Developing Professional
Applications In
Windows 95 and NT
Using MFC

Marshall Brain
Lance Lovette

|

Prentice HallPTR

Upper Saddle River, New Jersey 07458
© Copyright 1996 by Prentice Hall. All rights reserved.

Editorial/production supervision and interior design: Dit Mosco
Cover design: Tom Nery

Cover photo: Ron Thomas, FPG International

Manufacturing manager: Alexis Heydt

Acquisitions editor: Mike Meehan

== ©1996 by Prentice HallP T R
= Prentice-Hall, Inc.
A Simon & Schuster Company
Upper Saddle River, New Jersey 07458

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact:

Corporate Sales Department
Prentice Hall PTR

One Lake Street

Upper Saddle River, NJ 07458

Phone: 800-382-3419 Fax: 201-236-7141
E-mail: corpsales@prenhall.com

All product names mentioned herein are the trademarks of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Q)
@)
=)
—
®
-
—
(72)

Preface Xiii
Version Free xiii
Audience Xxiv
Organization xiv
The Diskette and the On-line Index xv
Contacting the Authors: Questions, Comments, and Version
Changes xv
Acknowledgments xvi

Getting Your Bearings 1
What is Visual C++? 2
Available Documentation 3
7.Road Map 4
Common Questions 5

I
Part 1 Visual C++ and MFC Basics 11

1 Introduction 13
1.1 What is the Microsoft Foundation Class Library? 13
1.2 Windows Vocabulary 14
1.3 Event-driven Software and Vocabulary 16
1.4 AnExample 19
1.5 Conclusion 20

2 Understanding an MFC Program 21
2.1 AnlIntroduction to MFC 21
2.2 Designing a Program 23
2.3 Understanding the Code for “Hello World” 23
2.4 Completing the Program 30
2.5 MFC Application Structure 32
2.6 Conclusion 32

3 Customizing Controls 33
3.1 The Basics 33

3.2 Cstatic Styles 36
3.3 CStatic Text Appearance 37

3.4 Rectangular Display Modes for CStatic 44
3.5 Fonts 47
3.6 Conclusion 48

2
c
Q
]
c
@)
O

4 Handling Events 49
4.1 Understanding Message Maps 49
4.2 The CButton Class 50
4.3 Creating a Message Map 52
4.4 Sizing Messages 54
45 Window Messages 57
4.6 Scroll Bar Controls 60
4.7 Understanding Message Maps 64
4.8 Conclusion 64

5 Simple Applications 67
5.1 Designing an Application 67
5.2 Implementing the Fahrenheit to Celsius Converter 69
5.3 The CEdit Control 74
5.4 An Interest Calculator 77
55 Conclusion 81

|
Part 2 Visual C++ and MFC Details 83

6 Resources, Dialogs, and Menus 85
6.1 Resources and Resource Files 85
6.2 The Icon Resource 88
6.3 Creating a Resource File 90
6.4 Menus 92
6.5 Responding to Menus 96
6.6 Dialog Resources 100
6.7 String Resources 106
6.8 Conclusion 109

7 Canned Dialogs 111
7.1 The Message Box Dialog 111
7.2 The File Open/Save Dialog 115
7.3 The Font Dialog 120
7.4 The Color Dialog 123
7.5 ThePrint Dialog 124
7.6 The Find/Replace Dialog 127

10

11

12

7.7

Conclusion 132

Edit Controls and Editors

8.1 Using the CEdit Control in Single-Line Mode 133
8.2 Using the CEdit Control in Multi-Line Mode 136
8.3 Designing a Simple Text Editor 139

8.4 Creating the Editor Application 140

8.5 Stubbing in the Menu Handlers 144

8.6 Implementing the Editor 150

8.7 Conclusion 161

Lists

9.1 Creating a List Box 163

9.2 Alternate Display Formats 167

9.3 Getting User Selections 170

9.4 Manipulating Items ina List 174

9.5 Combo Boxes 175

9.6 Conclusion 177

The CWIinApp class

10.1 Member Variables 179

10.2 Icons and Cursors 181

10.3 Handling Idle Time 185

10.4 Application Functionality 186

10.5 Initialization Features 190

10.6 Miscellaneous Features 192

10.7 Conclusion 192

Drawing

11.1 Introduction to the GDI Library 195
11.2 GDI Basics 196

11.3 Device Contexts 198

11.4 Simple Drawing 200

11.5 Using the Mouse with Your Drawings 222
11.6 Advanced Drawing Concepts 249

11.7 Conclusion 261

Utility Classes

12.1 Utility Classes 264

12.2 Simple Array Classes 278

12.3 The CObiject class and CObject Arrays 282
12.4 List Classes 291

133

163

179

195

263

Q)
@)
=)
—
®
-
—
(72)

12,5 Mapping Classes 295
12.6 Conclusion 298

13 Debugging and Robustness 299
13.1 Setting Up 299
13.2 Assertions 300
13.3 Tracing 305
13.4 Dumping 307
13.5 Memory State 309
13.6 Exceptions 313
13.7 Other Debugging Features 321
13.8 Conclusion 321

2
c
Q
]
c
@)
O

Part 3 Using the Visual C++ Wizards
and Tools to Create Applications 323

14 Understanding the AppWizard and ClassWizard 325
14.1 The Goal of the AppWizard 325
14.2 Creating a Simple Framework with the AppWizard 327
14.3 The AppWizard’s Document-Centric Approach 327
14.4 Understanding the AppWizard’s Files 329
14.5 Understanding the ClassWizard 333
14.6 Conclusion 335

15 Creating a Drawing Program 337
15.1 The Goal of the Application 337
15.2 Creating a Drawing Program 338
15.3 Understanding the Drawing Program 347
15.4 Creating an MDI Application 352
15.5 Scrolling 356
15.6 Splitter Windows 362
15.7 Adding New Menu Options and Dialogs. 371
15.8 Printing 380
159 Conclusion 388

16 Creating an Editor
with CEditView 391
16.1 Creating an MDI Text Editor 391
16.2 Understanding the Editor 392
16.3 Combining Two Documents and Views in a Single

17

18

19

20

16.4
16.5
16.6

Application 394

Fixing a Subtle Problem 397

Handling Multiple Views on One Document 398
Conclusion 399

Creating a Fahrenheit-to-Celsius Converter

17.1
17.2
17.3
17.4
17.5
17.6

Creating the Converter 401
Understanding the Program 404
Using DDX 405

Using the Document Class 406
Using Form Views 410
Conclusion 411

Creating an Address List
Application

18.1
18.2
18.3
18.4
18.5
18.6

Creating the Application 413

Understanding the Address List Program 424
Understanding DDX and DDV 425
Improving the Application 427

Printing 445

Conclusion 450

Context-Sensitive Help

19.1
19.2
19.3
194
195

Understanding the AppWizard’s Help Framework 453
Understanding and Modifying the Help Files 454
Context-Sensitive Help 460

Aliases 463

Conclusion 463

Common Controls

20.1

20.2
20.3
20.4
20.5
20.6
20.7
20.8

A Simple Example Using the Spin Button, List, and Tree
Controls 465

CSpinButtonCtrl 466

CListCtrl 466

CTreeCtrl 469

Property Sheets 470

A Property Sheet Example 470

The CPropertySheet Class 471

Conclusion 473

401

413

453

465

Q)
@)
=)
—
®
-
—
(72)

2
c
Q
]
c
@)
O

21

Creating Explorers 475

21.1 Creating the basic framework 476
21.2 Conclusion 480

22

23

24

25

part 4 Advanced Features 481
Dialog Data
Exchange and Validation 483

22.1 Understanding DDX 484
22.2 Exchange Routines 485
22.3 Transfer Direction 486
22.4 Understanding DDV 486
22.5 AnExample 487

22.6 Custom Routines 493
22.7 Conclusion 494

Understanding MFC 495
23.1 What Are Window Handles? 495

23.2 The Life of Windows and Objects 497

23.3 Initializing Dialogs 498

23.4 From HWND to CWnd 499

23.5 Permanent and Temporary Associations 501

23.6 Handles to Other Objects 501

23.7 How Messages Work 501

23.8 Subclassing 503

23.9 Conclusion 504

Enhancing The Edit Control 505
24.1 AnExample 505

24.2 Understanding the Process 506

24.3 Conclusion 507

Self-Managing Controls 509
25.1 Owner-Drawing vs. Self-Drawing 510

25.2 Owner-Drawn Messages 510

25.3 The Self-Drawing Framework 510

25.4 Behind the Scenes 511

25.5 A General Solution 511

26

27

28

29

30

31

25.6 A Self-Drawing Combo Box 513
25.7 Drawing Transparent Bitmaps 517
25.8 Subclassing the Combo Box 520
25.9 Conclusion 521

Another Look—

A Self-Drawing List Box

26.1 Introduction to Font Enumeration 523
26.2 Enumerating Font Families 524

26.3 Enumerating Font Styles 527

26.4 AnExample 528

26.5 Conclusion 532

Creating A Splash Screen

27.1 AnExample 533
27.2 Conclusion 537

Expanding Dialogs

28.1 The CExpandingDialog Class 539
28.2 An Example 545

28.3 Conclusion 546

Drawing and Controls
29.1 Drawing in CStatic Controls 547
29.2 Drawing in Dialogs 550

29.3 Dialog Controls and the Background 552

29.4 Conclusion 552

Dialog Bars

30.1 AnExample 556
30.2 Data Exchange 558
30.3 Conclusion 559

Dialog and View Idle
Command Updating

31.1 How Idle Updates Work 561
31.2 Idle Updating in Views 562
31.3 AnExample 563

31.4 Idle Updating in Dialogs 563
31.5 AnExample 565

31.6 Conclusion 566

523
523

533
533

539

547

555

561

Q)
@)
=)
—
®
-
—
(72)

2
c
Q
]
c
@)
O

32

Odds and Ends 567
32.1 Accepting Files from the File Manager 567

32.2 Making an Application the Topmost Window 568

32.3 Starting an Application Minimized 569

32.4 Modeless Dialog Boxes 569

32.5 Mini-Frame Windows 571

32.6 Context Popup Menus 574

32.7 Modifying the System Menu 576

32.8 Conclusion 576

33

34

35

Part

5 Advanced MFC Classes 577

Database Access 579

33.1
33.2
33.3
334
335
33.6
33.7
33.8
33.9

OLE

34.1
34.2
34.3
34.4
345
34.6
34.7
34.8
34.9

Understanding Relational Databases 579
Understanding SQL 582

Understanding ODBC 585

Microsoft Query 586

The CRecordSet Class 591

Simple CRecordSet Operations 593
Using the CRecordView Class 602
Adding and Deleting Records 605
Conclusion 607

609
Understanding OLE 609
An Example 614
OLE as a Vision of the Future 617
Standard OLE Features 618
An Introduction to OLE Containers 621
An Introduction to OLE Servers 629
An Introduction to OLE Automation 636
An Introduction to OLE Controls 640
Conclusion 650

MFC Threads 651

35.1
35.2
35.3
354

Understanding the Possibilities 651
Understanding Threads 652

MFC Worker Threads 655

Thread Termination 657

35.5 Passing Parameters to Threads 660
35.6 Suspending and Resuming Threads 661
35.7 Thread Priorities 662

35.8 Subclassing CWinThread 667

35.9 User Interface Threads 675

35.10 Conclusion 677

Q)
@)
=)
—
®
-
—
(72)

Understanding C++:
An Accelerated Introduction 679

Using the Visual C++

Compiler and Tools 739

B.1 Compiling and Executing a Console Program with Visual
C++ 739

B.2 Debugging 744

B.3 Compiling MFC Programs 747

B.4 The Browser 752

B.5 Resources and resource files 756

B.6 AppWizard Files 761

B.7 Using the ClassWizard 769

B.8 OLE Controls 775

B.9 Conclusion 781

Contacting the Authors 783

Using OpenGL with MFC 785
D.1 Writing an OpenGL Program 785

D.2 Simple 2-D Graphics 791

D.3 Transformations and the Matrix Stack 793

D.4 Mouse Action 796

D.5 Double Buffering 797

D.6 A Three Dimensional Cube 798

D.7 Z-Buffering 801

D.8 Conclusion 802

Index 803

PREFACE

The goal of this book is to show you how to develop professional Windows applica-
tions using MFC and tools like the AppWizard and ClassWizard. The book is de-
signed to move you rapidly and confidently to the point where you can create your
own rich, full-featured applications with C++ and MFC.

The most important feature of this book is its constant attention to advanced
features. As your skills develop, the book probes deeply into the concepts and capabil-
ities that will let you build applications that are unique and useful. Features like these:

 Subclassed controls with customized appearance and behavior

 Splash screens

» Expanding dialog boxes

« Bitmaps stretched over the backgrounds of dialogs and client areas

* Windows 95 controls

 Property sheets

* Floating palettes and tool bars

* Popup menus

» Customized system menus

e MDI applications with multiple document types

e Multi-threaded applications

» OLE-capable servers, clients, and controls

* Client/server databases

These features make the difference between a normal application and a stunning
application, and all of these different topics are explained in this book with straight-
forward examples and clear English descriptions.

Version Free

This book is designed to be "version free." The goal is to create a book that can
be updated on the web each time Visual C++ changes versions so that we can save you
the cost of buying a new book every six months. To accomplish this goal, we have iso-
lated all version-specific features in Appendix B. When a new version appears on the
market, we will update this appendix on the web immediately, and you can access our
updates, changes and supplements free of charge. See http://www.iftech.com/mfc for
details.

Xiii

Preface

Xiv

Audience

As described in the chapter “Getting Your Bearings,” this book is designed with
several different entry points to help different kinds of programmers get started quickly.
If you have no prior experience with GUI application development, Visual C++ or
MFC, you can start at Chapter 1 and learn the basics, covering the concepts and theory
behind MFC from the ground up. By the time you finish Part 1 you will feel comfort-
able with MFC and will be ready to start learning some of its more intricate details.

If you are already familiar with GUI development but want to learn more about
the development tools like the AppWizard and ClassWizard, you can start at Part 2 or
3. Part 3 shows you how to accelerate your development cycle with the different tools
built into Visual C++. Once you have mastered these tools, you are ready to begin add-
ing professional features so move on to Parts 4 and 5.

If you are migrating from another operating system to Windows NT or Win-
dows 95, this book will help you to quickly map your existing knowledge into the NT
framework. See Chapter 0 for a list of the 110 most common Visual C++ program-
ming questions, as well as the sections that contain the answers. If you are a C
programmer with no C++ experience, use Appendix A to come up to speed on C++
and then start with Chapter 1.

Organization

This book is organized in five different parts, each one discussing a particular
type of subject matter.

Part 1 provides introductory material on GUI development, event-driven pro-
gramming, and the MFC hierarchy. If you have never seen MFC before, start here and
it will teach you the fundamentals. Part 1 shows you how to create and understand the
simplest MFC application, how to create new controls, how to customize the behavior
and appearance of those controls, and how to respond to events with message maps.
By the end of Part 1 you are well-grounded in the concepts and principles that make
any MFC program work properly.

Part 2 contains more advanced MFC details. In this part of the book you learn
about most of the different MFC classes: canned dialogs, list and edit controls, the
MFC application class, and the Windows drawing model. You also learn about the
debugging features built into MFC, along with a variety of utility classes that make
MFC programming easier.

Part 3 focuses on the AppWizard and ClassWizard tools in Visual C++. These
tools are designed to help you create MFC applications quickly and easily. This part
of the book starts with an introduction to the tools and shows how they work. It then
explores four in-depth example applications: A drawing editor, a text editor, a form-
based application and an address list application. These programs all show you how to
set up a framework and then add in menu options, dialogs, tool and status bars, print-
ing features, and so on.

Part 4 is a collection of advanced features that you will want to add to your own
applications as your skills develop. For example, Part 4 shows you how to create splash

This book is continuously updated. See http://www.iftech.com/mfc

screens, expanding dialogs, popup menus, and so on. Browse though the different
chapters in this part to get more in-depth material on MFC or to find application fea-
tures that are important to you.

Part 5 talks about advanced MFC classes. In particular, it shows you how to add
database and OLE support to your applications. It also demonstrates how to use
Win32 threads to improve your application’s performance.

The Diskette and the On-line Index

The diskette included with this book contains the source code for all of the ex-
amples in the book, as well as the source code and data for an on-line indexing
program. There is also an EXAMPLES directory that contains all of the code from
each section of the book in a text file. If you want to follow along with the book and
work through the examples on your own, these text files will save you the trouble of
retyping the code in each step.

