

Developing Professional
Applications in
Windows 95 and NT
Using MFC

Marshall Brain

 Lance Lovette

Prentice Hall P T R
Upper Saddle River, New Jersey 07458

©

 Copyright 1996 by Prentice Hall. All rights reserved.

The publisher offers discounts on this book when ordered in bulk quantities.
For more information, contact:

Corporate Sales Department
Prentice Hall PTR
One Lake Street
Upper Saddle River, NJ 07458

Phone: 800-382-3419 Fax: 201-236-7141
E-mail: corpsales@prenhall.com

All product names mentioned herein are the trademarks of their respective owners.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Prentice-Hall International (UK) Limited,

London

Prentice-Hall of Australia Pty. Limited,

Sydney

Prentice-Hall Canada Inc.,

Toronto

Prentice-Hall Hispanoamericana, S.A.,

Mexico

Prentice-Hall of India Private Limited,

New Delhi

Prentice-Hall of Japan, Inc.,

Tokyo

Simon & Schuster Asia Pte. Ltd.,

Singapore

Editora Prentice-Hall do Brasil, Ltda.,

Rio de Janeiro

©1996 by Prentice Hall P T R
Prentice-Hall, Inc.
A Simon & Schuster Company
Upper Saddle River, New Jersey 07458

Editorial/production supervision and interior design: Dit Mosco
Cover design: Tom Nery
Cover photo: Ron Thomas, FPG International
Manufacturing manager: Alexis Heydt
Acquisitions editor: Mike Meehan

C
o

nte
nts

iii

Preface xiii

Version Free xiii
Audience xiv
Organization xiv
The Diskette and the On-line Index xv
Contacting the Authors: Questions, Comments, and Version
Changes xv
Acknowledgments xvi

Getting Your Bearings 1

What is Visual C++? 2
Available Documentation 3
7.Road Map 4
Common Questions 5

Part 1 Visual C++ and MFC Basics 11

1 Introduction 13
1.1 What is the Microsoft Foundation Class Library? 13
1.2 Windows Vocabulary 14
1.3 Event-driven Software and Vocabulary 16
1.4 An Example 19
1.5 Conclusion 20

2 Understanding an MFC Program 21
2.1 An Introduction to MFC 21
2.2 Designing a Program 23
2.3 Understanding the Code for “Hello World” 23
2.4 Completing the Program 30
2.5 MFC Application Structure 32
2.6 Conclusion 32

3 Customizing Controls 33
3.1 The Basics 33
3.2 CStatic Styles 36
3.3 CStatic Text Appearance 37

iv

C
o

nt
e

nt
s

3.4 Rectangular Display Modes for CStatic 44
3.5 Fonts 47
3.6 Conclusion 48

4

Handling Events 49

4.1 Understanding Message Maps 49
4.2 The CButton Class 50
4.3 Creating a Message Map 52
4.4 Sizing Messages 54
4.5 Window Messages 57
4.6 Scroll Bar Controls 60
4.7 Understanding Message Maps 64
4.8 Conclusion 64

5

Simple Applications 67

5.1 Designing an Application 67
5.2 Implementing the Fahrenheit to Celsius Converter 69
5.3 The CEdit Control 74
5.4 An Interest Calculator 77
5.5 Conclusion 81

Part 2 Visual C++ and MFC Details 83

6 Resources, Dialogs, and Menus 85
6.1 Resources and Resource Files 85
6.2 The Icon Resource 88
6.3 Creating a Resource File 90
6.4 Menus 92
6.5 Responding to Menus 96
6.6 Dialog Resources 100
6.7 String Resources 106
6.8 Conclusion 109

7 Canned Dialogs 111
7.1 The Message Box Dialog 111
7.2 The File Open/Save Dialog 115
7.3 The Font Dialog 120
7.4 The Color Dialog 123
7.5 The Print Dialog 124
7.6 The Find/Replace Dialog 127

C
o

nte
nts

v

7.7 Conclusion 132

8

Edit Controls and Editors 133

8.1 Using the CEdit Control in Single-Line Mode 133
8.2 Using the CEdit Control in Multi-Line Mode 136
8.3 Designing a Simple Text Editor 139
8.4 Creating the Editor Application 140
8.5 Stubbing in the Menu Handlers 144
8.6 Implementing the Editor 150
8.7 Conclusion 161

9

Lists 163

9.1 Creating a List Box 163
9.2 Alternate Display Formats 167
9.3 Getting User Selections 170
9.4 Manipulating Items in a List 174
9.5 Combo Boxes 175
9.6 Conclusion 177

10

The CWinApp class 179

10.1 Member Variables 179
10.2 Icons and Cursors 181
10.3 Handling Idle Time 185
10.4 Application Functionality 186
10.5 Initialization Features 190
10.6 Miscellaneous Features 192
10.7 Conclusion 192

11

Drawing 195

11.1 Introduction to the GDI Library 195
11.2 GDI Basics 196
11.3 Device Contexts 198
11.4 Simple Drawing 200
11.5 Using the Mouse with Your Drawings 222
11.6 Advanced Drawing Concepts 249
11.7 Conclusion 261

