assign *p_num a value when it is easier (and clearer) to

assign a value directly to num? If you are asking yourself that

question, you probably understand everything you should from

this chapter and are ready to begin learning the true power of

pointers: combining pointers and array processing.

Chapter 26 ♦ Pointers

556

557

EXAMPLE
C++ By

27

Pointers and
Arrays

Arrays and pointers are closely related in the C++ programming

language. You can address arrays as if they were pointers and

address pointers as if they were arrays. Being able to store and access

pointers and arrays gives you the ability to store strings of data in

array elements. Without pointers, you could not store strings of data

in arrays because there is no fundamental string data type in C++ (no

string variables, only string literals).

This chapter introduces the following concepts:

♦ Array names and pointers

♦ Character pointers

♦ Pointer arithmetic

♦ Ragged-edge arrays of string data

This chapter introduces concepts you will use for much of your

future programming in C++. Pointer manipulation is important to

the C++ programming language.

Chapter 27 ♦ Pointers and Arrays

558

Array Names as Pointers
An array name is just a pointer, nothing more. To prove this,

suppose you have the following array declaration:

int ara[5] = {10, 20, 30, 40, 50};

If you printed ara[0], you would see 10. Because you now fully

understand arrays, this is the value you would expect.

But what if you were to print *ara? Would *ara print anything?

If so, what? If you thought an error message would print because ara

is not a pointer but an array, you would be wrong. An array name

is a pointer. If you print *ara, you also would see 10.

Recall how arrays are stored in memory. Figure 27.1 shows

how ara would be mapped in memory. The array name, ara, is

nothing more than a pointer pointing to the first element of the array.

Therefore, if you dereference that pointer, you dereference the value

stored in the first element of the array, which is 10. Dereferencing ara

is exactly the same thing as referencing to ara[0], because they both

produce the same value.

An array name is a
pointer.

Figure 27.1. Storing the array called ara in memory.

You now see that you can reference an array with subscripts or

with pointer dereferencing. Can you use pointer notation to print

the third element of ara? Yes, and you already have the tools to do

so. The following cout prints ara[2] (the third element of ara) without

using a subscript:

cout << *(ara+2) ; // Prints ara[2].

ara

559

EXAMPLE
C++ By

The expression *(ara+2) is not vague at all, if you remember that

an array name is just a pointer that always points to the array’s first

element. *(ara+2) takes the address stored in ara, adds two to the

address, and dereferences that location. The following holds true:

ara+0 points to ara[0]

ara+1 points to ara[1]

ara+2 points to ara[2]

ara+3 points to ara[3]

ara+4 points to ara[4]

Therefore, to print, store, or calculate with an array element,

you can use either the subscript notation or the pointer notation.

Because an array name contains the address of the array’s first

element, you must dereference the pointer to get the element’s

value.

Internal Locations

C++ knows the internal data size requirements of characters,

integers, floating-points, and the other data types on your

computer. Therefore, because ara is an integer array, and

because each element in an integer array consumes two to four

bytes of storage, depending on the computer, C++ adds two or

four bytes to the address if you reference arrays as just shown.

If you write *(ara+3) to refer to ara[3], C++ would add six or

twelve bytes to the address of ara to get the third element. C++

does not add an actual three. You do not have to worry about

this, because C++ handles these internals. When you write

*(ara+3), you are actually requesting that C++ add three integer

addresses to the address of ara. If ara were a floating-point

array, C++ would add three floating-point addresses to ara.

Chapter 27 ♦ Pointers and Arrays

560

Pointer Advantages
Although arrays are actually pointers in disguise, they are

special types of pointers. An array name is a pointer constant, not a

pointer variable. You cannot change the value of an array name,

because you cannot change constants. This explains why you cannot

assign an array new values during a program’s execution. For

instance, even if cname is a character array, the following is not valid

in C++:

cname = “Christine Chambers”; // Invalid array assignment.

The array name, cname, cannot be changed because it is a

constant. You would not attempt the following

5 = 4 + 8 * 21; // Invalid assignment

because you cannot change the constant 5 to any other value. C++

knows that you cannot assign anything to 5, and C++ prints an error

message if you attempt to change 5. C++ also knows an array name

is a constant and you cannot change an array to another value. (You

can assign values to an array only at declaration time, one element

at a time during execution, or by using functions such as strcpy().)