The index on the diskette is broken down by sections and includes every word
found in the manuscript. To use the index, follow the directions in the README file
on the disk to compile the program. When you run the index, you will see a display
that contains an edit area, three buttons (Help, Search and Quit), and a list area. Any
words that you type in the edit area are used to search for appropriate sections. For
example, if you want to find out how to create a Splash Screen, you would type
“Splash Screens” in the edit area. Press the “Search” button to begin the search. The
index program will list all sections that contain all three of those words. Enter as many
words as you like to hone the search. Word matching is exact and case-insensitive. If
a word does not appear in the book the program will tell you.

There are many cases where an exact match does not work well. For example,
there may be a section that contains “thread” and “create” but not “creating” and
“threads”, so if you enter the line “creating threads” on the edit line you get no match-
es. You can use the “*” wild card character at the end of a word to solve this problem.
For example, by entering “creat*” the system will OR together all words with the root
“creat” (“create”, “creates”, “creation”, etc.). You may want to get in the habit of using
the wild card character at the end of all words: “creat* thread*”, for example. This of-
ten yields more accurate results.

If an obvious word seems to be missing from the index, try to find it in the book
to make sure you are spelling it correctly. For example, “toolbar” is sometimes spelled
as one or two words in the book, and you need to spell it the same way in your search.

Contacting the Authors: Questions, Comments, and Version Changes

One thing about Microsoft is that it never stands still for very long. Its compilers
change versions and the libraries are upgraded constantly. One of the goals in creating
this book is to make its code compatible with existing and future releases of Microsoft
compiler products. Another goal is to give you “investment-grade” knowledge--

This book is continuously updated. See http://www.iftech.com/mfc

X3pU| Ul|-UQ By} pue auaXsIa 8yl

XV

Preface

XVi

knowledge that does not loose its value over time, and that is transferable between as
many different platforms as possible.

As things change however, you need a way to get updates and corrections. You
may also have questions, comments or suggestions for improving this book. If so, we
would like to hear from you. See Appendix C for information on asking questions via
email. You can also visit our World Wide Web server at http://www.iftech.com/mfc.

Acknowledgments

We would like to sincerely thank several people for their help and support in cre-
ating this book. Mike Meehan, our publisher, has shown tremendous flexibility and
good humor as this book has moved through versions and grown larger each time.
There really is an infinite amount of material to cover, and he has not ever stopped us
from trying to conquer it all, despite the logistical problems. Leigh Ann Brain, the
book’s designer and layout pro, has similarly shown tremendous patience and forti-
tude in the face of a gigantic book. We thank you both for making this book possible.

Dave Morey of Ziff-Davis has been extremely helpful in answering questions
and providing support. He also assisted in the production of the CD.

Tina Kasparian and Leigh Ann Brain have shown extreme patience, putting up
with our long phone calls at all hours and our constant babbling about controls and
frameworks. We couldn’t have done it without you both.

This book is continuously updated. See http://www.iftech.com/mfc

GETTING YOUR BEARINGS

You are probably opening this book because you are new to Windows Programming
or because you are new to MFC (Microsoft Foundation Classes) or the Visual C++
programming environment. For example, you might be an experienced UNIX or
Macintosh programmer. Or perhaps you have a lot of talent with C programming and
command-driven user interfaces on PCs and want to move over to Windows. You may
be experienced with Windows programming in C, but have never before used MFC
and C++ to develop Windows applications. Regardless of your origin, you will find
that as you try to make your transition you are hampered by two problems. The pur-
pose of this book is to quickly solve those problems so that you can begin creating your
own professional applications with Visual C++ as quickly as possible.

The first problem is mental: you have to get past the wall that surrounds Visual
C++. That wall arises because of the obvious complexity of the Windows and C++
programming environments. When you load Visual C++ from its CD, you notice that
there are tens of thousands of pages of documentation, hundreds of sample programs,
and untold megabytes of help files. No one has the time to sort through all of this ma-
terial, but you know that hidden in those megabytes are hundreds of important
concepts that you need to master.

The second problem is more pedestrian: you have to pick a place to start. But
where should you begin? How do you write a simple Windows application? How do
you learn how to write an advanced one?

This book is designed to help you move into the Visual C++ environment rap-
idly and confidently. The purpose of this chapter is to help you get your bearings in
this new environment. It will introduce you to Visual C++ and then give you a starting
point and a direction so that you can become an accomplished Windows programmer
very quickly using the most modern tools and techniques available.

1

Getting Your Bearings

What is Visual C++?

The Visual C++ environment is huge and can be extremely intimidating initial-
ly. Visual C++ combines a complete suite of powerful tools into a single application
development environment, and the first time you face all of these tools it can be very
difficult to discern what they all do or how to use them. When you look at the book
reader application that comes with the Visual C++ CD-ROM, you face another hur-
dle: You find thousands and thousands of pages in many different books. The thought
of wading through all of these manuals can be daunting.

So let’s start at the beginning and look at Visual C++ in an organized way. First
of all, what is it? Here is a brief summary:

e Visual C++is a C++ compiler

e Visual C++ is a debugging environment

* Visual C++ is an application framework generator

e Visual C++ is a project manager

« Visual C++ is an easy way to design and implement menus, dialogs, and other
“resources”

« Visual C++ is a programmer accelerator—several tools inside Visual C++ are
designed to make you more efficient by making your life as a programmer eas-
ier or by reducing the code you must write

In other words, Visual C++ is a complete and extremely powerful application de-
velopment environment. In order to take full advantage of this environment, you have
to become comfortable with all the tools, and you have to know how they can work
together to accelerate your software development cycle.

In its most basic form, Visual C++ is simply a C++ compiler. You can use it to
create simple text programs in C or C++. If you would like to try this out, go to Ap-
pendix B.1 and work through the example there. You will find that it is extremely easy
to write, compile, and debug simple text programs using Visual C++.

Most people who purchase Visual C++ do not want to create text programs,
however. They want to create advanced Windows applications that make effective use
of the Windows 95 and Windows NT user interface. To do this, you must know C++,
and you must understand the MFC hierarchy. MFC is designed make you as produc-
tive as possible by encapsulating common Windows code in classes that are already
written, tested, and debugged. Once you invest the time to learn MFC, you are greatly
rewarded in increased speed, flexibility and robustness.

Part 1 of this book gives you a thorough introduction to MFC. It shows you the
basic principles used in every MFC program you write. Part 2 gives a complete over-
view of all the controls and features that MFC offers. Part 2 contains hundreds of
examples that make it easy to understand the different MFC classes.

Once you feel comfortable with MFC, you are ready to begin creating profes-
sional Windows applications. Part 3 introduces the AppWizard, the ClassWizard, and
the resource editing tools of Visual C++. The AppWizard is your starting point when
creating any full-blown Windows application: It helps you by generating a complete
file framework that organizes the entire application around a consistent core of MFC

This book is continuously updated. See http://www.iftech.com/mfc

classes. The ClassWizard, in combination with the resource editing features that the
Visual C++ environment provides, then makes it easy to add to and complete your ap-
plication by helping you design, create, and install menus, dialog boxes, and other
application resources. The ClassWizard also helps you add the code that lets your ap-
plication respond to user input properly. Using these three tools—the AppWizard, the
ClassWizard, and the resource editors—together with the MFC class hierarchy, it is
extremely easy to complete professional applications very quickly. Part 3 contains four
different example applications to help demonstrate the process.

Part 4 continues by demonstrating advanced features. It shows you how to use
a variety of techniques to create such things as expanding dialogs, property sheets, di-
alog bars, splash screens, self-drawn controls and bitmapped backgrounds. These
techniques add significant utility to your applications when used appropriately. Final-
ly, Part 5 concludes the book by discussing advanced MFC classes for database
connectivity, OLE features, and so on.

Available Documentation

The Visual C++ CD-ROM contains over 100 megabytes of on-line documenta-
tion covering various aspects of Windows, MFC, and the tools available in Visual C++.
It contains many more megabytes of sample code. The MFC class hierarchy contains
hundreds of different classes holding thousands of member functions. The Win32 API
contains thousands of functions as well. All of this material is documented in on-line
help files. Obviously, there is no lack of documentation with this product.

This book, therefore, makes no attempt to replace the documentation. Its goal
is to help you wind your way through the Visual C++ forest and find what you need.
Using the base you gain from reading this book, you will be able to approach Visual
C++ and begin using it in productive ways very quickly.

There are currently seven different types of documentation provided by Mi-
crosoft for Visual C++ and MFC:

1. On-line Books — A series of manuals on the CD-ROM that act as the docu-
mentation for the system. The collection of books is visible in the InforView
pane (see Appendix B.6.2). Look at the titles of all the different books and
articles available. You will find that there are many .

2. Tech Notes — One of the sections in the on-line book collection is a set of
MFC technical notes. These notes provide a set of useful explanations and dis-
cussions on MFC and migration issues.

3. MFC Encyclopedia — Another section in books on-line is the MFC encyclo-
pedia, an extremely useful collection of notes and programming hints for the
MFC class hierarchy.

4. Sample Code — The Visual C++ directory contains a sample directory that
contains source code demonstrating a wide variety of technigques. Some of the
samples are written in C, while other samples use MFC and C++.

This book is continuously updated. See http://www.iftech.com/mfc

uoneuawnooq a|ge|reAy

Getting Your Bearings

5. Developer CD - Microsoft’s Developer’s Network CD provides quite a bit of
additional sample code, along with books and files containing a variety of
valuable information. You receive this CD when you become a member of the
Microsoft Developer’s Network.

6. Compuserve — Microsoft supports most of its products and environments on
Compuserve. The MSMFC forum is particularly useful for MFC program-
mers, as is the Visual C++ section of the MSLANG forum.

7. Internet News Groups - The following news groups are of interest to MFC
programmers: comp.os.ms-windows.programmer.tools.mfc and comp.0s.ms-
windows.programmer.win32.

Using all of these different forms of documentation, you can find anything you
need to know. The key is understanding where and how to look for what you need.
This book will help accelerate that process tremendously.

Road Map

The tools in Visual C++ require a great deal of prior knowledge if you want to
use them effectively. For example, when you open the Visual C++ package and load
the CD, you may have the impression that you can use the AppWizard to generate
any program you like. Unfortunately, the code that the AppWizard generates is virtu-
ally worthless unless you know a good bit about MFC already. That is why this book
is structured the way it is. The progression presented in this book is exactly the pro-
gression you will need to follow if you do not already know MFC. However, different
people come into Visual C++ with varying levels of experience and different goals.
Here is a road map to guide you through the material so that you can find the best
starting point for your particular situation:

« Ifyou do not know C++, you will need to learn it. Proceed to the accelerated

introduction to C++ in Appendix A of this book.

« If you want to simply try out Visual C++ and compile some simple programs,
proceed to Appendix B. It will show you how the compiler works and how to
compile and debug simple applications.

« If you know C++ but have never done any Windows programming of any
kind, proceed to Part 1. It will teach you the fundamentals of event-driven
programming and then quickly introduce you to MFC programming.

* Ifyou have experience with Windows programming in C but have never done
Windows programming using C++ and MFC, proceed to Part 1. It will
quickly introduce you to the MFC class hierarchy and MFC programming.

« |If you have used MFC before (for example, if you are familiar with MFC ver-
sion 1.0) but are unfamiliar with the new application development tools like
the AppWizard and the ClassWizard, skim Part 2 and then proceed to Part 3
for a complete introduction to the tools.

« |If you are familiar with Visual C++ and MFC but want to learn about a vari-
ety of techniques that can make your applications look more professional,

This book is continuously updated. See http://www.iftech.com/mfc

turn to Part 4. It will show you how to create things like splash screens, ex-
panding dialogs, property sheets, and self-drawn controls.

* If you are a corporate programmer who needs to attach to a client/server da-
tabase, pay particular attention to Chapter 33 in Part 5.

Common Questions

The goal of this section is to show you how to find answers to the most common

guestions about Visual C++ and MFC. You may wish to scan this list now and peri-
odically in the future to quickly find answers to your questions.

10.

11.
12.

13.

14.

15.

16.

17.
18.

pPart 1

What is MFC? Why does it exist? See Chapter 1

How do | compile and run a simple MFC program? See Appendix B.3 and
Chapter 1.

How do I create a simple “Hello World!” program in MFC? What does the
code actually mean? See Chapter 2.

I have found the AppWizard, but when I run it | find it generates 15 files that
make absolutely no sense to me. What do | do? See the discussion at the
beginning of Part 3 of this book.

How do | create a simple MFC control? See Chapter 3.

How do | customize MFC controls and change their styles? See Chapter 3.
How do | create a push button and respond to its events in MFC? See Chap-
ter 4.

What is a message map? See Chapter 4.

How do | create a scroll bar and respond to its events? See Chapter 4.

How do | create an edit control and respond to its events? See Chapter 5 and
Chapter 8.

How do | create simple applications? See Chapter 5.

How do | make a simple application appropriately handle tab keys, accelera-
tors, etc.? See Chapter 5.

pPart 2

What is a resource? What is a resource file? What are the advantages of
resources? See Chapter 6.

How do | create and use icon, dialog, menu, string table, and accelerator
resources? See Chapter 6.

How do | create a message dialog? A File Open dialog? A Font dialog? A Color
dialog? A Print dialog? A Find/Replace dialog? See Chapter 7.

What is the difference between modal and modeless dialogs? See Chapter 7.
How do I use an edit control in single and multi-line modes? See Chapter 8.
How do | create a simple text editor? See Chapter 8.

This book is continuously updated. See http://www.iftech.com/mfc

suonsand uowwo)d

Getting Your Bearings

19.

20.
21.
22.
23.
24.

25.
26.
27.
28.

29.
30.
3L
32.

33.
34.
35.
36.
37.

38.

39.
40.

41.

42,

43.
44,
45.
46.

How do | create and use lists, drop down lists, and combo boxes in my appli-
cations? See Chapter 9 and Chapter 20.

How do | make multi-column and tabbed lists? See Chapter 9.

How do I load and display system and custom icons? See Chapters 6 and 10.
How do I change the application cursor? See Chapter 10 and 11.5.3.

How do | display a watch cursor? See Chapter 10.

How do I perform background processing while the application is idle? See
Chapter 10.

What is a document template? See Chapter 10 and Chapter 16.

How do | create an MRU file list? See Chapter 10.

How do I use INI files with my applications? See Chapter 10.

How do I draw lines, rectangles, circles, etc. in my application’s window? See
Chapter 11.

How do I add graphics to an application? See Chapter 11.

How do | respond to mouse clicks in a drawing? See Chapter 11.

How do | create rubber-banded lines, rectangles, etc. in a drawing?

How do | create a drawing space larger than the current window? See Chap-
ters 11 and 15.

How do | create animated drawings? See Chapter 11.

How do | work with text and binary files in MFC? See Chapter 12.

How do I work with strings in MFC? See Chapter 12.

How do I work with time values in MFC? See Chapter 12.

Is there an easy way to create arrays, lists and hash tables in MFC? See Chapter
12.

What debugging facilities are built into MFC? How do | make use of the
MFC exception handling mechanisms? See Chapter 13.

How do | use TRACE and ASSERT statements? See Chapter 13.

How do | prevent and detect memory leaks in my applications? See Chapter
13.

Part 3

Are there any simple applications in this book showing me how to use the
AppWizard and ClassWizard? See the drawing example, the editor example,
the form example and the address list example in Part 3 of this book.

What is the AppWizard? What is the ClassWizard? How do | use them to
speed up application development? See Chapter 14.

How do I create a simple framework with the AppWizard? See Chapter 14.
What do all of the files generated by the AppWizard do? See Chapter 14.
What is the document/view paradigm? See Chapters 14, 15 and 18.

What do the STDAFX files do? See Chapter 14.

This book is continuously updated. See http://www.iftech.com/mfc

47.

48.

49,

50.

51.

52.

53.

54.
55.

56.
57.

58.
59.

60.

61.
62.
63.
64.
65.
66.
67.
68.
69.

70.
71.

Can you give me a simple example of the AppWizard and ClassWizard in
action? See Chapter 14.

How do I create a simple drawing program with the AppWizard and the doc-
ument/view paradigm? See Chapter 15.

What is the difference between an SDI and an MDI application? See Chapter
15.