12

Utility Classes 263

12.1 Utility Classes 264
12.2 Simple Array Classes 278
12.3 The CObject class and CObject Arrays 282
12.4 List Classes 291

vi

C
o

nt
e

nt
s

12.5 Mapping Classes 295
12.6 Conclusion 298

13

Debugging and Robustness 299

13.1 Setting Up 299
13.2 Assertions 300
13.3 Tracing 305
13.4 Dumping 307
13.5 Memory State 309
13.6 Exceptions 313
13.7 Other Debugging Features 321
13.8 Conclusion 321

Part 3 Using the Visual C++ Wizards
and Tools to Create Applications 323

14 Understanding the AppWizard and ClassWizard 325
14.1 The Goal of the AppWizard 325
14.2 Creating a Simple Framework with the AppWizard 327
14.3 The AppWizard’s Document-Centric Approach 327
14.4 Understanding the AppWizard’s Files 329
14.5 Understanding the ClassWizard 333
14.6 Conclusion 335

15 Creating a Drawing Program 337
15.1 The Goal of the Application 337
15.2 Creating a Drawing Program 338
15.3 Understanding the Drawing Program 347
15.4 Creating an MDI Application 352
15.5 Scrolling 356
15.6 Splitter Windows 362
15.7 Adding New Menu Options and Dialogs. 371
15.8 Printing 380
15.9 Conclusion 388

16 Creating an Editor
with CEditView 391
16.1 Creating an MDI Text Editor 391
16.2 Understanding the Editor 392
16.3 Combining Two Documents and Views in a Single

C
o

nte
nts

vii

Application 394
16.4 Fixing a Subtle Problem 397
16.5 Handling Multiple Views on One Document 398
16.6 Conclusion 399

17

Creating a Fahrenheit-to-Celsius Converter 401

17.1 Creating the Converter 401
17.2 Understanding the Program 404
17.3 Using DDX 405
17.4 Using the Document Class 406
17.5 Using Form Views 410
17.6 Conclusion 411

18

Creating an Address List
Application 413

18.1 Creating the Application 413
18.2 Understanding the Address List Program 424
18.3 Understanding DDX and DDV 425
18.4 Improving the Application 427
18.5 Printing 445
18.6 Conclusion 450

19

Context-Sensitive Help 453

19.1 Understanding the AppWizard’s Help Framework 453
19.2 Understanding and Modifying the Help Files 454
19.3 Context-Sensitive Help 460
19.4 Aliases 463
19.5 Conclusion 463

20

Common Controls 465

20.1 A Simple Example Using the Spin Button, List, and Tree
Controls 465

20.2 CSpinButtonCtrl 466
20.3 CListCtrl 466
20.4 CTreeCtrl 469
20.5 Property Sheets 470
20.6 A Property Sheet Example 470
20.7 The CPropertySheet Class 471
20.8 Conclusion 473

viii

C
o

nt
e

nt
s

21

Creating Explorers 475

21.1 Creating the basic framework 476
21.2 Conclusion 480

Part 4 Advanced Features 481

22 Dialog Data
Exchange and Validation 483
22.1 Understanding DDX 484
22.2 Exchange Routines 485
22.3 Transfer Direction 486
22.4 Understanding DDV 486
22.5 An Example 487
22.6 Custom Routines 493
22.7 Conclusion 494

23 Understanding MFC 495
23.1 What Are Window Handles? 495
23.2 The Life of Windows and Objects 497
23.3 Initializing Dialogs 498
23.4 From HWND to CWnd 499
23.5 Permanent and Temporary Associations 501
23.6 Handles to Other Objects 501
23.7 How Messages Work 501
23.8 Subclassing 503
23.9 Conclusion 504

24 Enhancing The Edit Control 505
24.1 An Example 505
24.2 Understanding the Process 506
24.3 Conclusion 507

25 Self-Managing Controls 509
25.1 Owner-Drawing vs. Self-Drawing 510
25.2 Owner-Drawn Messages 510
25.3 The Self-Drawing Framework 510
25.4 Behind the Scenes 511
25.5 A General Solution 511

C
o

nte
nts

ix

25.6 A Self-Drawing Combo Box 513
25.7 Drawing Transparent Bitmaps 517
25.8 Subclassing the Combo Box 520
25.9 Conclusion 521

26

Another Look— 523

A Self-Drawing List Box 523

26.1 Introduction to Font Enumeration 523
26.2 Enumerating Font Families 524
26.3 Enumerating Font Styles 527
26.4 An Example 528
26.5 Conclusion 532

27

Creating A Splash Screen 533

533

27.1 An Example 533
27.2 Conclusion 537

28

Expanding Dialogs 539

28.1 The CExpandingDialog Class 539
28.2 An Example 545
28.3 Conclusion 546

29

Drawing and Controls 547

29.1 Drawing in CStatic Controls 547
29.2 Drawing in Dialogs 550
29.3 Dialog Controls and the Background 552
29.4 Conclusion 552