This brings you to the most important reason to learn pointers:

pointers (except arrays referenced as pointers) are variables. You

can change a pointer variable, and being able to do so makes

processing virtually any data, including arrays, much more power-

ful and flexible.

Examples

1. By changing pointers, you make them point to different

values in memory. The following program demonstrates

how to change pointers. The program first defines two

floating-point values. A floating-point pointer points to the

first variable, v1, and is used in the cout. The pointer is then

changed so it points to the second floating-point variable, v2.

// Filename: C27PTRCH.CPP

// Changes the value of a pointer variable.

#include <iostream.h>

An array name is a
pointer constant.

561

EXAMPLE
C++ By

#include <iomanip.h>

void main()

{

 float v1=676.54; // Defines two

 float v2=900.18; // floating-point variables.

 float * p_v; / Defines a floating-point pointer.

 p_v = &v1; // Makes pointer point to v1.

 cout << “The first value is “ << setprecision(2) <<

 *p_v << “\n”; // Prints 676.54.

 p_v = &v2; // Changes the pointer so it

 // points to v2.

 cout << “The second value is “ << setprecision(2) <<

 *p_v << “\n”; // Prints 900.18.

 return;

}

Because they can change pointers, most C++ programmers

use pointers rather than arrays. Because arrays are easy to

declare, C++ programmers sometimes declare arrays and

then use pointers to reference those arrays. If the array data

changes, the pointer helps to change it.

2. You can use pointer notation and reference pointers as

arrays with array notation. The following program declares

an integer array and an integer pointer that points to the

start of the array. The array and pointer values are printed

using subscript notation. Afterwards, the program uses

array notation to print the array and pointer values.

Study this program carefully. You see the inner workings of

arrays and pointer notation.

// Filename: C27ARPTR.CPP

// References arrays like pointers and

// pointers like arrays.

#include <iostream.h>

void main()

{

 int ctr;

 int iara[5] = {10, 20, 30, 40, 50};

Chapter 27 ♦ Pointers and Arrays

562

 int *iptr;

 iptr = iara; // Make iptr point to array’s first

 // element. This would work also:

 // iptr = &iara[0];

 cout << “Using array subscripts:\n”;

 cout << “iara\tiptr\n”;

 for (ctr=0; ctr<5; ctr++)

 { cout << iara[ctr] << “\t” << iptr[ctr] << “\n”; }

 cout << “\nUsing pointer notation:\n”;

 cout << “iara\tiptr\n”;

 for (ctr=0; ctr<5; ctr++)

 { cout << *(iara+ctr) << “\t” << *(iptr+ctr) << “\n”; }

 return;

}

Here is the program’s output:

Using array subscripts:

iara iptr

10 10

20 20

30 30

40 40

50 50

Using pointer notation:

iara iptr

10 10

20 20

30 30

40 40

50 50

563

EXAMPLE
C++ By

Using Character Pointers
The ability to change pointers is best seen when working with

character strings in memory. You can store strings in character

arrays, or point to them with character pointers. Consider the

following two string definitions:

char cara[] = “C++ is fun”; // An array holding a string

char *cptr = “C++ By Example”; // A pointer to the string

Figure 27.2 shows how C++ stores these two strings in memory.

C++ stores both in basically the same way. You are familiar with the

array definition. When assigning a string to a character pointer, C++

finds enough free memory to hold the string and assign the address

of the first character to the pointer. The previous two string defini-

tion statements do almost exactly the same thing; the only difference

between them is that the two pointers can easily be exchanged (the

array name and the character pointers).

Because cout prints strings starting at the array or pointer name

until the null zero is reached, you can print each of these strings with

the following cout statements:

cout << “String 1: “ << cara << “\n”;

cout << “String 2: “ << cptr << “\n”;

You print strings in arrays and pointed-to strings the same

way. You might wonder what advantage one method of storing

strings has over the other. The seemingly minor difference between

these stored strings makes a big difference when you change them.

Suppose you want to store the string Hello in the two strings.