How do I understand what is going on inside the AppWizard framework? See
Section 15.3 and Chapter 21.

How do I add new menus and menu options to an application? See Chapter
15.

How do I add scrolling to a drawing application? How do | use splitter win-
dows? See Chapter 15.

How do | add a new dialog to an AppWizard framework? How do | use DDX
and DDV? See Chapters 15 and 18.

How do | add a dialog class with the ClassWizard? See Chapters 15 and 18.
How do | add printing to an application? What do the MFC printing func-
tions do? How do | handle multi-page printing? See Chapters 15 and 18.
How do I create a text editor with the AppWizard? See Chapter 16.

How do | handle multiple document types in a single MDI application? See
Chapter 16.

What is a document template? See Chapter 16.

How do I use form views? How do | put controls on the face of an applica-
tion? See Chapter 17.

Can you give me an example that combines all of these different concepts in a
single application? See Chapter 18.

How do | create a resizable tabbed list in a form view? See Chapter 18.

How do I enable and disable menu options? See Chapters 18 and 6.

How do | customize the tool bar and status bar? See Chapter 18.

How do | work with the clipboard in an application? See Chapter 18.

How do I print text information from an application? See Chapter 18.

How do | add context sensitive help to my applications? See Chapter 19.
What is the help compiler and how do | use it? See Chapter 19.

How do I use the Windows 95 controls in my applications? See Chapter 20.
How do | create Property sheets (tabbed dialogs) in my applications? See
Chapter 20.

Part 4

How do DDX and DDV really work behind the scenes? See Chapter 22.
How do | integrate all of the different types of controls and use DDX to access
them? See Chapter 22.

This book is continuously updated. See http://www.iftech.com/mfc

suonsand uowwo)d

Getting Your Bearings

72.

73.

74.
75.
76.
77.

78.

79.
80.

81.
82.
83.
84.
85.

86.
87.
88.

89.

90.
91.
92.

93.

94.
95.
96.
97.

Is there a way to create new DDX functions for different data types? See
Chapter 22.

How does MFC really work? What is happening inside of MFC? How does a
C++ program using MFC compare to a C program? See Chapter 23.

How does MFC handle window handles? See Chapter 23.

Where is the window procedure in an MFC program? See Chapter 23.

How does subclassing work with Windows controls? See Chapter 23.

How can | take an existing control, like the CEdit control, and enhance its
behavior without completely rewriting it? How do | integrate a new control
like this into a dialog? See Chapter 24.

How do | create list boxes and combo boxes that contain icons, bitmaps or
other graphical elements? See Chapter 26.

How do I handle owner-drawn controls in MFC? See Chapter 26.

How do | enumerate fonts and other resources under Windows? See Chapter
26.

How can | add a splash screen to my applications? See Chapter 27.

How do I add expanding dialogs to my applications? See Chapter 28.

How do | stretch a bitmap over an area? See Chapter 29.

How can | draw onto a CStatic control? See Chapter 29.

How do | add a bitmap or a drawing to the background of a dialog or a win-
dow? See Chapter 29.

How do | create my own floating palettes and tool bars? See Chapter 30.
How do I accept files dragged from the File Manager? See Chapter 32.

How do | make an application float so that it is “always on top.” See Chapter
32.

How do I start an application in a minimized or maximized state? See Chapter
32.

How do | create a modelss dialog box? See Chapter 32.

How do | create a mini-frame window? See Chapter 32.

How do | create a popup menu activated by the right mouse button? See
Chapter 32.

How do I customize the system menu? See Chapter 32.

Part5

How to I access SQL databases from an MFC program? Chapter 33.
What is a relational database? What is SQL? See Chapter 33.

What is ODBC? How do | create ODBC data sources? See Chapter 33.

What is the CRecordset class? How do | access databases with it? See Chapter
33.

This book is continuously updated. See http://www.iftech.com/mfc

98.

99.
100.
101.
102.
103.

104.
105.

106.

107.
108.
109.
110.

How do I retrieve records from a database? How do | add and delete records?
See Chapter 33.

What is OLE? How can | use it in my applications? See Chapter 34.

What features does OLE support? See Chapter 34.

What is the registry? What is a class ID? See Chapter 34.

How do I create OLE servers and containers with MFC? See Chapter 34.
How do | create an OLE automation server? How do | access an automation
server from a Visual Basic or Visual C++? See Chapter 34.

What is an OCX? How do I create an OLE control? See Chapter 34.

What is a thread? How can | use threads to improve applications? See Chapter
35.

What is the difference between worker and user-interface threads? See Chap-
ter 35.

How do thread priorities work? What are they? See Chapter 35.

What is C++? How do | move from C to C++? See Appendix A.

How do | use the Visual C++ compiler, debugger and browser? See Appendix B.

What is OpenGL and how do | use it to create realistic graphical images? See
Appendix D.

This book is continuously updated. See http://www.iftech.com/mfc

suonsand uowwo)d

In Part 1 of this book, you will learn about the fundamental concepts and vocabulary
that drive Visual C++ and the Microsoft Foundation Class (MFC) hierarchy. Part 1
introduces you to simple MFC controls, customization, message maps for event han-
dling, and other central ideas that make MFC programs work properly. You will also
learn how to compile MFC programs in Visual C++. By the end of Part 1 you will un-
derstand how to create simple MFC programs of your own. Parts 2, 3, 4, and 5 show
you how to increase your knowledge so you can create complete, professional applica-
tions with Visual C++.

<
wn
c
>
o
+
+
>
Z
O
<
Tl
O
o
>
2
O
w

INTRODUCTION

Visual C++ is much more than a compiler. It is a complete application development
environment that, when used as intended, lets you fully exploit the object-oriented na-
ture of C++ to create professional Windows applications. To take advantage of these
features, you need to understand the C++ programming language. If you have never
used C++, please turn to Appendix A for an introduction. You must then understand
the Microsoft Foundation Class (MFC) hierarchy. This class hierarchy encapsulates
the user interface portion of the Windows API, supplies other useful classes, and
makes it significantly easier to create Windows applications in an object-oriented way.

This chapter introduces the fundamental concepts and vocabulary behind MFC
and event-driven programming. In this chapter you will enter, compile, and run a sim-
ple MFC program using Visual C++. If you already feel comfortable with the
concepts, read section 1.1 and then move straight to Section 1.4, which will show you
how to start using Visual C++ immediately. Chapter 2 provides a detailed explanation
of the code used in Chapter 1. Chapter 3 discusses MFC controls and their customi-
zation. Chapter 4 covers message maps, which let you handle events in MFC. Finally,
Chapter 5 completes this section with several simple example applications that inte-
grate the different concepts you have learned.

1.1 What is the Microsoft Foundation Class Library?

Let’s say you want to create a Windows application. You might, for example,
need to create a specialized text or drawing editor, or a program that finds files on a
large network, or an application that lets a user visualize the interrelationships in a big
data set. Where do you begin?

A good starting place is the design of the user interface. First, decide what the
user should be able to do with the program, and then pick a set of user interface objects
accordingly. The Windows user interface has a number of standard controls, such as
buttons, menus, scroll bars, and lists, that are already familiar to Windows users. With
this in mind, you can choose a set of controls and decide how they should be arranged

13

Introduction

1

14

on screen. You might start with a rough sketch of the interface if the program is small,
or go through a complete user interface specification and design cycle if the program
is large.

The next step is to implement the code. When creating a program for any Win-
dows platform, the programmer has two choices: C or C++. With C, the programmer
codes at the level of the Windows Application Program Interface (API). This interface
consists of a collection of hundreds of C functions described in the Window’s API
Reference books. The more modern version of the API, first introduced in Windows
NT, is typically referred to as the “Win32 API,” to distinguish it from the original 16-
bit API of earlier Windows products like Windows 3.1.

Microsoft also provides a C++ library that sits on top of the Windows API and
makes the programmer’s job easier. Called the MFC library, this library’s primary ad-
vantage is efficiency. It greatly reduces the amount of code that must be written to
create a Windows program. It also provides all the advantages normally found in C++
programming, such as inheritance and encapsulation. MFC is portable across versions
of Windows and the Mac, so that, for example, code created under Windows 3.1 can
move to Windows NT or Windows 95 very easily. MFC is therefore the preferred
method for developing Windows applications and will be used throughout this book.

When you use MFC, you write code that creates the necessary user interface
controls and customizes their appearance. You also write code that responds when the
user manipulates these controls. For example, if the user clicks a button, you want to
have code in place that responds appropriately. It is this sort of event-handling code
that will form the bulk of any application. Once the application responds correctly to
all of the available controls, it is finished.

You can see from this discussion that the creation of a Windows program is a
straightforward process when using MFC. The goal of this book is to fill in the details
and to show the techniques you can use to create professional applications as quickly
as possible. The Visual C++ application development environment is specifically
tuned to MFC, so by learning MFC and Visual C++ together you can significantly
increase your power as an application developer.

1.2 Windows Vocabulary

The vocabulary used to talk about user interface features and software develop-
ment in Windows is basic but unique. Here we review a few definitions to make
discussion easier for those who are new to the environment.

Each application on the screen has a main application window. This is the win-
dow you see when the program executes, and it normally contains the main pull-down
menu, user controls, and so on. A simple main window is shown in Figure 1.1 Under
Windows 95 things look a little different but do the same things.

This main window contains several standard elements. The bar at the top of the
window is called the title bar. From left to right it contains the system menu (or control
menu) box, the title (or caption) containing the word “Clock,” and the minimize and

This book is continuously updated. See http://www.iftech.com/mfc

=] Clock || =]
Settings

4:22:36 PM

Figure 1.1
A typical Windows application

maximize buttons used to iconify and expand the window, respectively. Around the
window a thick frame allows the user to resize the window.

Below the title bar is a menu bar, here containing the single menu named “Set-
tings.” The “S” of “Settings” is underlined to indicate its use as a menu mnemonic. If you
hit Alt-S on the keyboard, it is the same as clicking the settings menu with the mouse.

The area below the menu bar is left for the application itself, and it is called the
client area. In Figure 1.1 the client area holds the current time. Typically, the client
area is filled with controls or child windows. Windows applications can use any of a
number of standard user controls:

« Static text labels

e Push buttons

 List boxes

« Combo boxes (a more advanced form of list)

* Radio boxes

e Check boxes

 Editable text areas (single and multi-line)

* Scroll bars

Windows supports several types of application windows. A typical application
will live inside a frame window. A frame window is a full-featured main window that
the user can resize, minimize to an icon, maximize to fill the screen, and so on. Win-
dows also supports two types of dialog boxes: modal and modeless. A modal dialog box,
once on the screen, blocks input to the rest of the application until it is answered. A
modeless dialog box can appear at the same time as the application and seems to “float
above” it to keep from being overlaid.

Windows also provides an organizing scheme called the Multiple Document In-
terface, or MDI, an example of which is shown in Figure 1.2. The MDI system allows
the user to view multiple documents at the same time within a single instance of an
application. For example, a text editor might allow the user to open multiple files si-
multaneously. When implemented with MDI, the application presents a large
application window that can hold multiple sub-windows, each containing a docu-
ment. The single main menu is held by the main application window and it applies to
the topmost window held within the MDI frame. Individual windows can be iconified
or expanded as desired within the MDI frame, or the entire MDI frame can be mini-
mized into a single icon on the desktop. The MDI interface gives the impression of a

This book is continuously updated. See http://www.iftech.com/mfc

Arejnqeoo)N SMOpUIM 2'T

15

Introduction

1

second desktop out on the desktop, and it goes a long way toward organizing and re-
moving window clutter.

=| Microsoft Word

File Edit View Insert Format Tools Table Window Help

EEEIREBEE HEEEIEIEBEEIMm =]

[CT Chapter Titl |[&] [New Century Schib][2] [18 |[2] (] Z]u] EIEI=I=] [t 1] 1] 1]

WAUSERS\BRAIN\YWCPPBOOK\PARTI\CHAP1.DOC
0 e e e e s e B

|
i + L g o o

Fig 1.1
A, typical Windows appl

e

C

r L I 1 | |2 I |2 | ki
M T T T T T T T T

Windows su L
inside a frame wi k:hapter 0
size, minimize to 3 i
types of dislog boyl Getting Your Bearings
input to the rest o
the same time as t
Windows als
or MO, an exam

T !

=] WAUSERS\BRAINSVCPPEBOOKPART1CHAPD.DOC | d
ki
-

You are probably opening this book because you are new to
to the “isual C++ programming environment or MFC. For exa
experienced UNEE or Macintosh programmer. Or perhaps you have
C programming and command-driven user interfaces on PCs, and
Windows. You may ewen be an experienced with ‘Windows progr |
never before used C++ and MFC. You will find that initially you[+

o] =

[Fg 1 Sec 1 173 [A1” Ln1 Col1 Mooz [[| T

Figure 1.2
A typical MDI application

Each application that you create will use its own unique set of controls, its own
menu structure, and its own dialog boxes. A great deal of the effort that goes into cre-
ating any good application interface lies in the choice and organization of these
interface objects. Visual C++, along with its resource editors and ClassWizard, makes
the creation and customization of these interface objects extremely easy.

1.3 Event-driven Software and Vocabulary

All window-based GUIs contain the same basic elements and all operate in the
same way. On screen the user sees a group of windows, each of which contains con-
trols, icons, objects, and so on that are manipulated with the mouse or the keyboard.
The interface objects seen by the user are the same from system to system: push but-
tons, scroll bars, icons, dialog boxes, pull-down menus, etc. These interface objects all
work the same way, although some have minor differences in their “look and feel.” For
example, scroll bars look slightly different as you move from Windows to the Mac, but
they all do the same thing.

This book is continuously updated. See http://www.iftech.com/mfc

From a programmer’s standpoint, the systems are all similar in concept, al-
though they differ radically in their specifics. To create a GUI program, the
programmer first puts all the needed user interface controls into a window. For exam-
ple, if the programmer is trying to create a simple program such as a Fahrenheit to
Celsius converter, then the programmer selects user interface objects appropriate to
the task and displays them on screen. In this example, the programmer might let the
user enter a temperature in an editable text area, display the converted temperature in
another un-editable text area, and let the user exit the program by clicking on a push
button labeled “Quit.” This structure is shown in Figure 1.3.

Label Fahrenheit A
Temperature —_— ahrenheit
Temperature
Edit area 32
Celsius
Celsius Temperature
Label >
Temperature 0
0
Quit
_>
Button Quit

Main window

Figure 1.3
Elements of a typical application showing the selection of user interface controls in
a Fahrenheit to Celsius conversion program

As the user manipulates the application’s controls, the program must respond
appropriately. For example, if the user clicks the Quit button, the button must update
the screen appropriately, highlighting itself as necessary. Then the program must re-
spond by quitting. Normally the button manages its appearance itself, and the
program in some way receives a message from the button that says, “The Quit button
was pressed. Do something about it.” The program responds by exiting.

Windows follows this same general pattern. In a typical application you will cre-
ate a main window and place inside it different user interface controls. These controls
are often referred to as child windows—each control is like a smaller and more special-
ized sub-window inside the main application window. As the application
programmer, you manipulate the controls by sending them messages via function
calls, and they respond to user actions by sending messages back to your code.

If you have never done any “event-driven” programming, then all of this may
seem foreign to you. However, the event-driven style of programming is easy to un-
derstand when compared to a normal command-driven user interface.

This book is continuously updated. See http://www.iftech.com/mfc

Ae|ngqeso) pue aiemyos USALIP-IUSAT £

17

Introduction

1

18

In a command-driven user interface, the system interacts with the user in three
steps. First, the system prompts the user for a command. The prompt could be some-
thing explanatory such as:

Pl ease enter the next conmand>
Or it could be something more obtuse:
%

The user is expected to know all the commands in the system and to type which-
ever one is needed. Second, the user types a command at the prompt and the system
reads it. Third, the system parses the command and any modifiers following the com-
mand. The parsing step allows the system to call appropriate code to “execute” the
command. Once command execution is complete, the program issues a new command
prompt and the cycle repeats. Users of DOS or UNIX are familiar with this process.

An event-driven user interface works somewhat differently. The exact details de-
pend on the system and the level at which you are interfacing with it, but the basic
concepts are similar. In an event-driven interface, the application paints several (or
many) user interface objects such as buttons, text areas, and menus onto the screen.
Now the application waits—typically in a piece of code called an event loop—for the user
to do something. The user can do anything to any of the objects on screen using either
the mouse or the keyboard. The user might click one of the buttons, for example. The
mouse click is called an event. Event-driven systems define events for user actions such
as mouse clicks and keystrokes, as well as for system activities such as screen updating.