30

Dialog Bars 555

30.1 An Example 556
30.2 Data Exchange 558
30.3 Conclusion 559

31

Dialog and View Idle
Command Updating 561

31.1 How Idle Updates Work 561
31.2 Idle Updating in Views 562
31.3 An Example 563
31.4 Idle Updating in Dialogs 563
31.5 An Example 565
31.6 Conclusion 566

x

C
o

nt
e

nt
s

32

Odds and Ends 567

32.1 Accepting Files from the File Manager 567
32.2 Making an Application the Topmost Window 568
32.3 Starting an Application Minimized 569
32.4 Modeless Dialog Boxes 569
32.5 Mini-Frame Windows 571
32.6 Context Popup Menus 574
32.7 Modifying the System Menu 576
32.8 Conclusion 576

Part 5 Advanced MFC Classes 577

33 Database Access 579
33.1 Understanding Relational Databases 579
33.2 Understanding SQL 582
33.3 Understanding ODBC 585
33.4 Microsoft Query 586
33.5 The CRecordSet Class 591
33.6 Simple CRecordSet Operations 593
33.7 Using the CRecordView Class 602
33.8 Adding and Deleting Records 605
33.9 Conclusion 607

34 OLE 609
34.1 Understanding OLE 609
34.2 An Example 614
34.3 OLE as a Vision of the Future 617
34.4 Standard OLE Features 618
34.5 An Introduction to OLE Containers 621
34.6 An Introduction to OLE Servers 629
34.7 An Introduction to OLE Automation 636
34.8 An Introduction to OLE Controls 640
34.9 Conclusion 650

35 MFC Threads 651
35.1 Understanding the Possibilities 651
35.2 Understanding Threads 652
35.3 MFC Worker Threads 655
35.4 Thread Termination 657

C
o

nte
nts

xi

35.5 Passing Parameters to Threads 660
35.6 Suspending and Resuming Threads 661
35.7 Thread Priorities 662
35.8 Subclassing CWinThread 667
35.9 User Interface Threads 675
35.10 Conclusion 677

A

Understanding C++:
An Accelerated Introduction 679

B

Using the Visual C++
Compiler and Tools 739

B.1 Compiling and Executing a Console Program with Visual
C++ 739

B.2 Debugging 744
B.3 Compiling MFC Programs 747
B.4 The Browser 752
B.5 Resources and resource files 756
B.6 AppWizard Files 761
B.7 Using the ClassWizard 769
B.8 OLE Controls 775
B.9 Conclusion 781

C

Contacting the Authors 783

D

Using OpenGL with MFC 785

D.1 Writing an OpenGL Program 785
D.2 Simple 2-D Graphics 791
D.3 Transformations and the Matrix Stack 793
D.4 Mouse Action 796
D.5 Double Buffering 797
D.6 A Three Dimensional Cube 798
D.7 Z-Buffering 801
D.8 Conclusion 802

Index 803

xiii

PREFACE

The goal of this book is to show you how to develop professional Windows applica-
tions using MFC and tools like the AppWizard and ClassWizard. The book is de-
signed to move you rapidly and confidently to the point where you can create your
own rich, full-featured applications with C++ and MFC.

The most important feature of this book is its constant attention to advanced
features. As your skills develop, the book probes deeply into the concepts and capabil-
ities that will let you build applications that are unique and useful. Features like these:

• Subclassed controls with customized appearance and behavior
• Splash screens
• Expanding dialog boxes
• Bitmaps stretched over the backgrounds of dialogs and client areas
• Windows 95 controls
• Property sheets
• Floating palettes and tool bars
• Popup menus
• Customized system menus
• MDI applications with multiple document types
• Multi-threaded applications
• OLE-capable servers, clients, and controls
• Client/server databases
These features make the difference between a normal application and a stunning

application, and all of these different topics are explained in this book with straight-
forward examples and clear English descriptions.

Version Free

This book is designed to be "version free." The goal is to create a book that can
be updated on the web each time Visual C++ changes versions so that we can save you
the cost of buying a new book every six months. To accomplish this goal, we have iso-
lated all version-specific features in Appendix B. When a new version appears on the
market, we will update this appendix on the web immediately, and you can access our
updates, changes and supplements free of charge. See http://www.iftech.com/mfc for
details.

xiv

This book is continuously updated. See http://www.iftech.com/mfc

Pr
e

fa
c

e

Audience

As described in the chapter “Getting Your Bearings,” this book is designed with
several different entry points to help different kinds of programmers get started quickly.
If you have no prior experience with GUI application development, Visual C++ or
MFC, you can start at Chapter 1 and learn the basics, covering the concepts and theory
behind MFC from the ground up. By the time you finish Part 1 you will feel comfort-
able with MFC and will be ready to start learning some of its more intricate details.

If you are already familiar with GUI development but want to learn more about
the development tools like the AppWizard and ClassWizard, you can start at Part 2 or
3. Part 3 shows you how to accelerate your development cycle with the different tools
built into Visual C++. Once you have mastered these tools, you are ready to begin add-
ing professional features so move on to Parts 4 and 5.

If you are migrating from another operating system to Windows NT or Win-
dows 95, this book will help you to quickly map your existing knowledge into the NT
framework. See Chapter 0 for a list of the 110 most common Visual C++ program-
ming questions, as well as the sections that contain the answers. If you are a C
programmer with no C++ experience, use Appendix A to come up to speed on C++
and then start with Chapter 1.