You cannot assign the string to the array like this:

cara = “Hello”; // Invalid

Because you cannot change the array name, you cannot assign

it a new value. The only way to change the contents of the array is by

assigning the array characters from the string an element at a time,

or by using a built-in function such as strcpy(). You can, however,

make the character array point to the new string like this:

Character pointers
can point to the first
character of a string.

Chapter 27 ♦ Pointers and Arrays

564

cptr = “Hello”; // Change the pointer so

 // it points to the new string.

Figure 27.2. Storing two strings: One in an array and one pointed to by a
pointer variable.

565

EXAMPLE
C++ By

TIP: If you want to store user input in a string pointed to by a

pointer, first you must reserve enough storage for that input

string. The easiest way to do this is to reserve a character array,

then assign a character pointer to the beginning element of that

array like this:

char input[81]; // Holds a string as long as

 // 80 characters.

char *iptr=input; // Also could have done this:

 // char *iptr=&input[0];

Now you can input a string by using the pointer:

gets(iptr); // Make sure iptr points to

 // the string typed by the user.

You can use pointer manipulation, arithmetic, and modifica-

tion on the input string.

Examples

1. Suppose you want to store your sister’s full name and print

it. Rather than using arrays, you can use a character pointer.

The following program does just that.

// Filename: C27CP1.CPP

// Stores a name in a character pointer.

#include <iostream.h>

void main()

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s name is “ << c << “\n”;

 return;

}

This prints the following:

My sister’s name is Bettye Lou Horn

Chapter 27 ♦ Pointers and Arrays

566

2. Suppose you must change a string pointed to by a character

pointer. If your sister changed her last name to Henderson,

your program can show both strings in the following man-

ner:

Identify the program and include the I/O header file. This program
uses a character pointer, c, to point to a string literal in memory.
Point to the string literal, and print the string. Make the character-
pointer point to a new string literal, then print the new string.

// Filename: C27CP2.CPP

// Illustrates changing a character string.

#include <iostream.h>

void main()

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s maiden name was “ << c << “\n”;

 c = “Bettye Lou Henderson”; // Assigns new string to c.

 cout << “My sister’s married name is “ << c << “\n”;

 return;

}

The output is as follows:

My sister’s maiden name was Bettye Lou Horn

My sister’s married name is Bettye Lou Henderson

3. Do not use character pointers to change string constants.

Doing so can confuse the compiler, and you probably will

not get the results you expect. The following program is

similar to those you just saw. Rather than making the charac-

ter pointer point to a new string, this example attempts to

change the contents of the original string.

// Filename: C27CP3.CPP

// Illustrates changing a character string improperly.

#include <iostream.h>

void main()

567

EXAMPLE
C++ By

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s maiden name was “ << c << “\n”;

 c += 11; // Makes c point to the last name

 // (the twelfth character).

 c = “Henderson”; // Assigns a new string to c.

 cout << “My sister’s married name is “ << c << “\n”;

 return;

}

The program seems to change the last name from Horn

to Henderson, but it does not. Here is the output of this

program:

My sister’s maiden name was Bettye Lou Horn

My sister’s married name is Henderson

Why didn’t the full string print? Because the address

pointed to by c was incremented by 11, c still points to

Henderson, so that was all that printed.

4. You might guess at a way to fix the previous program.

Rather than printing the string stored at c after assigning it

to Henderson, you might want to decrement it by 11 so it

points to its original location, the start of the name. The code

to do this follows, but it does not work as expected. Study

the program before reading the explanation.

// Filename: C27CP4.C

// Illustrates changing a character string improperly.

#include <iostream.h>

void main()

{

 char *c=”Bettye Lou Horn”;

 cout << “My sister’s maiden name was “ << c << “\n”;

 c += 11; // Makes c point to the last

 // name (the twelfth character).

Chapter 27 ♦ Pointers and Arrays

568

 c = “Henderson”; // Assigns a new string to c.

 c -= 11; // Makes c point to its

 // original location (???).

 cout << “My sister’s married name is “ << c << “\n”;

 return;

}

This program produces garbage at the second cout. There are

actually two string literals in this program. When you first

assign c to Bettye Lou Horn, C++ reserves space in memory

for the constant string and puts the starting address of the

string in c.