At the lowest level of abstraction, you have to respond to each event in a fair
amount of detail. This is the case when you are writing normal C code directly to the
API. In such a scenario, you receive the mouse-click event in some sort of structure.
Code in your event loop looks at different fields in the structure, determines which
user interface object was affected, perhaps highlights the object in some way to give
the user visual feedback, and then performs the appropriate action for that object and
event. When there are many objects on the screen, the application becomes very large.
It can take a quite a bit of code simply to figure out which object was clicked and what
to do about it.

Fortunately, you can work at a much higher level of abstraction. In MFC, almost
all these low-level implementation details are handled for you. If you want to place a
user interface object on the screen, you create it with two lines of code. If the user
clicks on a button, the button does everything needed to update its appearance on the
screen and then calls a pre-arranged function in your program. This function contains
the code that implements the appropriate action for the button. MFC handles all the
details for you: You create the button and tell it about a specific handler function, and
it calls your function when the user presses it.

The labor involved in creating MFC applications is almost completely devoted
to the creation of the handler functions. Visual C++ contains tools, described in Part
3 of this book, that make this process easy and intuitive.

This book is continuously updated. See http://www.iftech.com/mfc

1.4 An Example

One of the best ways to begin understanding the structure and style of a typical
MFC program is to enter, compile, and run a small example. Listing 1.1 contains a
simple “Hello World” program. Figure 1.4 shows a screen dump of the program dur-
ing execution. If this is the first time you’ve seen this sort of program, it probably will
not make a lot of sense initially. Don’t worry about that. We will examine the code in
detail in the next chapter. For now, the goal is to use the Visual C++ environment to
create, compile, and execute this simple program.

Listing 1.1
hello.cpp - A simple “Hello World” program in MFC.

//hello.cpp
#i ncl ude <af xwi n. h>

/1 Declare the application class
class CHel | oApp : public CW nApp
{
public:

virtual BOOL Initlnstance();

}s

/! Create an instance of the application class
CHel | oApp Hel | 0App;

/] Declare the main w ndow cl ass
cl ass CHel | oW ndow : public CFrameWd

{

CStatic* cs;
public:

CHel | oW ndow() ;
}s

/1 The Initlnstance function is called each
/1 time the application first executes.
BOOL CHel | oApp: : I nitlnstance()

{
m _pMai nWAd = new CHel | oW ndow() ;
m_pMai nWd- >ShowW ndow(m nCndShow) ;
m_pMai nWhd- >Updat eW ndow() ;
return TRUE;

}

/1 The constructor for the w ndow cl ass
CHel | oW ndow: : CHel | oW ndow()
{
/]l Create the wi ndow itself
Cr eat e(NULL,
"Hello World!",
W5_OVERLAPPEDW NDOW

This book is continuously updated. See http://www.iftech.com/mfc

aildwexguy +'I1

19

Introduction

1

20

CRect (0, 0, 200, 200));
/] Create a static |abel
cs = new CStatic();
cs->Create("hello world",
WS_CHI LD| W5_VI SI BLE| SS_CENTER,
CRect (50, 80, 150, 150),
this);

= HelloWorld! | ~]|~

hello world

Figure 1.4
Screen dump of the “Hello World” program
during execution

This small program does three things. First, it creates an “application object.”
Every MFC program you write will have a single application object that handles the
initialization details of MFC and Windows. Next, the application creates a single win-
dow on the screen to act as the main application window. Finally, inside that window
the application creates a single static text label containing the words “Hello World.”
We will look at this program in detail in the next chapter to gain a complete under-
standing of its structure.

The steps necessary to enter and compile this program are straightforward. If
you have not yet installed Visual C++ on your machine, do so now. You will have the
option of creating standard and custom installations. For the purposes of this book a
standard installation is suitable and after answering two or three simple questions the
rest of the installation is quick and painless. Then turn to Appendix B.3.

1.5 Conclusion

In this chapter you have successfully compiled and executed your first program.
You will use these same steps for each of the programs you create in Parts 1 and 2 of
this book. You will find that you can either create a separate directory for each project
or you can create a single project file and directory, and then add and remove different
source files. For more information on the compiler, debugger, browser, and so on,
please see Appendix B.

In the next chapter, we will examine the program in Listing 1.1 in detail so you
gain a more complete understanding of its structure.

This book is continuously updated. See http://www.iftech.com/mfc

UNDERSTANDING AN MFC PROGRAM 2

In this chapter we will examine a simple MFC program piece by piece to gain an un-
derstanding of its structure and conceptual framework. We will start by looking at
MFC itself and then examine how you use MFC to create applications.

2.1 An Introduction to MFC

MFC is a large and extensive C++ class hierarchy that makes Windows applica-
tion development significantly easier. MFC encapsulates much of the Windows API,
letting you take advantage of all the features of C++ when writing Windows code. As
each new version of Windows comes out, MFC gets modified so that old code com-
piles and works under the new system. MFC also grows over time, adding new
capabilities to the hierarchy and making it easier to create complete applications.

The advantage of using MFC and C++-as opposed to directly accessing the
Windows API from a C program—is that MFC already contains and encapsulates all
the normal “boilerplate” code that all Windows programs written in C must contain.
Programs written in MFC are therefore much smaller than equivalent C programs. In
addition, aspects of Windows programming that are quite complicated when dealt
with in C become almost trivial in MFC. For example, creating an MDI framework
in MFC is trivial, but is rather complex in C. On the other hand, MFC is a fairly thin
covering over the C functions, so there is little or no performance penalty imposed by
its use. It is also easy to customize things using the standard C calls when necessary
because MFC does not modify or hide the basic structure of a Windows program.

The best part about using MFC is that it does all the hard work for you. The
hierarchy contains thousands and thousands of lines of correct, optimized, and robust
Windows code. Many of the member functions that you call invoke code that would
have taken you weeks to write yourself. In this way MFC tremendously accelerates
your project-development cycle.

MFC is fairly large. For example, Version 4.0 of the hierarchy contains over 200
different classes. Fortunately, you don’t need to use all of them in a typical program.
In fact, it is possible to create some fairly spectacular software using only ten or so of
the different classes available in MFC. The hierarchy is broken down into six different
class categories:

21

2 Understanding an MFC Program

22

e Application Architecture

* Visual Objects
e General Purpose
» Collections

e OLE?2
» Database

We will concentrate on visual objects initially. Part 2 contains an overview, with
examples, of a majority of the classes in the hierarchy. Figure 2.1 shows the critical
portion of the class hierarchy that deals with application support and windows

support.

CObject

CCmdTarget

CWinApp

CWnd

CFrameWnd

CDialog

CStatic

CButton

ClListBox

CComboBox

CScrollBar

| CEdit

Figure 2.1

The portion of the Microsoft Foundation
Class Library that deals with applications
and windows.

There are several things to notice in Figure 2.1. First, most classes in MFC derive
from a base class called CObject. This class contains data members and member func-
tions that are common to most MFC classes. The second thing to notice is the
simplicity of the diagram. The CWinApp class is used whenever you create an appli-
cation and it is used only once in any program. The CWnd class collects all the

This book is continuously updated. See http://www.iftech.com/mfc

common features found in windows, dialog boxes, and controls. The CFrameWnd
class inherits from CWnd and implements a normal framed application window.
CDialog handles the two normal flavors of dialogs: modeless and modal, respectively.
Finally, Windows supports six native control types: static text, editable text, push but-
tons, scroll bars, lists, and combo boxes (an extended form of list). Once you
understand this fairly small number of pieces, you are well on your way to a complete
understanding of MFC. The other classes in the MFC hierarchy implement other fea-
tures such as memory management, document control, database support, and so on.
To create a program in MFC, you either use its classes directly or, more com-
monly, you derive new classes from the existing classes. In the derived classes you
create new member functions that allow instances of the class to behave properly in
your application. You can see this derivation process in the simple program we used
in Chapter 1, which is described in greater detail in Section 2.3. Both CHelloApp and
CHelloWindow in Listing 1.1 are derived from existing MFC classes.

2.2 Designing a Program

Before discussing the code itself, it is worthwhile to briefly discuss the program
design process under MFC. As an example, imagine that you want to create a program
that displays the message “Hello World” to the user. This is obviously a very simple
application but it still requires some thought.

A “Hello World” application first needs to create a window on the screen that
holds the words “Hello World.” It then needs to get the actual “Hello World” words
into that window. Three objects are required to accomplish this task:

1. An application object that initializes the application and hooks it to Windows.

The application object handles all low-level event processing.

2. A window obiject that acts as the main application window.
3. Astatic text object that will hold the static text label “Hello World.”

Every program that you create in MFC will contain the first two objects. The
third object is unique to this particular application. Each application will define its
own set of user interface objects that display the application’s output as well as gather
input from the user.

Once you have completed the user interface design and decided on the controls
necessary to implement the interface, you write the code to create the controls on the
screen. You also write the code that handles the messages generated by these controls
as they are manipulated by the user. In the case of a “Hello World” application, only
one user interface control is necessary. It holds the words “Hello World.” More real-
istic applications may have hundreds of controls arranged in the main window and
dialog boxes.

2.3 Understanding the Code for “Hello World”

Listing 2.1 shows the code for the simple “Hello World” program that you en-
tered, compiled, and executed in Chapter 1. Line numbers have been added to allow

This book is continuously updated. See http://www.iftech.com/mfc

welboid e bulubiseq z'¢

23

2 Understanding an MFC Program

24

discussion of the code in the sections that follow. By walking through this program line
by line, you can gain a good understanding of the way MFC is used to create simple
applications. Part 3 of this book discusses how to create more complicated applications
using the AppWizard to generate an MFC application framework for you.

If you have not done so already, please compile and execute Listing 2.1 by fol-
lowing the instructions given in Appendix B.3.

Listing 2.1
hello.cpp - A simple “Hello World” program

1 //hello.cpp

2 #include <afxw n. h>

3 // Declare the application class

4 class CHel |l oApp : public CWnApp

5 |

6 public:

7 virtual BOOL Initlnstance();

8 1

9 // Create an instance of the application class

10 CHel | oApp Hel | 0App;

11 // Declare the main w ndow cl ass
12 class CHel | oW ndow : public CFranmeWhd

13 {

14 CStatic* cs;

15 public:

16 CHel | oW ndow() ;
17 4

18 // The Initlnstance function is called each
19 // tine the application first executes.
20 BOOL CHel | oApp:: 1 nitlnstance()

21 {

22 m pMai nWad = new CHel | oW ndow() ;

23 m_pMai nWhd- >ShowW ndow m_nCrrdShow) ;
24 m_pMai nWhd- >Updat eW ndow() ;

25 return TRUE;

26 }

27 |/ The constructor for the w ndow cl ass
28 CHel | oW ndow: : CHel | oW ndow()

29 {

30 /'l Create the window itself
31 Creat e(NULL,

32 "Hello World!",

33 W5_OVERLAPPEDW NDOW

34 CRect (0, 0, 200, 200));

35 /Il Create a static |abel
36 cs = new CStatic();

This book is continuously updated. See http://www.iftech.com/mfc

37 cs->Create("hello world",

38 WS_CHI LD| W5_VI SI BLE| SS_CENTER,
39 CRect (50, 80, 150, 150),

40 this);

41 '}

Some of the variable names in Listing 2.1 may seem a bit odd because Mi-
crosoft code uses something called “Hungarian notation” to prefix its variable
names. This notational system encodes information about the variable’s type
in the variable’s name. For example, a variable named bFlag starts with “b” to
indicate that it is a Boolean variable. The name szString uses “sz” to indicate
that it is a null (zero) terminated string. In Listing 2.1, the nhame m_pMainWnd
uses “m_" to indicate that the variable is a class member and “p” to indicate
that it is a pointer. By looking at several variable names and their types, you will
quickly learn what each character means. Here is a table of common letters
and their translations:

b BOOL
c char
h handle
i int
| long
N member
P pointer
sz null terminated string
w UINT

You wiill find that each programmer tends to have slightly different preferenc-
es, so the notation may vary slightly from program to program.You will also find
that you either like or dislike this system. If you dislike it, don’t use it. There is no
requirement that your variable names comply with this system.

Take a moment and look though this program. Get a feeling for the “lay of the
land.” The program consists of six small parts, each of which does something
important.

1. The program first includes af xwi n. h (line 2). This header file contains all
the types, classes, functions, and variables used in MFC. It also includes other
header files for such things as the Windows API libraries.

2. Lines 3 through 8 derive a new application class named CHelloApp from the
standard CWinApp application class declared in MFC. The new class is created
so the InitInstance member function in the CWinApp class can be overridden.

This book is continuously updated. See http://www.iftech.com/mfc

PO O||3H,, 10} 8p0D ay) Bulpuelsiopun €2

2 Understanding an MFC Program

26

Initinstance is a virtual function that is called as the application begins execu-

tion.

3. InLine 10, the code declares an instance of the application object as a global
variable. This instance is important because it causes the program to execute.
When the application is loaded into memory and begins running, the creation
of that global variable causes the default constructor for the CWinApp class to
execute. This constructor automatically calls the Initlinstance function in lines
18 though 26.

4. In lines 11 through 17, the CHelloWindow class is derived from the
CFrameWnd class declared in MFC. CHellowWindow acts as the application’s
window on the screen. A new class is created so that a new constructor and data
member can be implemented.

5. Lines 18 through 26 implement the InitInstance function. This function cre-
ates an instance of the CHelloWindow class, thereby causing the constructor
for the class in Lines 27 through 41 to execute. It also gets the new window
onto the screen.

6. Lines 27 through 41 implement the window’s constructor. The constructor
actually creates the window and then creates a static control inside it.

An interesting thing to notice in this program is that there is no main or Win-
Main function, and no apparent event loop. Yet we know from executing it in
Chapter 1 that it processed events. The window could be minimized and maximized,
moved around, and so on. All this activity is hidden in the main application class
CWinApp and we therefore don’t have to worry about it.Event handling is totally au-
tomatic and invisible in MFC.

The following sections describe the different pieces of this program in more de-
tail. It is unlikely that all of this information will make complete sense to you right
now. It’s best to read through it to get your first exposure to the concepts. In Chapter
3, where a number of specific examples are discussed, the different pieces will come
together and begin to clarify themselves.

2.3.1 The Application Object

Every program that you create in MFC will contain a single application object
that you derive from the CWinApp class. This object must be declared globally (line
10) and can exist only once in any given program.

An object derived from the CWinApp class handles initialization of the applica-
tion, as well as the main event loop for the program. The CWinApp class has several
data members and a number of member functions. We will look at all these different
functions and variables in detail in later chapters (see in particular Chapter 10). For
now, almost all are unimportant. If you would like to browse through some of these
functions, however, search for CWinApp in the MFC documentation. In the program
above, we have overridden only one virtual function in CWinApp, that being the Init-
Instance function.

This book is continuously updated. See http://www.iftech.com/mfc

The purpose of the application object is to initialize and control your application.
Because Windows allows multiple instances of the same application to run simulta-
neously, MFC breaks the initialization process into two parts and uses two functions—
InitApplication and InitInstance—to handle it. Here we have used only the Initin-
stance function because of the simplicity of the application. Initinstance is called each
time a new instance of the application is invoked. The code in Lines 3 through 8 creates
aclass called CHelloApp derived from CWinApp. It contains a new Initinstance func-
tion that overrides the existing function in CWinApp (which does nothing):

3 // Declare the application class

4 class CHell oApp : public CWnApp
5

6 public:

7 virtual BOOL Initlnstance();

8 1

Inside the overridden InitInstance function at lines 18 through 26, the pro-
gram creates and displays the window using CWinApp’s data member named
m_pMainwnd:

18 // The Initlnstance function is called each
19 // time the application first executes.
20 BOOL CHel | oApp: : I nitlnstance()

21 {

22 m pMai nWad = new CHel | oW ndow() ;

23 m_pMai nWhd- >ShowW ndow(m_nCndShow) ;
24 m_pMai nWhd- >Updat eW ndow() ;

25 return TRUE;

26 }

The Initinstance function returns a TRUE value to indicate that initialization
was completed successfully. Had the function returned a FALSE value, the application
would terminate immediately. We will see more details of the window initialization
process in the next section.