Organization

This book is organized in five different parts, each one discussing a particular
type of subject matter.

Part 1 provides introductory material on GUI development, event-driven pro-
gramming, and the MFC hierarchy. If you have never seen MFC before, start here and
it will teach you the fundamentals. Part 1 shows you how to create and understand the
simplest MFC application, how to create new controls, how to customize the behavior
and appearance of those controls, and how to respond to events with message maps.
By the end of Part 1 you are well-grounded in the concepts and principles that make
any MFC program work properly.

Part 2 contains more advanced MFC details. In this part of the book you learn
about most of the different MFC classes: canned dialogs, list and edit controls, the
MFC application class, and the Windows drawing model. You also learn about the
debugging features built into MFC, along with a variety of utility classes that make
MFC programming easier.

Part 3 focuses on the AppWizard and ClassWizard tools in Visual C++. These
tools are designed to help you create MFC applications quickly and easily. This part
of the book starts with an introduction to the tools and shows how they work. It then
explores four in-depth example applications: A drawing editor, a text editor, a form-
based application and an address list application. These programs all show you how to
set up a framework and then add in menu options, dialogs, tool and status bars, print-
ing features, and so on.

Part 4 is a collection of advanced features that you will want to add to your own
applications as your skills develop. For example, Part 4 shows you how to create splash

The
 D

iske
tte

 a
nd

 the
 O

n-line
 Ind

e
x

This book is continuously updated. See http://www.iftech.com/mfc

xv

screens, expanding dialogs, popup menus, and so on. Browse though the different
chapters in this part to get more in-depth material on MFC or to find application fea-
tures that are important to you.

Part 5 talks about advanced MFC classes. In particular, it shows you how to add
database and OLE support to your applications. It also demonstrates how to use
Win32 threads to improve your application’s performance.

The Diskette and the On-line Index

The diskette included with this book contains the source code for all of the ex-
amples in the book, as well as the source code and data for an on-line indexing
program. There is also an EXAMPLES directory that contains all of the code from
each section of the book in a text file. If you want to follow along with the book and
work through the examples on your own, these text files will save you the trouble of
retyping the code in each step.

The index on the diskette is broken down by sections and includes every word
found in the manuscript. To use the index, follow the directions in the README file
on the disk to compile the program. When you run the index, you will see a display
that contains an edit area, three buttons (Help, Search and Quit), and a list area. Any
words that you type in the edit area are used to search for appropriate sections. For
example, if you want to find out how to create a Splash Screen, you would type
“Splash Screens” in the edit area. Press the “Search” button to begin the search. The
index program will list all sections that contain all three of those words. Enter as many
words as you like to hone the search. Word matching is exact and case-insensitive. If
a word does not appear in the book the program will tell you.

There are many cases where an exact match does not work well. For example,
there may be a section that contains “thread” and “create” but not “creating” and
“threads”, so if you enter the line “creating threads” on the edit line you get no match-
es. You can use the “*” wild card character at the end of a word to solve this problem.
For example, by entering “creat*” the system will OR together all words with the root
“creat” (“create”, “creates”, “creation”, etc.). You may want to get in the habit of using
the wild card character at the end of all words: “creat* thread*”, for example. This of-
ten yields more accurate results.

If an obvious word seems to be missing from the index, try to find it in the book
to make sure you are spelling it correctly. For example, “toolbar” is sometimes spelled
as one or two words in the book, and you need to spell it the same way in your search.

Contacting the Authors: Questions, Comments, and Version Changes

One thing about Microsoft is that it never stands still for very long. Its compilers
change versions and the libraries are upgraded constantly. One of the goals in creating
this book is to make its code compatible with existing and future releases of Microsoft
compiler products. Another goal is to give you “investment-grade” knowledge--

xvi

This book is continuously updated. See http://www.iftech.com/mfc

Pr
e

fa
c

e

knowledge that does not loose its value over time, and that is transferable between as
many different platforms as possible.

As things change however, you need a way to get updates and corrections. You
may also have questions, comments or suggestions for improving this book. If so, we
would like to hear from you. See Appendix C for information on asking questions via
email. You can also visit our World Wide Web server at http://www.iftech.com/mfc.

Acknowledgments

We would like to sincerely thank several people for their help and support in cre-
ating this book. Mike Meehan, our publisher, has shown tremendous flexibility and
good humor as this book has moved through versions and grown larger each time.
There really is an infinite amount of material to cover, and he has not ever stopped us
from trying to conquer it all, despite the logistical problems. Leigh Ann Brain, the
book’s designer and layout pro, has similarly shown tremendous patience and forti-
tude in the face of a gigantic book. We thank you both for making this book possible.

Dave Morey of Ziff-Davis has been extremely helpful in answering questions
and providing support. He also assisted in the production of the CD.

Tina Kasparian and Leigh Ann Brain have shown extreme patience, putting up
with our long phone calls at all hours and our constant babbling about controls and
frameworks. We couldn’t have done it without you both.