When the program then assigns c to Henderson, C++ finds

room for another character constant, as shown in Figure 27.3.

If you subtract 11 from the location of c, after it points to the

new string Henderson, c points to an area of memory your

program is not using. There is no guarantee that printable

data appears before the string constant Henderson. If you want

to manipulate parts of the string, you must do so an element

at a time, just as you must with arrays.

Pointer Arithmetic
You saw an example of pointer arithmetic when you accessed

array elements with pointer notation. By now you should be com-

fortable with the fact that both of these array or pointer references

are identical:

ara[sub] and *(ara + sub)

You can increment or decrement a pointer. If you increment a

pointer, the address inside the pointer variable increments. The

pointer does not always increment by one, however.

Suppose f_ptr is a floating-point pointer indexing the first

element of an array of floating-point numbers. You could initialize

f_ptr as follows:

float fara[] = {100.5, 201.45, 321.54, 389.76, 691.34};

f_ptr = fara;

569

EXAMPLE
C++ By

New string in memory

Figure 27.3. Two string constants appear in memory because two string
constants are used in the program.

Chapter 27 ♦ Pointers and Arrays

570

Figure 27.4 shows what these variables look like in memory.

Each floating-point value in this example takes four bytes of memory.

Figure 27.4. A floating-point array and a pointer.

If you print the value of *f_ptr, you see 100.5. Suppose you

increment f_ptr by one with the following statement:

f_ptr++;

C++ does not add one to the address in f_ptr, even though it

seems as though one should be added. In this case, because floating-

point values take four bytes each on this machine, C++ adds four to

f_ptr. How does C++ know how many bytes to add to f_ptr? C++

knows from the pointer’s declaration how many bytes of memory

pointers take. This is why you have to declare the pointer with the

correct data type.

After incrementing f_ptr, if you were to print *f_ptr, you would

see 201.45, the second element in the array. If C++ added only one to

the address in f_ptr, f_ptr would point only to the second byte, 100.5.

This would output garbage to the screen.

NOTE: When you increment a pointer, C++ adds one full data-

type size (in bytes) to the pointer, not one byte. When you

decrement a pointer, C++ subtracts one full data type size (in

bytes) from the pointer.

Incrementing a
pointer can add
more than one byte
to the pointer.

571

EXAMPLE
C++ By

Examples

1. The following program defines an array with five values. An

integer pointer is then initialized to point to the first element

in the array. The rest of the program prints the dereferenced

value of the pointer, then increments the pointer so it points

to the next integer in the array.

Just to show you what is going on, the size of integer values

is printed at the bottom of the program. Because (in this

case) integers take two bytes, C++ increments the pointer by

two so it points to the next integer. (The integers are two

bytes apart from each other.)

// Filename: C27PTI.CPP

// Increments a pointer through an integer array.

#include <iostream.h>

void main()

{

 int iara[] = {10,20,30,40,50};

 int *ip = iara; // The pointer points to

 // The start of the array.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n”;

 ip++; // Two are actually added.

 cout << *ip << “\n\n”;

 cout << “The integer size is “ << sizeof(int);

 cout << “ bytes on this machine \n\n”;

 return;

}

Chapter 27 ♦ Pointers and Arrays

572

Here is the output from the program:

10

20

30

40

50

The integer size is two bytes on this machine

2. Here is the same program using a character array and a

character pointer. Because a character takes only one byte of

storage, incrementing a character pointer actually adds just

one to the pointer; only one is needed because the characters

are only one byte apart.

// Filename: C27PTC.CPP

// Increments a pointer through a character array.

#include <iostream.h>

void main()

{

 char cara[] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’};

 char *cp = cara; // The pointers point to

 // the start of the array.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n”;

 cp++; // One is actually added.

 cout << *cp << “\n\n”;

 cout << “The character size is “ << sizeof(char);

 cout << “ byte on this machine\n”;

 return;

}

3. The next program shows the many ways you can add to,

subtract from, and reference arrays and pointers. The pro-

gram defines a floating-point array and a floating-point

pointer. The body of the program prints the values from the

array using array and pointer notation.

573

EXAMPLE
C++ By

// Filename: C27ARPT2.CPP

// Comprehensive reference of arrays and pointers.