When the application object is created at line 10, its data members (inherited
from CWinApp) are automatically initialized. For example, m_pszAppName,
m_IpCommandLine, and m_nCmdShow all contain appropriate values. See the
MFC documentation for more information. We’ll see a use for one of these variables
in a moment.

2.3.2 The Window Object

MFC defines two types of windows: 1) frame windows, which are fully function-
al windows that can be resized, minimized, and so on, and 2) dialog windows, which
are not resizable. A frame window (or a MDI frame window) is typically used for the
main application window of a program.

In the code shown in Listing 2.1, a new class named CHelloWindow is derived
from the CFrameWnd class in lines 8 through 14:

11 // Declare the main w ndow cl ass

12 class CHel | oW ndow : public CFrameWd
13 {

14 CStatic* cs;

This book is continuously updated. See http://www.iftech.com/mfc

PO O||3H,, 10} 8p0D ay) Bulpuelsiopun €2

27

2 Understanding an MFC Program

28

15 public:
16 CHel | oW ndow() ;
17 4

The derivation contains a new constructor, along with a data member that will
point to the single user interface control used in the program. Each application that
you create will have a unique set of controls residing in the main application window.
Therefore, the derived class will have an overridden constructor that creates all the
controls required in the main window. Typically this class will also have an overridden
destructor to delete them when the window closes, but the destructor is not used here
(See Section 2.4 for details). In Chapter 4, we will see that the derived window class
will also declare a message handler to handle messages that these controls produce in
response to user events.

Typically, any application you create will have a single main application win-
dow. The CWinApp application class therefore contains a data member named
m_pMainWnd that can point to this main window. To create the main window for
this application, the Initlnstance function (lines 18 through 26) creates an instance of
CHelloWindow and uses m_pMainWnd to point to the new window. Our
CHelloWindow object is created at line 22:

18 // The Initlnstance function is called each
19 // tine the application first executes.
20 BOOL CHel I oApp: : I nitlnstance()

21 {

22 m pMai nWad = new CHel | oW ndow() ;

23 m_pMai nWhd- >ShowW ndow m_nCrrdShow) ;
24 m_pMai nWhd- >Updat eW ndow() ;

25 return TRUE;

26 }

Simply creating a frame window is not enough, however. Two other steps are
required to make sure that the new window appears on screen correctly. First, the code
must call the window’s ShowWindow function to make the window appear on screen
(line 18). Second, the program must call the UpdateWindow function to make sure
that each control, and any drawing done in the interior of the window, is painted cor-
rectly onto the screen (line 19).

You may wonder where the ShowWindow and UpdateWindow functions are
defined. For example, if you wanted to look them up to learn more about them, you
might look in the MFC documentation at the CFrameWnd class description.
CFrameWnd does not contain either of these member functions, however. It turns
out that CFrameWnd inherits its behavior—as do all controls and windows in MFC—
from the CWnd class (see figure 2.1). If you refer to CWnd in the MFC documenta-
tion, you will find that it is a huge class containing more than 200 different functions.
Obviously, you are not going to master this particular class in a couple of minutes, but
among the many useful functions are ShowWindow and UpdateWindow. We will be
referring to the CWnd class throughout this book, and you will gain a thorough fa-
miliarity with it.

While we are on the subject, take a minute now to look up the CWnd::Show-
Window function in the MFC documentation. Notice that ShowWindow accepts a

This book is continuously updated. See http://www.iftech.com/mfc

single parameter, and that the parameter can be set to one of ten different values. We
have set it to a data member held by CHelloApp in our program, m_nCmdShow (line
23). The m_nCmdShow variable is initialized based on conditions set by the user at
application start-up. For example, the user may have started the application from the
Program Manager and told the Program Manager to start the application in the mini-
mized state by setting the check box in the application’s properties dialog. The
m_nCmdShow variable will be set to SW_SHOWMINIMIZED, and the application
will start in an iconic state. The m_nCmdShow variable is a way for the outside world
to communicate with the new application at start-up. If you would like to experiment,
you can try replacing m_nCmdShow in the call to ShowWindow with the different
constant values defined for ShowWindow. Recompile the program and see what they
do.

Line 22 instantiates the window. It allocates memory for it by calling the new
function. At this point in the program’s execution the constructor for the CHello-
Window is called. The constructor is called whenever an instance of the class is allo-
cated. Inside the window’s constructor, the window must create itself. It does this by
calling the Create member function for the CFrameWnd class at line 31:

27 |/ The constructor for the w ndow cl ass
28 CHel | oW ndow: : CHel | oW ndow()

29 {

30 /'l Create the window itself
31 Cr eat e(NULL,

32 "Hello World!",

33 W5_OVERLAPPEDW NDOW

34 CRect (0, 0, 200, 200)) ;

Four parameters are passed to the create function. By looking in the MFC doc-
umentation you can see the different types. The initial NULL parameter indicates that
a default class name be used (more on this in Chapter 10). The second parameter is
the title of the window that will appear in the title bar. The third parameter is the style
attribute for the window. This example indicates that a normal, overlappable window
should be created. Style attributes are covered in detail in Chapter 3. The fourth pa-
rameter specifies that the window should be placed onto the screen with its upper left
corner at point 0,0 and that the initial size of the window should be 200 x 200 pixels.
If the value rectDefault is used as the fourth parameter instead, Windows will place
and size the window automatically for you.

Because this is an extremely simple program, it creates a single static text control
inside the window. In later chapters, we will see far more involved derivations from
the CFrameWnd class. In this particular example, the program uses a single static text
label as its only control, and it is created at lines 25 through 40. This step is described
in more detail in the next section.

2.3.3 The Static Text Control

The program derives the CHelloWindow class from the CFrameWnd class
(lines 11 through 17). In doing so it declares a private data member of type CStatic*,
as well as a constructor.

This book is continuously updated. See http://www.iftech.com/mfc

PO O||3H,, 10} 8p0D ay) Bulpuelsiopun €2

29

2 Understanding an MFC Program

30

As seen in the previous section, the CHelloWindow constructor does two
things. First it creates the application’s window by calling the Create function (line
31), and then it allocates and creates the control that belongs inside the window. In
this case a single static label is used as the only control. Object creation is always a two-
step process in MFC. First, the memory for the instance of the class is allocated, there-
by calling the constructor to initialize any variables. Next, an explicit Create function
is called to actually create the object on screen (see Section XXX for an explanation).
The code allocates and creates a single static text object using this two-step process at
lines 36 through 40:

27 |/ The constructor for the w ndow cl ass
28 CHel | oW ndow: : CHel | oW ndow()

29 {

30 I/ Create the wi ndow itself
31 Cr eat e(NULL,

32 "Hello World!",

33 W5_OVERLAPPEDW NDOW

34 CRect (0, 0, 200, 200));

35 /] Create a static |abel
36 cs = new CStatic();

37 cs->Create("hello world",
38 WS_CHI LD| W5_VI SI BLE| SS_CENTER,
39 CRect (50, 80, 150, 150),
40 this);

41 }

The constructor for the CStatic item is called when the memory for it is allocat-
ed, and then an explicit Create function is called to create the CStatic control’s
window. The parameters used in the Create function here are similar to those used for
window creation at line 31. The first parameter specifies the text to be displayed by
the control. The second parameter specifies the style attributes. The style attributes are
discussed in detail in the next chapter, but here we request that the control be a child
window (and therefore displayed within another window), that it should be visible,
and that the text within the control should be centered. The third parameter deter-
mines the size and position of the static control, as shown in Figure 2.2. The fourth
indicates the parent window for which this control is the child. Having created the
static control, it will appear in the application’s window and display the specified text.

2.4 Completing the Program

The code demonstrated so far in Listings 1.1 and 2.1 is not quite complete. It
will run correctly, but if you were to turn on the trace option and run it under the
debugger (see Appendix B.2) you would get complaints that the application does not
free up its allocated memory properly. To fix that problem, you need to create a de-
structor for the CHelloWindow class and delete the memory allocated for the CStatic
label. This correction is shown in Listing 2.2.

Listing 2.2
hello.cpp - The simple “Hello World” program with a proper destructor

This book is continuously updated. See http://www.iftech.com/mfc

80 150

W Hello World

150
A 4

Figure 2.2
Placement of the CStatic label

//hello.cpp

A
Y
welboid ayl bunsjdwo)d ¢

#i ncl ude <af xwi n. h>

/'l Declare the application class
class CHel | oApp : public CW nApp
{
public:

virtual BOOL Initlnstance();

}s

/'l Create an instance of the application class
CHel | oApp Hel | 0App;

/1 Declare the main wi ndow cl ass
cl ass CHel | oW ndow : public CFrameWd

{

CStatic* cs;
public:

CHel | oW ndow() ;

~CHel | oW ndow() ;
b

/1 The Initlnstance function is called each
/1 time the application first executes.
BOOL CHel | oApp: : I nitlnstance()

{
m_pMai nWhd = new CHel | oW ndow() ;
m_pMai nWhd- >ShowW ndow(m_nCrrdShow) ;
m_pMai nWhd- >Updat eW ndow() ;
return TRUE;

}

/1 The constructor for the wi ndow cl ass
CHel | oW ndow: : CHel | oW ndow()

{

// Create the window itself
Cr eat e(NULL,

This book is continuously updated. See http://www.iftech.com/mfc 31

32

2 Understanding an MFC Program

"Hello World!",
W5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200));

I/l Create a static |abel

cs = new CStatic();

cs->Create("hello world",
WS_CHI LD| W5_VI S| BLE| SS_CENTER,
CRect (50, 80, 150, 150),
this);

}

/1 The destructor for the wi ndow cl ass
CHel | oW ndow: : ~CHel | oW ndow()
{

del ete cs;

}

2.5 MFC Application Structure

In this chapter you have seen the simplest possible MFC program. However, the
structure of this program applies to all MFC applications, whether the code fits in 100
lines or 100,000. There are six pieces that every MFC application will always have:

1. Aclass derived from CWinApp that acts as the application class for the pro-
gram. This class will always override the Initlnstance function.

2. An instance of that application class declared as a global variable. The construc-
tor for the CWinApp class automatically calls InitInstance.

3. Aclass derived from CFrameWnd (or CMDIFrameWnd or
CMiniFrameWnd) that acts as the application’s main window on the screen.

4. Code implementing the InitInstance function that creates the window.

Code for the window class’s constructor.

6. Code for the window class’s destructor.

o1

You will find all these pieces in the “hello world” application created above. You
will also find them in the code generated by the AppWizard, although the AppWizard
will add quite a few other pieces as well. Your goal is to understand these pieces so well
that when you see them generated by the AppWizard you understand why they are
there and how to modify them.

2.6 Conclusion

In looking at this code for the first time, it will be unfamiliar and therefore po-
tentially annoying. Don’t worry about it. The only part in the entire program that
matters from an application programmer’s perspective is the CStatic creation code at
lines 36 through 40. The rest you will type in once and then ignore. In the next chap-
ter you will come to a full understanding of what lines 36 through 40 do and see a
number of options that you have in customizing a CStatic control.

This book is continuously updated. See http://www.iftech.com/mfc

CUSTOMIZING CONTROLS

Controls are the user interface objects that create interfaces for Windows applications.
Most Windows applications and dialog boxes that you see are nothing but a collection
of controls arranged in a way that appropriately implements the functionality of the
program. To build effective applications, you must completely understand how to use
the controls available in Windows. There are only six basic controls—CStatic, CBut-
ton, CEdit, CList, CComboBox, and CScrollBar-along with an additional collec-
tion of Windows 95 controls discussed in Chapter 20. You need to understand what
each control can do, how you can tune its appearance and behavior, and how to make
the controls respond appropriately to user events. By combining this knowledge with
an understanding of menus and dialogs (discussed in Chapters 6 and 7 of this book),
you gain the ability to create any Windows application that you can imagine.

The simplest of the controls, CStatic, displays static text. The CStatic class has
no data members and only four member functions: the constructor, the Create func-
tion, and two functions for getting and setting icons on static controls. It does not
respond to user events. Because of its simplicity, it is a good place to start learning
about Windows controls.

In this chapter we will look at the CStatic class to understand how controls can
be modified and customized. In the following chapter, we examine the CButton and
CScrollBar classes to gain an understanding of event handling. Chapter 5 then inte-
grates the concepts you have learned in Part 1 by creating two very simple
applications. Part 2 contains descriptions of all other controls, as well as a variety of
other useful MFC classes. Once you understand all the controls and classes, you are
ready to build complete applications as discussed in Part 3.

3.1 The Basics

A CStatic object displays static text messages to the user. These messages can
serve purely informational purposes (for example, text in a message dialog that de-
scribes an error), or they can serve as small labels that identify other controls. Figure

33

changes.

3.1 shows the standard File Open dialog box. In this dialog you find six text labels.
Five of the labels identify the lists, text area, and check box and do not ever change.
The sixth displays the current directory and changes each time the current directory

|

Open

File Hame:

Duwrectornies:
w: i \bran\wcppbookhpartl

chapl_doc
chapl_doc
chap?_doc
chap3.doc
chap4._doc
chapba_doc

3 Customizing Controls

= weh EX Cancel
[=r users
[~ brain . -]
[= ¥vcppbook ; I"]

Drives:
|IE w: Vintashw | QJ

List Files of Type:

Word Documents [*.doc] |i! [] Read Only

Figure 3.1

A file open dialog that uses six text labels

CStatic objects have several other display formats, each of which is demonstrat-
ed in Figure 3.2. By changing the style of a label it can display itself as a solid rectangle,
as a border, or as an icon. The rectangular solid and frame forms of the CStatic class
allow you to visually group related interface elements and to add separators between

controls.

—=| CStatic Styles |~ | <]

hello .

CON

Figure 3.2

The four different display formats for a
CStatic object. Clockwise from top left:
static text, black rectangle, icon, black

frame

34

This book is continuously updated. See http://www.iftech.com/mfc

A CStatic control is always a child window to some parent window. Typically,
the parent window is the main window for an application or a dialog box. You create
the static control, as discussed in Chapter 2, with two lines of code and a variable
declaration:

/1 declaration
CStatic *cs;

/1 allocation

cs = new CStatic();

/] creation

cs->Create(“hello world”,
WS_CHI LD| Ws_VI SI BLE| SS_CENTER,
CRect (50, 80, 150, 150),
this);

This two-line creation style is typical of all controls created programmatically us-
ing MFC. The call to new allocates memory for an instance of the CStatic class and,
in the process, calls the constructor for the class. The constructor performs any initial-
ization needed by the class. The Create function creates the control at the Windows
level and puts it on the screen. See Chapter 23 for details.

Note that there is another way to create static controls—you can use a dialog tem-
plate, as described in Chapter 6, Part 3, and Part 4. This technique makes positioning
easier, but you must then create code that gets a pointer to the static control if you
want to manipulate it. Once you have that pointer, you use the same techniques dis-
cussed in this chapter to manipulate the control. You simply avoid the creation step,
because the dialog template performs the creation automatically.

The Create function accepts up to five parameters, as described in the MFC
documentation.

CStatic::CreateCreates a CStatic object

BOOL CsStatic::Create(LPCSTR | pText,
DWORD dwst yl e,
const RECT& rect,

Cwhd* pPar ent Whd,
UNT nlD = Oxffff);

IpText Text displayed by the control

dwsStyle Control’s window style

rect Position and size of the control within its parent window
pParentWnd Parent window (NULL is invalid. It must have a parent.)
niD Resource ID for the control (optional)

This function returns TRUE if successful, FALSE otherwise.

Most of these values are self-explanatory. The IpText parameter specifies the text
displayed by the label. The rect parameter controls the position, size, and shape of the
text when it is displayed in its parent window. The pParentWnd parameter indicates
the parent of the CStatic control. The control will appear in the parent window, and
the position of the control will be relative to the upper left corner of the client area of

This book is continuously updated. See http://www.iftech.com/mfc

soisegayl T'E

35

3 Customizing Controls

36

the parent. The nID parameter is an integer value used as a control ID by certain func-
tions in the API. We'll see examples of this parameter in the next chapter.

The dwStyle parameter is the most important parameter. It controls the appear-
ance and behavior of the control. The following sections describe this parameter in
detail.