1

GETTING YOUR BEARINGS

You are probably opening this book because you are new to Windows Programming

or because you are new to MFC (Microsoft Foundation Classes) or the Visual C++

programming environment. For example, you might be an experienced UNIX or

Macintosh programmer. Or perhaps you have a lot of talent with C programming and

command-driven user interfaces on PCs and want to move over to Windows. You may

be experienced with Windows programming in C, but have never before used MFC

and C++ to develop Windows applications. Regardless of your origin, you will find

that as you try to make your transition you are hampered by two problems. The pur-

pose of this book is to quickly solve those problems so that you can begin creating your

own professional applications with Visual C++ as quickly as possible.

The first problem is mental: you have to get past the wall that surrounds Visual
C++. That wall arises because of the obvious complexity of the Windows and C++
programming environments. When you load Visual C++ from its CD, you notice that
there are tens of thousands of pages of documentation, hundreds of sample programs,
and untold megabytes of help files. No one has the time to sort through

all

of this ma-
terial, but you know that hidden in those megabytes are hundreds of important
concepts that you need to master.

The second problem is more pedestrian: you have to pick a place to start. But
where should you begin? How do you write a simple Windows application? How do
you learn how to write an advanced one?

This book is designed to help you move into the Visual C++ environment rap-
idly and confidently. The purpose of this chapter is to help you get your bearings in
this new environment. It will introduce you to Visual C++ and then give you a starting
point and a direction so that you can become an accomplished Windows programmer
very quickly using the most modern tools and techniques available.

2

This book is continuously updated. See http://www.iftech.com/mfc

G
e

tti
ng

 Y
o

ur
 B

e
a

rin
g

s

What is Visual C++?

The Visual C++ environment is huge and can be extremely intimidating initial-
ly. Visual C++ combines a complete suite of powerful tools into a single application
development environment, and the first time you face all of these tools it can be very
difficult to discern what they all do or how to use them. When you look at the book
reader application that comes with the Visual C++ CD-ROM, you face another hur-
dle: You find thousands and thousands of pages in many different books. The thought
of wading through all of these manuals can be daunting.

So let’s start at the beginning and look at Visual C++ in an organized way. First
of all, what is it? Here is a brief summary:

• Visual C++ is a C++ compiler
• Visual C++ is a debugging environment
• Visual C++ is an application framework generator
• Visual C++ is a project manager
• Visual C++ is an easy way to design and implement menus, dialogs, and other

“resources”
• Visual C++ is a programmer accelerator—several tools inside Visual C++ are

designed to make you more efficient by making your life as a programmer eas-
ier or by reducing the code you must write

In other words, Visual C++ is a complete and extremely powerful application de-
velopment environment. In order to take full advantage of this environment, you have
to become comfortable with all the tools, and you have to know how they can work
together to accelerate your software development cycle.

In its most basic form, Visual C++ is simply a C++ compiler. You can use it to
create simple text programs in C or C++. If you would like to try this out, go to Ap-
pendix B.1 and work through the example there. You will find that it is

extremely

 easy
to write, compile, and debug simple text programs using Visual C++.

Most people who purchase Visual C++ do not want to create text programs,
however. They want to create advanced Windows applications that make effective use
of the Windows 95 and Windows NT user interface. To do this, you must know C++,
and you must understand the MFC hierarchy. MFC is designed make you as produc-
tive as possible by encapsulating common Windows code in classes that are already
written, tested, and debugged. Once you invest the time to learn MFC, you are greatly
rewarded in increased speed, flexibility and robustness.

Part 1 of this book gives you a thorough introduction to MFC. It shows you the
basic principles used in every MFC program you write. Part 2 gives a complete over-
view of all the controls and features that MFC offers. Part 2 contains hundreds of
examples that make it easy to understand the different MFC classes.

Once you feel comfortable with MFC, you are ready to begin creating profes-
sional Windows applications. Part 3 introduces the AppWizard, the ClassWizard, and
the resource editing tools of Visual C++. The AppWizard is your starting point when
creating any full-blown Windows application: It helps you by generating a complete
file framework that organizes the entire application around a consistent core of MFC

A
va

ila
b

le
 D

o
c

um
e

nta
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

3

classes. The ClassWizard, in combination with the resource editing features that the
Visual C++ environment provides, then makes it easy to add to and complete your ap-
plication by helping you design, create, and install menus, dialog boxes, and other
application resources. The ClassWizard also helps you add the code that lets your ap-
plication respond to user input properly. Using these three tools—the AppWizard, the
ClassWizard, and the resource editors—together with the MFC class hierarchy, it is
extremely easy to complete professional applications very quickly. Part 3 contains four
different example applications to help demonstrate the process.

Part 4 continues by demonstrating advanced features. It shows you how to use
a variety of techniques to create such things as expanding dialogs, property sheets, di-
alog bars, splash screens, self-drawn controls and bitmapped backgrounds. These
techniques add significant utility to your applications when used appropriately. Final-
ly, Part 5 concludes the book by discussing advanced MFC classes for database
connectivity, OLE features, and so on.