#include <iostream.h>

void main()

{

 float ara[] = {100.0, 200.0, 300.0, 400.0, 500.0};

 float *fptr; // Floating-point pointer.

 // Make pointer point to array’s first value.

 fptr = &ara[0]; // Also could have been this:

 // fptr = ara;

 cout << *fptr << “\n”; // Prints 100.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 200.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 300.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 400.0

 fptr++; // Points to next floating-point value.

 cout << *fptr << “\n”; // Prints 500.0

 fptr = ara; // Points to first element again.

 cout << *(fptr+2) << “\n”; // Prints 300.00 but

 // does not change fptr.

 // References both array and pointer using subscripts.

 cout << (fptr+0)[0] << “ “ << (ara+0)[0] << “\n”;

 // 100.0 100.0

 cout << (fptr+1)[0] << “ “ << (ara+1)[0] << “\n”;

 // 200.0 200.0

 cout << (fptr+4)[0] << “ “ << (ara+4)[0] << “\n”;

 // 500.0 500.0

 return;

}

The following is the output from this program:

100.0

200.0

300.0

400.0

Chapter 27 ♦ Pointers and Arrays

574

500.0

300.0

100.0 100.0

200.0 200.0

500.0 500.0

Arrays of Strings
You now are ready for one of the most useful applications of

character pointers: storing arrays of strings. Actually, you cannot

store an array of strings, but you can store an array of character

pointers, and each character pointer can point to a string in memory.

By defining an array of character pointers, you define a ragged-
edge array. A ragged-edge array is similar to a two-dimensional

table, except each row contains a different number of characters

(instead of being the same length).

The word ragged-edge derives from the use of word processors.

A word processor typically can print text fully justified or with a

ragged-right margin. The columns of this paragraph are fully justi-

fied, because both the left and the right columns align evenly. Letters

you write by hand and type on typewriters (remember what a

typewriter is?) generally have ragged-right margins. It is difficult to

type so each line ends in exactly the same right column.

All two-dimensional tables you have seen so far have been fully

justified. For example, if you declared a character table with five

rows and 20 columns, each row would contain the same number of

characters. You could define the table with the following statement:

char names[5][20]={ {“George”},

 {“Michelle”},

 {“Joe”},

 {“Marcus”},

 {“Stephanie”} };

This table is shown in Figure 27.5. Notice that much of the table

is wasted space. Each row takes 20 characters, even though the data

in each row takes far fewer characters. The unfilled elements contain

null zeros because C++ nullifies all elements you do not initialize in

arrays. This type of table uses too much memory.

An array that a
character pointer
defines is a ragged-
edge array.

575

EXAMPLE
C++ By

Figure 27.5. A fully justified table.

To fix the memory-wasting problem of fully justified tables,

you should declare a single-dimensional array of character pointers.

Each pointer points to a string in memory, and the strings do not

have to be the same length.

Here is the definition for such an array:

char *names[5]={ {“George”},

 {“Michelle”},

 {“Joe”},

 {“Marcus”},

 {“Stephanie”} };

This array is single-dimensional. The definition should not

confuse you, although it is something you have not seen. The

asterisk before names makes this an array of pointers. The data type

of the pointers is character. The strings are not being assigned to the

array elements, but they are being pointed to by the array elements.

Figure 27.6 shows this array of pointers. The strings are stored

elsewhere in memory. Their actual locations are not critical because

each pointer points to the starting character. The strings waste

no data. Each string takes only as much memory as needed by the

string and its terminating zero. This gives the data its ragged-right

appearance.

Most of the table is wasted

Rows

Columns

Chapter 27 ♦ Pointers and Arrays

576

Figure 27.6. The array that points to each of the five strings.

To print the first string, you would use this cout:

cout << *names; // Prints George

To print the second string, you would use this cout:

cout << *(names+1); // Prints Michelle

Whenever you dereference any pointer element with the *

dereferencing operator, you access one of the strings in the array.

You can use a dereferenced element any place you use a string

constant or character array (with strcpy(), strcmp(), and so on).

TIP: Working with pointers to strings is much more efficient

than working directly with the strings. For instance, sorting a

list of strings takes much time if they are stored as a fully

justified table. Sorting strings pointed to by a pointer array is

much faster. You swap only pointers during the sort, not entire

strings.