3.2 Cstatic Styles

All controls have a variety of display styles. Styles are determined at creation using
the dwStyle parameter passed to the Create function. The style parameter is a bit
mask that you build by or-ing together different mask constants. The constants avail-
able to a CStatic control can be found in the MFC documentation (Find the page for
the CStatic::Create function and click on the Static Styles item that you find on that
page) and are also briefly described below:

Valid styles for the CStatic class

Styles inherited from CWnd:

WS_CHILD Mandatory for CStatic.

WS_VISIBLE The control should be visible to the user.

WS_DISABLED The control should reject user events.

WS _BORDER The control’s text is framed by a border.

Styles native to CStatic:

SS_BLACKFRAME The control displays itself as a rectangular border.
Color is the same as window frames.

SS_BLACKRECT The control displays itself as a filled rectangle.
Color is the same as window frames.

SS_CENTER The text is center justified.

SS_GRAYFRAME The control displays itself as a rectangular border.
Color is the same as the desktop.

SS_GRAYRECT The control displays itself as a filled rectangle.
Color is the same as the desktop.

SS_ICON The control displays itself as an icon. The text

string is used as the name of the icon in a resource
file. The rect parameter controls only positioning.
SS_LEFT The text displayed is left justified. Extra text is
word-wrapped.
SS_LEFTNOWORDWRAP The text is left justified, but extra text is clipped.

SS_NOPREFIX “&” characters in the text string indicate accelera-
tor prefixes unless this attribute is used.

SS_RIGHT The text displayed is right justified. Extra text is
word-wrapped.

SS_SIMPLE A single line of text is displayed left justified. Any
CTLCOLOR messages must be ignored by the
parent.

SS_USERITEM User-defined item.

This book is continuously updated. See http://www.iftech.com/mfc

SS_WHITEFRAME The control displays itself as a rectangular border.
Color is the same as window backgrounds.

SS_WHITERECT The control displays itself as a filled rectangular.
Color is the same as window backgrounds.

These constants come from two different sources. The “SS” (Static Style) con-
stants apply only to CStatic controls. The “WS” (Window Style) constants apply to
all windows and are therefore defined in the CWnd object from which CStatic inher-
its its behavior. There are many other “WS” style constants defined in CWnd. They
can be found by looking up the CWnd::Create function in the MFC documentation.
The four above are the only ones that apply to a CStatic object.

A CStatic object will always have at least two style constants or-ed together:
WS_CHILD and WS_VISIBLE. The control is not created unless it is the child of
another window, and it will be invisible unless WS _VISIBLE is specified.
WS_DISABLED controls the label’s response to events. Because a label has no sensi-
tivity to events such as keystrokes or mouse clicks anyway, specifically disabling it is
redundant.

All the other style attributes are optional and control the appearance of the label.
By modifying the style attributes passed to the CStatic::Create function, you control
how the static object appears on screen. You can learn quite a bit about the different
styles by using style attributes to modify the text appearance of the CStatic object, as
discussed in the next section.

3.3 Cstatic Text Appearance

The code shown in Listing 3.1 is useful for understanding the behavior of the
CStatic object. It is similar to the listing discussed in Chapter 2, but it modifies the
creation of the CStatic object slightly. If you compile and execute Listing 3.1, you will
see output similar to the screen dump shown in Figure 3.3. Please turn to Appendix
B.3 for instructions on entering and compiling this code.

Listing 3.1
staticl.cpp - A simple CStatic test program

//staticl.cpp

#i ncl ude <af xwi n. h>
#pragma hdr st op

/1 Declare the application class
cl ass CTest App : public CW nApp

{
public:
virtual BOOL Initlnstance();

b

/'l Create an instance of the application class
CTest App Test App;

This book is continuously updated. See http://www.iftech.com/mfc

2oueleaddy 1xa] JneISD €€

37

3 Customizing Controls

38

/1 Declare the main w
cl ass CTest Wndow : pu

{
CStatic* cs;
public:
CTest W ndow() ;
b

/1 The Initlnstance fu
/1 once when the appli
BOOL CTestApp::lnitlns

{

ndow cl ass
blic CFranmewd

nction is called
cation first executes
tance()

m _pMai nWhd = new CTest W ndow() ;
m_pMai nWhd- >ShowW ndow(m_nCndShow) ;
m _pMai nWd- >Updat eW ndow() ;

return TRUE;
}

/1l The constructor for
CTest W ndow: : CTest W nd

{
CRect r;

t he wi ndow cl ass

ow()

/] Create the wi ndow itself

Cr eat e(NULL,
"CStatic Tests"

W\5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200)) ;

/]l Get the size of
GetdientRect(&);

the client rectangle

r. I nflateRect(-20,-20);

I/l Create a static
cs = new CStatic();

| abel

cs->Create("hell o world",
W5_CHI LD W5_VI SI BLE| W5_BORDER| SS_CENTER,

r,
this);

The code of interest in Listing 3.1 is in the window constructor, which is repeat-

ed below with line numbers:

CTest W ndow: : CTest W ndow()

{
CRect r;

/] Create the wi ndow itself

1 Cr eat e(NULL,
"CStatic Te

sts",

W5_OVERLAPPEDW NDOW

CRect (0,0, 2

00, 200)) ;

Il CGet the size of the client rectangle

This book is continuously updated. See http://www.iftech.com/mfc

='~| CStatic Tests |L! &
hello world
Figure 3.3
Screen dump for the simple CStatic test
program shown in Listing 3.1
2 GetdientRect(&);
3 r. I nflateRect(-20,-20);

I/l Create a static |abel

cs = new CStatic();

5 cs->Create("hello world",
W5_CHI LD| W5_VI SI BLE| W5_BORDER| SS_CENTER,
r,
this);

S

}
The function first calls the CTestWindow::Create function for the window at

line 1. This is the Create function for the CFrameWnd object, because CTestWin-
dow inherits its behavior from CFrameWnd. The code in line 1 specifies that the
window should have a size of 200 by 200 pixels and that the upper left corner of the
window should be initially placed at location 0,0 on the screen. The constant rectDe-
fault can replace the CRect parameter if desired.

At line 2, the code calls CTestWindow::GetClientRect, passing it the parame-
ter &r. The GetClientRect function is inherited from the CWnd class (see the sidebar
for search strategies to use when trying to look up functions in the Microsoft docu-
mentation). The variable r is of type CRect and is declared as a local variable at the
beginning of the function.

Two questions arise here in trying to understand this code: 1) What does the
GetClientRect function do? and 2) What does a CRect variable do? Let’s start with
question 1. When you look up the CWnd::GetClientRect function you find it re-
turns a value of type CRect that contains the size of the client rectangle of the
particular window. It stores the value at the address passed in as a parameter, in this
case &r. That address should point to a location of type CRect. The CRect type is a
class defined in MFC. It is a convenience class used to manage rectangles. If you look
up the class in the MFC documentation, you will find that it defines more than 30
member functions and operators to manipulate rectangles.

In our case, we want to center the words “Hello World” in the window. There-
fore, we use GetClientRect to get the rectangle coordinates for the client area. In line
3 we then call CRect::InflateRect, which symmetrically increases or decreases the size

This book is continuously updated. See http://www.iftech.com/mfc

2oueleaddy 1xa] JneISD €€

<L)

3 Customizing Controls

40

of a rectangle. Here we have decreased the rectangle by 20 pixels on all sides. Had we
not, the border surrounding the label would have blended into the window frame and
we would not be able to see it.

The actual CStatic label is created in lines 4 and 5. The style attributes specify
that the words displayed by the label should be centered and surrounded by a border.
The size and position of the border is determined by the CRect parameter r. The re-
sulting screen dump shown in Figure 3.3 is as expected.

By modifying the different style attributes you can gain an understanding of the
different capabilities of the CStatic object. For example, Listing 3.2 contains a re-
placement for the CTestWindow constructor function in Listing 3.1. Figure 3.4
shows a screen dump for this code.

Listing 3.2
A demonstration of CStatic’s word-wrapping abilities.

CTest W ndow: : CTest W ndow()

{
CRect r;

/'l Create the window itself
Cr eat e(NULL,
"CStatic Tests",
W5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200));

/l Get the size of the client rectangle
GetdientRect(&);
r. I nflateRect(-20,-20);

/] Create a static |abel
cs = new CStatic();
cs->Create("Now is the time for all good nen to \
cone to the aid of their country",
W5_CHI LD| W5_VI SI BLE| W5_BORDER| SS_CENTER,
r,
this);

The code of Listing 3.2 is identical to that of Listing 3.1 except the text string is
much longer. As you can see in Figure 3.4, the CStatic object has wrapped the text
within the specified bounding rectangle and centered each line individually.

If the bounding rectangle is too small to contain all the lines of text, then the
text is clipped as needed to make it fit the available space. This feature of the CStatic
Object is shown in Listing 3.3 and Figure 3.5. In Listing 3.3, the bounding rectangle
has been reduced to the point where it forces truncation (compare InflateRect
parameters).

This book is continuously updated. See http://www.iftech.com/mfc

Looking up functions in the Microsoft documentation

Say you want to find out about the GetClientRect function. How do you look it
up? This is not a trivial matter in a system as big as Windows. GetClientRect
could be defined somewhere in MFC, in the normal Windows API, in the stan-
dard C run-time library, or in some standard C++ library likei ost ream h.It can
be literally anywhere among the thousands of pages of documentation and,
when you are new to the documentation, finding it can be difficult. Once you
are familiar with the system, you will know where all the common functions
come from. Right now, just finding the right page is a problem.You need an or-
ganized approach to find anything.

The best place to start your search for the GetClientRect function is with the
current object. We are in a function called CTestWindow::CTestWindow, which
is the constructor for the CTestWindow class. The first place to look, therefore, is
at the class declaration for CTestWindow to see if GetClientRect has been de-
fined there. We look at the top of Listing 3.1, at the definition of CTestWindow,
and we find only a constructor defined. GetClientRect must be elsewhere.

The next place to look is the class from which CTestWindow inherits its behavior.
Again, this can be found in the class declaration for CTestWindow. Looking
there we find that this class inherits behavior from CFrameWnd. Looking up
CFrameWnd in the MFC documentation, we again find nothing for GetClien-
tRect.

The next step is to continue following the inheritance chain to its end.

CFrameWnd inherits its behavior from CWnd-you can see that by looking at

the first line in the MFC documentation for the CFrameWnd class where it says:
cl ass CFraneWhd : public CWd

You can also see it by looking at a diagram for the MFC class hierarchy, as par-

tially shown in Figure 2.1. It is in the CWnd class that we find GetClientRect.

But say it wasn’t there and you had to keep looking.You would follow the inher-
itance chain to CObject, which is always the end of the chain in MFC.Then you
would look in the Windows API. For example, if we had been looking up the
function MessageBeep we would have found it in the APL. If it wasn’t in the API
we would then try the C run-time library. This documents all the normal C and
C++ run-time functions like printf, time, and so on. The function strftime, for ex-
ample,is found here, as are all the standard C functions such assin. If not there,
we would look at the top of the code file for the inclusion of unusual header
files, then we would track the function down in one of those.The system makes
this relatively painless by showing all of the different possibilities in a list. Your job
is to select one item from the list. It gets easier as you become more familiar
with MFC.

This book is continuously updated. See http://www.iftech.com/mfc

aoueleaddy 1xa] aneISD €€

41

[]=

Now is the time for all
good men to come to
the aid of their country

CStatic Tests

3 Customizing Controls

Figure 3.4
Screen dump for code in Listing 3 showing
CStatic word wrapping

Compiling multiple executables

tory. To compile each program, you

This chapter contains several different example programs. There are two dif-
ferent ways for you to compile and run them.The first way is to place each dif-
ferent program into its own directory and then create a new project for each
one. Using this technique, you can compile each program separately and
work with each executable simultaneously or independently. The disadvan-
tage of this approach is the amount of disk space it consumes.

In the second approach, you create a single directory that contains all of the
source files from this chapter. You then create a single project file in that direc-

source file (see Appendix B.1.4). Simply add a different source file into the
project, remove the old file, and rebuild. This arrangement minimizes disk con-
sumption, and is generally preferred for short example programs like the ones
in this chapter. For big multi-file applications it makes sense to create a sepa-
rate directory and project for each application that you create. Starting in
Version 4.0 a project can contain multiple EXEs.

can edit the project and change its

Listing 3.3

A long string and a small bounding rectangle force CStatic to truncate text.

CTest Wndow: : CTest W ndow()

{
CRect

r;

/Il Oreate the windowitself

Cr eat e(NULL,
"CStatic Tests",
W&_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200)) ;

42

This book is continuously updated. See http://www.iftech.com/mfc

/1l Get the size of the client rectangle
GetdientRect (&);
r. I nflateRect(-50,-50);

I/l Create a static |abel
cs = new Ctatic();
cs->Ceate("Nowis the tine for all good nen to cone to \
the aid of their country",
W5_CH LD W5_M Sl BLE| W5_BORDER] SS_CENTER,
r,
this);

='~| CStatic Tests |L! =

Mows is the
time for all
good men to
come to the
HI | Far N =
Figure 3.5
CStatic’s truncation feature as exercised
by Listing 3.3

In all the code we have seen so far, the style SS_CENTER has been used to cen-
ter the text. The CStatic object also allows for left or right justification. Figure 3.6
shows an example of left justification, created by replacing the SS_CENTER attribute
with an SS_LEFT attribute. Right justification aligns the words to the right margin
rather than the left and is specified with the SS_RIGHT attribute.

One other text attribute is available. 1t turns off the word wrap feature and is
used often for simple labels that identify other controls (see Figure 3.1 for an exam-
ple). The SS_ LEFTNOWORDWRAP style forces left justification and causes no
wrapping to take place. The effect of this style is shown in Figure 3.7. Despite the
height available in the bounding rectangle, the object has not made use of it.

This book is continuously updated. See http://www.iftech.com/mfc

2oueleaddy 1xa] JneISD €€

43

3 Customizing Controls

44

=] CStatic Tests | *j =

Mow is the time for all
good men to come to
the aid of their country

Figure 3.6
An example of left justification

= CStatic Tests | '_i =t

Mow is the tim

Figure 3.7
The effect of the SS_LEFTNOWORDWRAP
style

3.4 Rectangular Display Modes for CStatic

The CStatic object also supports two different rectangular display modes: sol-
id filled rectangles and frames. You normally use these two styles to visually group
other controls within a window. For example, you might place a black rectangular
frame in a window to collect together several related editable areas. You can choose
from six different styles when creating these rectangles: SS_BLACKFRAME,
SS_BLACKRECT, SS_GRAYFRAME, SS_GRAYRECT, SS_WHITEFRAME,
and SS WHITERECT. The RECT form is a filled rectangle, while the FRAME
form is a border. The color names are a little misleading—for example,
SS_WHITERECT displays a rectangle of the same color as the window back-
ground. Although this color defaults to white, the user can change it with the
Control Panel and the rectangle may not be actually white on some machines.

When a rectangle or frame attribute is specified, the CStatic’s text string is ig-
nored. Typically, an empty string is passed. The process of creating a rectangle is
shown in Listing 3.4 and Figure 3.8.

This book is continuously updated. See http://www.iftech.com/mfc

Listing 3.4
The creation of a black rectangle.

CTest W ndow: : CTest W ndow()

{
CRect r;

/] Create the wi ndow itself
Cr eat e(NULL,
"CStatic Tests",
W5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200));

// Get the size of the client rectangle
GetdientRect(&);
r. I nflateRect(-50,-50);

/'l Create a static |abel

cs = new CStatic();

cs->Create("",
W5_CHI LDl W5_VI Sl BLE| SS_BLACKRECT,
r,
this);

= CStatic Tests | 'S - |

Figure 3.8
A black rectangle frame produced by
Listing 3.4

A frame window can hold many controls. Figure 3.9 shows a gray rectangle over-
laid by a static text label. Listing 3.5 produced this figure. The only difference here are
two CStatic objects—cs1 and cs2—-which are declared in the CTestWindow class and
then deleted in its destructor. Note that the order of creation determines the stacking
order. Also note that if cs2 has a large enough rectangle, it can completely obscure the
gray rectangle underneath it and make it invisible.

This book is continuously updated. See http://www.iftech.com/mfc

oNeISD 10) SBPOIA Aeldsiq fejnbueoay 'S

3 Customizing Controls

Listing 3.5
Code that creates a gray rectangle overlaid by text.