Available Documentation

The Visual C++ CD-ROM contains over 100 megabytes of on-line documenta-
tion covering various aspects of Windows, MFC, and the tools available in Visual C++.
It contains many more megabytes of sample code. The MFC class hierarchy contains
hundreds of different classes holding thousands of member functions. The Win32 API
contains thousands of functions as well. All of this material is documented in on-line
help files. Obviously, there is no lack of documentation with this product.

This book, therefore, makes no attempt to replace the documentation. Its goal
is to help you wind your way through the Visual C++ forest and find what you need.
Using the base you gain from reading this book, you will be able to approach Visual
C++ and begin using it in productive ways very quickly.

There are currently seven different types of documentation provided by Mi-
crosoft for Visual C++ and MFC:

1. On-line Books – A series of manuals on the CD-ROM that act as the docu-
mentation for the system. The collection of books is visible in the InforView
pane (see Appendix B.6.2). Look at the titles of all the different books and
articles available. You will find that there are many .

2. Tech Notes – One of the sections in the on-line book collection is a set of
MFC technical notes. These notes provide a set of useful explanations and dis-
cussions on MFC and migration issues.

3. MFC Encyclopedia – Another section in books on-line is the MFC encyclo-
pedia, an extremely useful collection of notes and programming hints for the
MFC class hierarchy.

4. Sample Code – The Visual C++ directory contains a sample directory that
contains source code demonstrating a wide variety of techniques. Some of the
samples are written in C, while other samples use MFC and C++.

4

This book is continuously updated. See http://www.iftech.com/mfc

G
e

tti
ng

 Y
o

ur
 B

e
a

rin
g

s

5. Developer CD – Microsoft’s Developer’s Network CD provides quite a bit of
additional sample code, along with books and files containing a variety of
valuable information. You receive this CD when you become a member of the
Microsoft Developer’s Network.

6. Compuserve – Microsoft supports most of its products and environments on
Compuserve. The MSMFC forum is particularly useful for MFC program-
mers, as is the Visual C++ section of the MSLANG forum.

7. Internet News Groups - The following news groups are of interest to MFC
programmers: comp.os.ms-windows.programmer.tools.mfc and comp.os.ms-
windows.programmer.win32.

Using all of these different forms of documentation, you can find anything you
need to know. The key is understanding where and how to look for what you need.
This book will help accelerate that process tremendously.

Road Map

The tools in Visual C++ require a great deal of prior knowledge if you want to
use them effectively. For example, when you open the Visual C++ package and load
the CD, you may have the impression that you can use the AppWizard to generate
any program you like. Unfortunately, the code that the AppWizard generates is virtu-
ally worthless unless you know a good bit about MFC already. That is why this book
is structured the way it is. The progression presented in this book is exactly the pro-
gression you will need to follow if you do not already know MFC. However, different
people come into Visual C++ with varying levels of experience and different goals.
Here is a road map to guide you through the material so that you can find the best
starting point for your particular situation:

• If you do not know C++, you will need to learn it. Proceed to the accelerated
introduction to C++ in Appendix A of this book.

• If you want to simply try out Visual C++ and compile some simple programs,
proceed to Appendix B. It will show you how the compiler works and how to
compile and debug simple applications.

• If you know C++ but have never done any Windows programming of any
kind, proceed to Part 1. It will teach you the fundamentals of event-driven
programming and then quickly introduce you to MFC programming.

• If you have experience with Windows programming in C but have never done
Windows programming using C++ and MFC, proceed to Part 1. It will
quickly introduce you to the MFC class hierarchy and MFC programming.

• If you have used MFC before (for example, if you are familiar with MFC ver-
sion 1.0) but are unfamiliar with the new application development tools like
the AppWizard and the ClassWizard, skim Part 2 and then proceed to Part 3
for a complete introduction to the tools.

• If you are familiar with Visual C++ and MFC but want to learn about a vari-
ety of techniques that can make your applications look more professional,

C
o

m
m

o
n Q

ue
stio

ns

This book is continuously updated. See http://www.iftech.com/mfc

5

turn to Part 4. It will show you how to create things like splash screens, ex-
panding dialogs, property sheets, and self-drawn controls.

• If you are a corporate programmer who needs to attach to a client/server da-
tabase, pay particular attention to Chapter 33 in Part 5.

Common Questions

The goal of this section is to show you how to find answers to the most common
questions about Visual C++ and MFC. You may wish to scan this list now and peri-
odically in the future to quickly find answers to your questions.

Part 1

1. What is MFC? Why does it exist? See Chapter 1
2. How do I compile and run a simple MFC program? See Appendix B.3 and

Chapter 1.
3. How do I create a simple “Hello World!” program in MFC? What does the

code actually mean? See Chapter 2.
4. I have found the AppWizard, but when I run it I find it generates 15 files that

make absolutely no sense to me. What do I do? See the discussion at the
beginning of Part 3 of this book.

5. How do I create a simple MFC control? See Chapter 3.
6. How do I customize MFC controls and change their styles? See Chapter 3.
7. How do I create a push button and respond to its events in MFC? See Chap-

ter 4.
8. What is a message map? See Chapter 4.
9. How do I create a scroll bar and respond to its events? See Chapter 4.