Examples

1. Here is a full program that uses the pointer array with five

names. The for loop controls the cout function, printing each

name in the string data. Now you can see why learning

about pointer notation for arrays pays off!

// Filename: C27PTST1.CPP

// Prints strings pointed to by an array.

#include <iostream.h>

577

EXAMPLE
C++ By

void main()

{

 char *name[5]={ {“George”}, // Defines a ragged-edge

 {“Michelle”}, // array of pointers to

 {“Joe”}, // strings.

 {“Marcus”},

 {“Stephanie”} };

 int ctr;

 for (ctr=0; ctr<5; ctr++)

 { cout << “String #” << (ctr+1) <<

 “ is “ << *(name+ctr) << “\n”; }

 return;

}

The following is the output from this program:

String #1 is George

String #2 is Michelle

String #3 is Joe

String #4 is Marcus

String #5 is Stephanie

2. The following program stores the days of the week in an

array. When the user types a number from 1 to 7, the day of

the week that matches that number (with Sunday being 1)

displays by dereferencing the pointer referencing that string.

// Filename: C27PTST2.CPP

// Prints the day of the week based on an input value.

#include <iostream.h>

void main()

{

 char *days[] = {“Sunday”, // The seven separate sets

 “Monday”, // of braces are optional.

 “Tuesday”,

 “Wednesday”,

 “Thursday”,

 “Friday”,

 “Saturday”};

 int day_num;

Chapter 27 ♦ Pointers and Arrays

578

 do

 { cout << “What is a day number (from 1 to 7)? “;

 cin >> day_num;

 } while ((day_num<1) || (day_num>7)); // Ensures

 // an accurate number.

 day_num--; // Adjusts for subscript.

 cout << “The day is “ << *(days+day_num) << “\n”;

 return;

}

Review Questions
The answers to the review questions are in Appendix B.

1. What is the difference between an array name and a pointer?

2. If you performed the following statement (assume ipointer

points to integers that take four bytes of memory),

ipointer += 2;

how many bytes are added to ipointer?

3. Which of the following are equivalent, assuming iary is an

integer array and iptr is an integer pointer pointing to the

start of the array?

a. iary and iptr

b. iary[1] and iptr+1

c. iary[3] and *(iptr + 3)

d. *iary and iary[0]

e. iary[4] and *iptr+4

4. Why is it more efficient to sort a ragged-edge character array

than a fully justified string array?

579

EXAMPLE
C++ By

5. Given the following array and pointer definition

int ara[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

int *ip1, *ip2;

which of the following is allowed?

a. ip1 = ara;

b. ip2 = ip1 = &ara[3];

c. ara = 15;

d. *(ip2 + 2) = 15; // Assuming ip2 and ara are equal.

Review Exercises
1. Write a program to store your family members’ names in a

character array of pointers. Print the names.

2. Write a program that asks the user for 15 daily stock market

averages and stores those averages in a floating-point array.

Using only pointer notation, print the array forward and

backward. Again using only pointer notation, print the

highest and lowest stock market quotes in the list.

3. Modify the bubble sort shown in Chapter 24, “Array Pro-

cessing,” so that it sorts using pointer notation. Add this

bubble sort to the program in Exercise 2 to print the stock

market averages in ascending order

4. Write a program that requests 10 song titles from the user.

Store the titles in an array of character pointers (a ragged-

edge array). Print the original titles, print the alphabetized

titles, and print the titles in reverse alphabetical order (from

Z to A).

Chapter 27 ♦ Pointers and Arrays

580

Summary
You deserve a break! You now understand the foundation of

C++’s pointers and array notation. When you have mastered this

section, you are on your way to thinking in C++ as you design your

programs. C++ programmers know that C++’s arrays are pointers

in disguise, and they program them accordingly.

Being able to use ragged-edge arrays offers two advantages:

You can hold arrays of string data without wasting extra space, and

you can quickly change the pointers without having to move the

string data around in memory.

As you progress into advanced C++ concepts, you will appre-

ciate the time you spend mastering pointer notation. The next

chapter introduces a new topic called structures. Structures enable

you to store data in a more unified manner than simple variables

have allowed.