CTest W ndow: : CTest W ndow()

{
CRect r;
I/ Create the wi ndow itself
Cr eat e(NULL,
"CStatic Tests",
W5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200));
/'l Get the size of the client rectangle
GetdientRect(&);
r.InflateRect(-50,-50);
/'l Create the grey rectangle
csl = new CStatic();
csl->Create("",
W5_CHI LD| W5_VI SI BLE| SS_GRAYRECT,
r,
this);
/] Create the text that sits on top of it
r.InflateRect(-10,-10);
cs2 = new CStatic();
cs2->Create("Now is the tinme",
WS_CHI LD| W5_VI SI BLE| SS_LEFTNONORDWRAP,
r,
this);
}

=] CStatic Tests | YI =

Figure 3.9
Screen dump for Listing 3.5

This book is continuously updated. See http://www.iftech.com/mfc

3.5 Fonts

You can change the font of a CStatic object by creating a CFont object. Doing
so demonstrates how one MFC class can interact with another in certain cases to mod-
ify behavior of a control. The CFont class in MFC holds a single instance of a
particular Windows font. For example, one instance of the CFont class might hold a
Times font at 18 points while another might hold a Courier font at 10 points. You
can modify the font used by a static label by calling the SetFont function that CStatic
inherits from CWnd. Listing 3.6 shows the code required to implement fonts, and
Figure 3.10 shows a screen dump of this code.

Listing 3.6

Code for modifying the font of a CStatic object.

CTest W ndow: : CTest W ndow()

{

CRect r;

/'l Create the window itself
Creat e(NULL,
"CStatic Tests",
W5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200));

/Il Get the size of the client rectangle
GetdientRect(&);
r. I nflateRect(-20,-20);

/] Create a static |abel

cs = new CStatic();

cs->Create("Hello Wrld",
W5_CHI LD| W5_VI SI BLE| W5_BORDER| SS_CENTER,
r,
this);

/!l Create a new 36 point Arial font

font = new CFont;

f ont - >Cr eat eFont (36, 0, 0, 0, 700, 0, O, O,
ANSI _CHARSET, QUT_DEFAULT_PRECI S,
CLI P_DEFAULT_PRECI S,
DEFAULT_QUALI TY,
DEFAULT_PI TCH| FF_DONTCARE,
"arial");

/] Cause the |abel to use the new font
cs->Set Font (font);

The code in Listing 3.9 starts by creating the window and the CStatic object as
usual. The code then creates an object of type CFont. The font variable should be de-
clared as a data member in the CTestWindow class with the line “CFont *font”. The

This book is continuously updated. See http://www.iftech.com/mfc

Sjuo4 G'e

47

3 Customizing Controls

48

'=~| CStatic Tests |L! =

Hello
World

Figure 3.10
A modified font produced by Listing 3.6

CFont::Create function has 15 parameters, but only three matter in most cases (See
Chapter 11 for details). For example, the 36 specifies the size of the font in points, the
700 specifies the density of the font (400 is “normal,” 700 is “bold,” and values can
range from 1 to 1000. The constants FW_NORMAL and FW_BOLD have the same
meanings. See the FW constants in the documentation), and the word “arial” names
the font to use. Windows always ships with five True Type fonts (Arial, Courier New,
Symbol, Times New Roman, and Wingdings), and by sticking to one of these you can
be fairly certain that the font will exist on just about any machine. If you specify a font
name that is unknown to the system, then the CFont class will choose the default font
seen in all the other examples used in this chapter.

For more information on the CFont class see the MFC documentation and
Chapter 11. There is also a good overview on fonts. Search for “Fonts and Text
Overview.”

The SetFont function comes from the CWnd class. It sets the font of a window,
in this case the CStatic child window. One question you may have at this point is,
“How do I know which functions available in CWnd apply to the CStatic class?” You
learn this by experience. Take half an hour and read through all the functions in
CWnd. You will learn quite a bit and you will find many functions that allow you to
customize controls. We will see other Set functions found in the CWnd class in the
next chapter.

3.6 Conclusion

In this chapter we looked at the many different capabilities of the CStatic object.
One we ignored is the SS_ICON style. It is discussed in Chapter 6 because it requires
an understanding of resource files. We also left out some of the Set functions inherited
from the CWnd class so they can be discussed in Chapter 4 where they are more ap-
propriate. Chapter 11 contains more information on fonts. Chapter 5 contains two
programs that use multiple static labels.

This book is continuously updated. See http://www.iftech.com/mfc

HANDLING EVENTS

Any user interface object that an application places in a window has two controllable
features: 1) its appearance, and 2) its behavior when responding to events. In the last
chapter you gained an understanding of the CStatic control and saw how you can use
style attributes to customize the appearance of user interface objects. These concepts
apply to all the different control classes available in MFC.

In this chapter we will examine the CButton control to gain an understanding
of message maps and simple event handling. We'll then look at the CScrollBar con-
trol to see a somewhat more involved example and also look at how an application can
handle system messages.

4.1 Understanding Message Maps

As discussed in Chapter 2, MFC programs do not contain a main function or
event loop. All the event handling happens “behind the scenes” in C++ code that is
part of the CWinApp class. Because it is hidden, we need a way to tell the invisible
event loop to notify us about events of interest to the application. This is done with a
mechanism called a message map. The message map identifies interesting events and
then indicates functions to call in response to those events.

For example, say you want to write a program that will quit whenever the user
presses a button labeled “Quit.” In the program you place code to specify the button’s
creation: you indicate where the button goes, what it says, etc. Next, you create a mes-
sage map for the parent of the button—-whenever a user clicks the button, it tries to
send a message to its parent. By installing a message map for the parent window, you
create a mechanism to intercept and use the button’s messages. The message map will
request that MFC call a specific function whenever a specific button event occurs. In
this case, a click on the Quit button is the event of interest. You then put the code for
quitting the application in the indicated function.

MFC does the rest. When the program executes and the user clicks the Quit but-
ton, the button will highlight itself as expected. MFC then automatically calls the

49

4 Handling Events

50

right function and the program terminates. With just a few lines of code your program
becomes sensitive to user events.

4.2 The CButton Class

The CStatic control discussed in Chapter 3 is unique in that it cannot respond
to user events. No amount of clicking, typing, or dragging will do anything to a CStat-
ic control because it ignores the user completely. However, the CStatic class is an
anomaly. All the other controls available in Windows respond to user events in two
ways. First, they update their appearance automatically when the user manipulates
them (e.g., when the user clicks on a button it highlights itself to give the user visual
feedback). Second, each different control tries to send messages to your code so the
program can respond to the user as needed. For example, a button sends a button
clicked whenever it gets clicked. If you write code to receive the messages, then your
code can respond to user events.

To gain an understanding of this process, we will start with the CButton con-
trol. Listing 4.1 demonstrates the creation of a button, and Figure 4.1 shows a screen
dump for this piece of code.

Listing 4.1
Creating a CButton object.

/1 buttonl.cpp
#i ncl ude <af xwi n. h>
#define | DC_BUTTON 100

/'l Declare the application class
class CButtonApp : public CW nApp
{
publi c:

virtual BOCL Initlnstance();
s

/'l Create an instance of the application class
CBut t onApp But t onApp;

/'l Declare the main wi ndow cl ass
class CButtonW ndow : public CFranmeWhd
{
CButton *button;
public:
CBut t onW ndow() ;
¥

/1 The Initlnstance function is called once
/1 when the application first executes
BOOL CButtonApp::Initlnstance()

{
m pMai nWad = new CButt onW ndow() ;

This book is continuously updated. See http://www.iftech.com/mfc

m_pMai nWhd- >ShowW ndow(m_nCndShow) ;
m_pMai nWhd- >Updat eW ndow() ;
return TRUE;
}
/1 The constructor for the wi ndow cl ass
CBut t onW ndow: : CBut t onW ndow()

{
CRect r;

/'l Create the window itself
Creat e(NULL,
"CButton Tests",
W5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200));

/1 Get the size of the client rectangle
GetCientRect (&);
r. I nflateRect(-20,-20);

// Create a button
button = new CButton();
button->Creat e("Push nme",
W5_CHI LD| W5_VI SI BLE| BS_PUSHBUTTON,
r,
this,
| DC_BUTTQN) ;

=] CButton Tests |ﬂ =t

Push me

Figure 4.1
Appearance of a CButton object as
created by Listing 4.1

The code in listing 4.1 is nearly identical to the code discussed in previous chap-
ters. The Create function for the CButton class, as seen in the MFC documentation,
accepts five parameters. The first four are exactly the same as those found in the CStat-
ic class. The fifth parameter indicates the resource 1D for the button. The resource ID
is a unique integer value used to identify the button in the message map. A constant
value IDC_BUTTON has been defined at the top of the program for this value. The
“IDC_" is arbitrary, but here indicates that the constant is an 1D value for a control.

This book is continuously updated. See http://www.iftech.com/mfc

sse|puonngdayl z2v

o1

4 Handling Events

52

It is given a value of 100 because values less than 100 are reserved for system-defined
IDs. You can use any value above 99.

The style attributes available for the CButton class are different from those for
the CStatic class, as discussed in Chapter 3. Eleven different “BS” (“Button Style™)
constants are defined. See the CButton::Create function in the MFC documentation
for a complete list. Here we have used the BS PUSHBUTTON style for the button,
indicating that we want this button to display itself as a normal push button. We have
also used two familiar “WS” attributes: WS_CHILD and WS_VISIBLE. We will ex-
amine some of the other styles in later sections.

When you run the code, you will notice that the button responds to user events.
That is, it highlights as you would expect. It does nothing else because we haven’t told
it what to do. We need to wire in a message map to make the button do something
interesting.

4.3 Creating a Message Map

The code in Listing 4.2 contains a message map as well as a new function that
handles the button click so the program beeps when the user clicks on the button. The
portions of the code that differ from Listing 4.1 are shown in boldface.

Listing 4.2
A program that creates a button and beeps when the button is pressed.

/1 button2.cpp
#i ncl ude <af xwi n. h>
#define | DC_BUTTON 100

/1 Declare the application class
class CButtonApp : public CWnApp
{
public:

virtual BOOL Initlnstance();

b

/'l Create an instance of the application class
CBut t onApp But t onApp;

/1 Declare the main wi ndow cl ass
cl ass CButtonW ndow : public CFranmeWd

{
CButton *button;
public:
CBut t onW ndow() ;
af x_nsg voi d Handl eButton();
DECLARE_MESSAGE_NAP()
b

/1 The message handl er function

This book is continuously updated. See http://www.iftech.com/mfc

voi d CButtonW ndow. : Handl eButt on()
{

}

MessageBeep(OXxFFFFFFFF) ;

/1 The nessage nmap

BEG N_MESSAGE_MAP(CBut t onW ndow, CFr aneWd)
ON_BN_CLI CKED(| DC_BUTTON, Handl eButt on)

END_MESSAGE_MAP()

/1 The Initlnstance function is called once
/1 when the application first executes
BOOL CButtonApp::Initlnstance()

{
m_pMai nWhd = new CButt onW ndow() ;
m_pMai nWhd- >ShowW ndow(m_nCndShow) ;
m_pMai nWhd- >Updat eW ndow() ;
return TRUE;

}

/1 The constructor for the w ndow cl ass
CBut t onW ndow: : CBut t onW ndow()

{
CRect r;

// Create the wi ndow itself
Cr eat e(NULL,
"CButton Tests",
W5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200));

Il CGet the size of the client rectangle
Getd ientRect(&);
r. I nflateRect(-20,-20);

/'l Create a button
button = new CButton();
butt on- >Cr eat e(" Push ne",
W5_CHI LD| W5_VI SI BLE| BS_PUSHBUTTON,
r,
this,
| DC_BUTTON) ;

Three modifications have been made to Listing 4.1 to create Listing 4.2:

1. The class declaration for CButtonWindow now contains a new member func-
tion as well as a macro that indicates a message map is defined for the class. The
HandleButton function, which is identified as a message handler by the use of
the afx_msg tag, is a normal C++ function. There are some special constraints on
this function that we will discuss shortly (e.g., it must be void and it cannot
accept any parameters). The DECLARE_MESSAGE_MAP macro makes the
creation of a message map possible. Both the function and the macro must be public.

This book is continuously updated. See http://www.iftech.com/mfc

de abessa|y e buneald £v

53

4 Handling Events

54

2. The HandleButton function is created in the same way as any member func-
tion. In this function, we called the MessageBeep function available from the
Windows API. You could also call Beep or any other function.

3. Special MFC macros create a message map. In the code, you can see that the
BEGIN_MESSAGE_MAP macro accepts two parameters. The first is the
name of the specific class to which the message map applies. The second is the
base class from which the specific class is derived. It is followed by an
ON_BN_CLICKED macro that accepts two parameters: The ID of the con-
trol and the function to call whenever that ID sends a command message.
Finally, the message map ends with the END_MESSAGE_MAP macro. Note
the placement of parentheses and the lack of semicolons on the macros.

When a user clicks the button, it sends a command message containing its 1D to
its parent, which is the window containing the button. That is default behavior for a
button, and that is why this code works. The button sends the message to its parent
because it is a child window. The parent window intercepts this message and uses the
message map to determine the function to call. MFC handles the routing, and when-
ever the specified message is seen, the indicated function gets called. The program
beeps whenever the user clicks the button.

The ON_BN_CLICKED message is one of two messages a CButton object can
send. Itis equivalent to the ON_COMMAND message in the CWnd class and is sim-
ply a convenient synonym for it. ON_BN_DOUBLECLICKED is the other possible
message for a CButton (Note that ON_BN_DOUBLE CLICKED will not work un-
less you modify the parent window’s class to contain the CS_DBLCLKS style. See
Chapter 11 for details on registering new window styles.). You can find information
about these messages by looking up the CButton class description in the
documentation.

4.4 Sizing Messages

In Listing 4.2 the code for the application’s window, which is derived from the
CFrameWnd class, recognized the button-click message generated by the button and
responded to it because of its message map. The ON_BN_CLICKED macro added
into the message map (search for the CButton overview as well as the
ON_COMMAND macro in the MFC documentation) specifies the ID of the button
and the function that the window should call when it receives a command message
from that button. Because the button automatically sends to its parent its ID in a com-
mand message whenever the user clicks it, this arrangement allows the code to handle
button events properly.

Windows is also capable of sending messages itself. There are about 100 differ-
ent messages available, all inherited from the CWnd class. By browsing through the
member functions for the CWnd class in the MFC documentation you can see what
all these messages are. Look for any member function beginning with the word “On”.
Many of them are quite interesting.

This book is continuously updated. See http://www.iftech.com/mfc

You may have noticed that all the code demonstrated so far does not handle re-
sizing very well. When the window resizes, the frame of the window adjusts accord-
ingly but the contents stay where they were placed originally. It is possible to make
resized windows respond more attractively by recognizing re-sizing events. One of the
messages that is sent by Windows is a sizing message. The message is generated when-
ever the window changes shape. We can use this message to control the size of child
windows inside the frame, as shown in Listing 4.3.

Listing 4.3
Handling window re-sizing with the ON_WM_SIZE message.

sabessa|y buizis vy

/1 button3.cpp
#i ncl ude <af xwi n. h>
#define | DC_BUTTON 100

/| Declare the application class
class CButtonApp : public CWnApp
{
publi c:

virtual BOOL Initlnstance();
}s

/'l Create an instance of the application class
CBut t onApp But t onApp;

/'l Declare the main wi ndow cl ass
cl ass CButtonW ndow : public CFrameWd
{
CButton *button;
public:
CBut t onW ndow() ;
af x_nsg void Handl eButton();
af x_nsg void OnSize(UINT, int, int);

DECLARE_NMESSAGE_MAP()
}s

/1 A message handl er function
voi d CButtonW ndow: : Handl eBut t on()

{
}

MessageBeep(OxFFFFFFFF) ;

/1 A message handl er function
voi d CButtonW ndow. : OnSi ze(U NT nType, int cx,
int cy)

{
CRect r;

GetdientRect(&);
r. I nflateRect(-20,-20);

This book is continuously updated. See http://www.iftech.com/mfc 55

4 Handling Events

56

but t on- >MoveW ndow(r) ;
}

/1 The nessage nap

BEG N_MESSAGE_NMAP(CBut t onW ndow, CFr ameWhd)
ON_BN_CLI CKED(| DC_BUTTON, Handl eBut t on)
ON_WM S| ZE()

END_MESSAGE_MAP()

/1l The Initlnstance function is called once
/1 when the application first executes
BOOL CButtonApp::Initlnstance()

{
m _pMai nWAd = new CButt onW ndow() ;

m_pMai nWhd- >ShowW ndow m_nCrrdShow) ;
m_pMai nWhd- >Updat eW ndow() ;
return TRUE;

}

/1 The constructor for the wi ndow cl ass
CBut t onW ndow: : CButt onW ndow()

{
CRect r;

/1l Create the wi ndow itself
Cr eat e(NULL,
"CButton Tests",
W5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200)) ;

/1 Get the size of the client rectangle
GetdientRect(&);
r.InflateRect (-20,-20);

/] Create a button
button = new CButton();
button->Create("Push nme",
W5_CHI LD W5_VI S| BLE| BS_PUSHBUTTON,
r,
this,
| DC_BUTTON) ;
}
To understand this code, start by looking in the message map for the window.