10. How do I create an edit control and respond to its events? See Chapter 5 and
Chapter 8.

11. How do I create simple applications? See Chapter 5.
12. How do I make a simple application appropriately handle tab keys, accelera-

tors, etc.? See Chapter 5.

Part 2

13. What is a resource? What is a resource file? What are the advantages of
resources? See Chapter 6.

14. How do I create and use icon, dialog, menu, string table, and accelerator
resources? See Chapter 6.

15. How do I create a message dialog? A File Open dialog? A Font dialog? A Color
dialog? A Print dialog? A Find/Replace dialog? See Chapter 7.

16. What is the difference between modal and modeless dialogs? See Chapter 7.
17. How do I use an edit control in single and multi-line modes? See Chapter 8.
18. How do I create a simple text editor? See Chapter 8.

6

This book is continuously updated. See http://www.iftech.com/mfc

G
e

tti
ng

 Y
o

ur
 B

e
a

rin
g

s

19. How do I create and use lists, drop down lists, and combo boxes in my appli-
cations? See Chapter 9 and Chapter 20.

20. How do I make multi-column and tabbed lists? See Chapter 9.
21. How do I load and display system and custom icons? See Chapters 6 and 10.
22. How do I change the application cursor? See Chapter 10 and 11.5.3.
23. How do I display a watch cursor? See Chapter 10.
24. How do I perform background processing while the application is idle? See

Chapter 10.
25. What is a document template? See Chapter 10 and Chapter 16.
26. How do I create an MRU file list? See Chapter 10.
27. How do I use INI files with my applications? See Chapter 10.
28. How do I draw lines, rectangles, circles, etc. in my application’s window? See

Chapter 11.
29. How do I add graphics to an application? See Chapter 11.
30. How do I respond to mouse clicks in a drawing? See Chapter 11.
31. How do I create rubber-banded lines, rectangles, etc. in a drawing?
32. How do I create a drawing space larger than the current window? See Chap-

ters 11 and 15.
33. How do I create animated drawings? See Chapter 11.
34. How do I work with text and binary files in MFC? See Chapter 12.
35. How do I work with strings in MFC? See Chapter 12.
36. How do I work with time values in MFC? See Chapter 12.
37. Is there an easy way to create arrays, lists and hash tables in MFC? See Chapter

12.
38. What debugging facilities are built into MFC? How do I make use of the

MFC exception handling mechanisms? See Chapter 13.
39. How do I use TRACE and ASSERT statements? See Chapter 13.
40. How do I prevent and detect memory leaks in my applications? See Chapter

13.

Part 3

41. Are there any simple applications in this book showing me how to use the
AppWizard and ClassWizard? See the drawing example, the editor example,
the form example and the address list example in Part 3 of this book.

42. What is the AppWizard? What is the ClassWizard? How do I use them to
speed up application development? See Chapter 14.

43. How do I create a simple framework with the AppWizard? See Chapter 14.
44. What do all of the files generated by the AppWizard do? See Chapter 14.
45. What is the document/view paradigm? See Chapters 14, 15 and 18.
46. What do the STDAFX files do? See Chapter 14.

C
o

m
m

o
n Q

ue
stio

ns

This book is continuously updated. See http://www.iftech.com/mfc

7

47. Can you give me a simple example of the AppWizard and ClassWizard in
action? See Chapter 14.

48. How do I create a simple drawing program with the AppWizard and the doc-
ument/view paradigm? See Chapter 15.

49. What is the difference between an SDI and an MDI application? See Chapter
15.

50. How do I understand what is going on inside the AppWizard framework? See
Section 15.3 and Chapter 21.

51. How do I add new menus and menu options to an application? See Chapter
15.

52. How do I add scrolling to a drawing application? How do I use splitter win-
dows? See Chapter 15.

53. How do I add a new dialog to an AppWizard framework? How do I use DDX
and DDV? See Chapters 15 and 18.

54. How do I add a dialog class with the ClassWizard? See Chapters 15 and 18.
55. How do I add printing to an application? What do the MFC printing func-

tions do? How do I handle multi-page printing? See Chapters 15 and 18.
56. How do I create a text editor with the AppWizard? See Chapter 16.
57. How do I handle multiple document types in a single MDI application? See

Chapter 16.
58. What is a document template? See Chapter 16.
59. How do I use form views? How do I put controls on the face of an applica-

tion? See Chapter 17.
60. Can you give me an example that combines all of these different concepts in a

single application? See Chapter 18.
61. How do I create a resizable tabbed list in a form view? See Chapter 18.
62. How do I enable and disable menu options? See Chapters 18 and 6.
63. How do I customize the tool bar and status bar? See Chapter 18.
64. How do I work with the clipboard in an application? See Chapter 18.
65. How do I print text information from an application? See Chapter 18.
66. How do I add context sensitive help to my applications? See Chapter 19.
67. What is the help compiler and how do I use it? See Chapter 19.
68. How do I use the Windows 95 controls in my applications? See Chapter 20.
69. How do I create Property sheets (tabbed dialogs) in my applications? See

Chapter 20.

Part 4

70. How do DDX and DDV really work behind the scenes? See Chapter 22.
71. How do I integrate all of the different types of controls and use DDX to access

them? See Chapter 22.