There you will find the entry ON_WM_SIZE. This entry indicates that the message
map is sensitive to sizing messages coming from the CButtonWindow object. Sizing
messages are generated on this window whenever the user resizes it.

Notice also that the ON_WM_SIZE entry in the message map has no parame-
ters. As you can see in the MFC documentation under the CWnd class, it is
understood that the ON_WM_SIZE entry in the message map will always call a func-
tion named OnSize, and that function must accept the three parameters shown. The
OnSize function must be a member function of the class owning the message map,
and the function must be declared in the class as an afx_msg function (as shown in
the definition of the CButtonWindow class).

This book is continuously updated. See http://www.iftech.com/mfc

If you look in the MFC documentation, there are almost 100 functions named
“On...” in the CWnd class. CWnd::OnSize is one of them. All these functions have
a corresponding tag in the message map with the form ON_WM_. For example,
ON_WM_SIZE corresponds to OnSize. None of the ON_WM _ entries in the mes-
sage map accept parameters.

The OnSize function always corresponds to the ON_WM_SIZE entry in the
message map. You must name the handler function OnSize, and it must accept the
three parameters shown in the listing. You can find the specific parameter require-
ments of any On... function by looking up that function in the MFC documentation.
You can look the function up directly by typing OnSize into the search window or
you can find it as a member function to the CWnd class.

Inside the OnSize function itself, three lines of code modify the size of the but-
ton held in the window:

voi d CButtonW ndow. : OnSi ze(U NT nType, int cx,
int cy)

{
CRect r;

GetdientRect(&);
r. I nflateRect(-20,-20);
but t on- >MoveW ndow(r) ;

}

The call to GetClientRect retrieves the new size of the window’s client rectan-
gle. This rectangle is then deflated and the MoveWindow function is called on the
button. MoveWindow is inherited from CWnd and resizes and moves the child win-
dow for the button in one step.

When you execute the program in Listing 4.3 and resize the application’s win-
dow, you will find the button resizes itself correctly. In the code, the resize event
generates a call through the message map to the OnSize function, which calls the
MoveWindow function to resize the button appropriately.

4.5 Window Messages

By looking in the MFC documentation, you can see the wide variety of CWnd
messages that the main window handles. Some are similar to the sizing message seen
in the previous section. For example, ON_WM_MOVE messages are sent when a
user moves a window and ON_WM_PAINT messages are sent when any part of the
window has to be repainted. In all our programs so far, repainting has happened au-
tomatically because controls are responsible for their own appearance. In Chapter 11,
however, we will see that the application is responsible for repainting any drawings it
places directly in the window. In this context the ON_WM_PAINT message is
important.

There are also some event messages sent to the window that are more esoteric.
For example, you can use the ON_WM_TIMER message in conjunction with the
SetTimer function to cause the window to receive messages at pre-set intervals. The
code in Listing 4.4 demonstrates the process. When you run this code, the program

This book is continuously updated. See http://www.iftech.com/mfc

sabessa|N MOPUIM S'1

S7

will beep once each second. The beeping can be replaced by a number of useful pro-
cesses. For example, in Chapter 11 we will see one example of this capability—the timer
is used to update the face of a simple digital clock.

Listing 4.4
The SetTimer function and ON_WM_TIMER message cause the application to beep
once each second.

/1 button4.cpp

4 Handling Events

#i ncl ude <af xwi n. h>

#define | DC_BUTTON 100
#define | DT_TI MERL 200

/'l Declare the application class
class CButtonApp : public CWnApp
{
publi c:

virtual BOOL Initlnstance();

}s

// Create an instance of the application class
CButt onApp Butt onApp;

/1 Declare the main w ndow cl ass
cl ass CButtonW ndow : public CFrameWd

{
CButton *button;

public:
CBut t onW ndow() ;
af x_msg voi d Handl eButton();
af x_nsg void OnSize(UINT, int, int);
af x_nsg void OnTi ner (Ul NT);
DECLARE_MESSAGE_MAP()

b

/1 A message handl er function
voi d CButtonW ndow. : Handl eButt on()

{
}

MessageBeep(OXxFFFFFFFF) ;

/1 A message handl er function
voi d CButtonW ndow. : OnSi ze(U NT nType, int cx,

int cy)
{
CRect r;
GetdientRect(&);
r.InflateRect(-20,-20);
but t on- >MoveW ndow(r) ;
}

58 This book is continuously updated. See http://www.iftech.com/mfc

/1 A message handl er function
voi d CButtonW ndow: : OnTi mer (Ul NT i d)

{
}

MessageBeep(OxFFFFFFFF) ;

/1 The nessage nmap

BEG N_MESSAGE_MAP(CBut t onW ndow, CFr aneWd)
ON_BN_CLI CKED(| DC_BUTTON, Handl eButt on)
ON_WM_SI ZE()
ON_VWM Tl MER()

END_MESSAGE_MAP()

/1 The Initlnstance function is called once
/1 when the application first executes
BOOL CButtonApp::Initlnstance()

{
m_pMai nWhd = new CButt onW ndow() ;
m_pMai nWhd- >ShowwW ndow(m_nCndShow) ;
m_pMai nWhd- >Updat eW ndow() ;
return TRUE;

}

/1 The constructor for the wi ndow cl ass
CBut t onW ndow: : CBut t onW ndow()

{
CRect r;

/'l Create the wi ndow itself
Cr eat e(NULL,
"CButton Tests",
W5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200)) ;

/1 Set up the tinmer
Set Ti mer (1 DT_TI MER1, 1000, NULL); // 1000 ns.

/1 Get the size of the client rectangle
GetdientRect(&);
r.InflateRect (-20,-20);

/] Create a button
button = new CButton();
button->Create("Push nme",
W5_CHI LD| W&_VI SI BLE| BS_PUSHBUTTON,
r,
this,
| DC_BUTTQN) ;

Inside the program in Listing 4.4 we created a button, as shown previously, and
left its re-sizing code in place. In the constructor for the window we also added a call
to the SetTimer function. This function accepts three parameters: an ID for the timer

This book is continuously updated. See http://www.iftech.com/mfc

sabessa|N MOPUIM S'1

59

4 Handling Events

60

(so that multiple timers can be active simultaneously, the ID is sent to the function
called each time a timer goes off), the time in milliseconds that is to be the timer’s in-
crement, and a function. Here, we passed NULL for the function so that the window’s
message map will route the function automatically. In the message map we have wired
in the ON_WM_TIMER message, and it will automatically call the OnTimer func-
tion passing it the ID of the timer that went off.

When the program runs, it beeps once each 1,000 milliseconds. Each time the
timer’s increment elapses, the window sends a message to itself. The message map
routes the message to the OnTimer function, which beeps. You can place a wide va-
riety of useful code into this function.

4.6 Scroll Bar Controls

Windows has two different ways to handle scroll bars. Some controls, such as the
edit control (Chapters 5 and 8) and the list control (Chapter 9), can be created with
scroll bars already attached. When this is the case, the master control handles the scroll
bars automatically. For example, if an edit control has its scroll bars active, then when
the scroll bars are used, the edit control scrolls as expected without any additional
code.

Scroll bars can also work on a stand-alone basis. When used this way they are
seen as independent controls in their own right. You can learn more about scroll bars
by referring to the CScrollBar section of the MFC documentation. Scroll bar controls
are created the same way we created static labels and buttons. They have four member
functions that allow you to get and set both the range and position of a scroll bar.

The code shown in listing 4.5 demonstrates the creation of a horizontal scroll
bar and its message map. Figure 4.2 shows a screen dump for this listing.

Listing 4.5
The creation of a horizontal scroll bar and its message map.

/1 sbl.cpp
#i ncl ude <af xwi n. h>

#defi ne | DC_SCROLLBAR 100
const int MAX_RANGE=100;
const int M N_RANGE=0;

/'l Declare the application class
class CScrol | Bar App : public CW nApp

{
public:

virtual BOCL Initlnstance();
s

/'l Create an instance of the application class
CScrol | Bar App Scrol | Bar App;

/'l Declare the main wi ndow cl ass

This book is continuously updated. See http://www.iftech.com/mfc

class CScrol | Bar Wndow : public CFrameWd
{
CScrol | Bar *sb;
public:
CScrol | Bar W ndow() ;
af x_nsg void OnHScrol | (U NT nSBCode, U NT nPos,
CScrol | Bar* pScrol |l Bar);

DECLARE_MESSAGE_MAP()
b

/1 The nessage handl er function
voi d CScrol | Bar W ndow: : OnHScr ol | (Ul NT nSBCode,
U NT nPos, CScroll Bar* pScroll Bar)

{
}

MessageBeep(OxFFFFFFFF) ;

/1 The nessage nap

BEG N_MESSAGE_MAP(CScr ol | Bar W ndow, CFr ameWhd)
ON_VW HSCROLL()

END_MESSAGE_MAP()

/1 The Initlnstance function is called once
/1 when the application first executes
BOOL CScrol | Bar App: : I nitlnstance()

{
m_pMai nWAd = new CScrol | Bar W ndow() ;
m_pMai nWhd- >ShowW ndow(m_nCndShow) ;
m_pMai nWhd- >Updat eW ndow() ;
return TRUE;

}

/1 The constructor for the w ndow cl ass
CScr ol | Bar W ndow: : CScr ol | Bar W ndow()

{
CRect r;

/'l Create the wi ndow itself
Cr eat e(NULL,
"CScrol |l Bar Tests",
W5_OVERLAPPEDW NDOW
CRect (0, 0, 200, 200)) ;

/1 Get the size of the client rectangle
GetdientRect(&);
I/l Create a scroll bar
sb = new CScrol | Bar ();
sb->Creat e(W5_CHI LD| W5_VI SI BLE| SBS_HORZ,
CRect (10, 10, r. Wdt h() - 10, 30),
this,
| DC_SCROLLBAR) ;
sh->Set Scrol | Range(M N_RANGE, MAX_RANGE, TRUE) ;

This book is continuously updated. See http://www.iftech.com/mfc

s|jouoD reg [|019S 9'f

61

4 Handling Events

62

='~| CScrollBar Tests |L!‘

|ﬂ i |:! Figure 4.2
I | A simple horizontal scroll bar as produced
- - by Listing 4.5

Windows distinguishes between horizontal and vertical scroll bars and also sup-
ports an object called a size box in the CScrollBar class. A size box is a small square. It
is formed at the intersection of a horizontal and vertical scroll bar and can be dragged
by the mouse to automatically resize a window. Looking at the code in Listing 4.5,
you can see that the Create function creates a horizontal scroll bar using the
SBS_HORIZ style. Immediately following creation, the range of the scroll bar is set
for 0 to 100 using the two constants MIN_RANGE and MAX_RANGE (defined at
the top of the listing) in the SetRange function.

The event-handling function OnHScroll comes from the CWnd class. We have
used this function because the code creates a horizontal scroll bar. For a vertical scroll
bar you should use OnVScroll. In the code here the message map wires in the scrolling
function and causes the scroll bar to beep whenever the user manipulates it. When you
run the code you can click on the arrows, drag the thumb, and so on. Each event will
generate a beep, but the thumb will not actually move because we have not wired in
the code for movement yet.

Each time the scroll bar is used and OnHScroll is called, your code needs a way
to determine the user’s action. Inside the OnHScroll function you can examine the
first parameter passed to the message handler, as shown in Listing 4.6. If you use this
code with Listing 4.5, the scroll bar’s thumb will move appropriately with each user
manipulation.

Listing 4.6
A scroll bar message handler that handles all possible user actions.

/1 The nessage handling function

voi d CScrol | Bar Wndow: : OnHScrol | (Ul NT nSBCode,
U NT nPos, CScroll Bar* pScroll Bar)

{

int pos;

pos = sb->Cet Scrol | Pos();
switch (nSBCode)
{
case SB_LI NEUP:
pos -= 1;
br eak;

case SB_LI NEDOMN:

pos += 1;
br eak;

This book is continuously updated. See http://www.iftech.com/mfc

case SB_PAGEUP:
pos -= 10;
br eak;

case SB_PACGEDOMN:
pos += 10;
br eak;

case SB_TOP:
pos = M N_RANGE;
br eak;

case SB_BOTTOM
pos = MAX_RANGE;
br eak;

case SB_THUNVBPCSI TI ON:
pos = nPos;
br eak;

defaul t:
return;

}

if (pos < MN_RANGE)
pos = M N_RANGCE;

else if (pos > MAX_RANGE)
pos = MAX_RANGE;

sb->Set Scrol | Pos(pos, TRUE);

The different constant values such as SB_LINEUP and SB_LINEDOWN are
described in the OnHScroll function documentation in the documentation. The
code in Listing 4.6 starts by retrieving the current scroll bar position using GetScroll-
Pos. It then decides what the user did to the scroll bar using a switch statement. The
constant value names imply a vertical orientation but are used in horizontal scroll bars
as well: SB_LINEUP and SB_LINEDOWN apply when the user clicks the left and
right arrows. SB_PAGEUP and SB_PAGEDOWN apply when the user clicks in the
shaft of the scroll bar itself. SB_TOP and SB_BOTTOM apply when the user moves
the thumb to the top or bottom of the bar. SB. THUMBPOSITION applies when
the user drags the thumb to a specific position. The code adjusts the position accord-
ingly, then makes sure that it’s still in range before setting the scroll bar to its new
position. Once the scroll bar is set, the thumb moves on the screen to inform the user
visually.

A vertical scroll bar is handled the same way as a horizontal scroll bar except that
you use the SBS_VERT style and the OnVScroll function. You can also use several
alignment styles to align both the scroll bars and the grow box in a given client
rectangle.

This book is continuously updated. See http://www.iftech.com/mfc

s|jouoD reg [|019S 9'f

63

4 Handling Events

64

4.7 Understanding Message Maps

The message map structure is unique to MFC. It is important that you under-
stand why it exists and how it actually works so you can exploit this structure in your
own code.

Any C++ purist who looks at a message map has an immediate question: Why
didn’t Microsoft use virtual functions instead? Virtual functions are the standard C++
way to handle what mesage maps are doing in MFC, so the use of rather bizarre mac-
ros like DECLARE_MESSAGE_MAP and BEGIN_MESSAGE_MAP seems like the
work of eccentrics.

MFC uses message maps to get around a fundamental problem with virtual
functions. Look at the CWnd class in the MFC documentation. It contains more than
100 event-handling member functions (they start with “On”), all of which would have
to be virtual if message maps were not used. Now look at all the classes that derive
from the CWnd class. For example, search for “Hierarchy Charts” in the MFC docu-
mentation and look at the object hierarchy. Thirty or so classes in MFC use CWnd as
their base class. This set includes all the visual controls such as buttons, static labels,
and lists. Now imagine that MFC used virtual functions and you created an applica-
tion that contained 20 controls. The virtual function tables for all those functions
would create quite a bit of overhead. Because the vast majority of those tables are never
used, they are unneeded.

Message maps duplicate the action of a virtual function table, but do so on an
on-demand basis. When you create an entry in a message map, you are saying to the
system, “when you see the specified message, please call the specified function.” Only
those functions that actually get overridden appear in the message map, saving mem-
ory and CPU overhead.

When you declare a message map with DECLARE_MESSAGE_MAP and
BEGIN_MESSAGE_MAP, the system routes all messages through to your message
map. If your map handles a given message, then your function gets called and the mes-
sage stops there. However, if your message map does not contain an entry for a
message, then the system sends that message to the class specified in the second pa-
rameter of BEGIN_MESSAGE_MAP. That class may or may not handle it and the
process repeats. Eventually, if no message map handles a given message, the message
arrives at