8

This book is continuously updated. See http://www.iftech.com/mfc

G
e

tti
ng

 Y
o

ur
 B

e
a

rin
g

s

72. Is there a way to create new DDX functions for different data types? See
Chapter 22.

73. How does MFC really work? What is happening inside of MFC? How does a
C++ program using MFC compare to a C program? See Chapter 23.

74. How does MFC handle window handles? See Chapter 23.
75. Where is the window procedure in an MFC program? See Chapter 23.
76. How does subclassing work with Windows controls? See Chapter 23.
77. How can I take an existing control, like the CEdit control, and enhance its

behavior without completely rewriting it? How do I integrate a new control
like this into a dialog? See Chapter 24.

78. How do I create list boxes and combo boxes that contain icons, bitmaps or
other graphical elements? See Chapter 26.

79. How do I handle owner-drawn controls in MFC? See Chapter 26.
80. How do I enumerate fonts and other resources under Windows? See Chapter

26.
81. How can I add a splash screen to my applications? See Chapter 27.
82. How do I add expanding dialogs to my applications? See Chapter 28.
83. How do I stretch a bitmap over an area? See Chapter 29.
84. How can I draw onto a CStatic control? See Chapter 29.
85. How do I add a bitmap or a drawing to the background of a dialog or a win-

dow? See Chapter 29.
86. How do I create my own floating palettes and tool bars? See Chapter 30.
87. How do I accept files dragged from the File Manager? See Chapter 32.
88. How do I make an application float so that it is “always on top.” See Chapter

32.
89. How do I start an application in a minimized or maximized state? See Chapter

32.
90. How do I create a modelss dialog box? See Chapter 32.
91. How do I create a mini-frame window? See Chapter 32.
92. How do I create a popup menu activated by the right mouse button? See

Chapter 32.
93. How do I customize the system menu? See Chapter 32.

Part 5

94. How to I access SQL databases from an MFC program? Chapter 33.
95. What is a relational database? What is SQL? See Chapter 33.
96. What is ODBC? How do I create ODBC data sources? See Chapter 33.
97. What is the CRecordset class? How do I access databases with it? See Chapter

33.

C
o

m
m

o
n Q

ue
stio

ns

This book is continuously updated. See http://www.iftech.com/mfc

9

98. How do I retrieve records from a database? How do I add and delete records?
See Chapter 33.

99. What is OLE? How can I use it in my applications? See Chapter 34.
100. What features does OLE support? See Chapter 34.
101. What is the registry? What is a class ID? See Chapter 34.
102. How do I create OLE servers and containers with MFC? See Chapter 34.
103. How do I create an OLE automation server? How do I access an automation

server from a Visual Basic or Visual C++? See Chapter 34.
104. What is an OCX? How do I create an OLE control? See Chapter 34.
105. What is a thread? How can I use threads to improve applications? See Chapter

35.
106. What is the difference between worker and user-interface threads? See Chap-

ter 35.
107. How do thread priorities work? What are they? See Chapter 35.
108. What is C++? How do I move from C to C++? See Appendix A.
109. How do I use the Visual C++ compiler, debugger and browser? See Appendix B.
110. What is OpenGL and how do I use it to create realistic graphical images? See

Appendix D.

Part 1

V

ISU
A

L

 C
++

A
N

D

 M
FC

 B

A
SIC

S

In Part 1 of this book, you will learn about the fundamental concepts and vocabulary
that drive Visual C++ and the Microsoft Foundation Class (MFC) hierarchy. Part 1
introduces you to simple MFC controls, customization, message maps for event han-
dling, and other central ideas that make MFC programs work properly. You will also
learn how to compile MFC programs in Visual C++. By the end of Part 1 you will un-
derstand how to create simple MFC programs of your own. Parts 2, 3, 4, and 5 show
you how to increase your knowledge so you can create complete, professional applica-
tions with Visual C++.

13

1INTRODUCTION

Visual C++ is much more than a compiler. It is a complete application development
environment that, when used as intended, lets you fully exploit the object-oriented na-
ture of C++ to create professional Windows applications. To take advantage of these
features, you need to understand the C++ programming language. If you have never
used C++, please turn to Appendix A for an introduction. You must then understand
the Microsoft Foundation Class (MFC) hierarchy. This class hierarchy encapsulates
the user interface portion of the Windows API, supplies other useful classes, and
makes it significantly easier to create Windows applications in an object-oriented way.

This chapter introduces the fundamental concepts and vocabulary behind MFC
and event-driven programming. In this chapter you will enter, compile, and run a sim-
ple MFC program using Visual C++. If you already feel comfortable with the
concepts, read section 1.1 and then move straight to Section 1.4, which will show you
how to start using Visual C++ immediately. Chapter 2 provides a detailed explanation
of the code used in Chapter 1. Chapter 3 discusses MFC controls and their customi-
zation. Chapter 4 covers message maps, which let you handle events in MFC. Finally,
Chapter 5 completes this section with several simple example applications that inte-
grate the different concepts you have learned.

1.1 What is the Microsoft Foundation Class Library?

Let’s say you want to create a Windows application. You might, for example,
need to create a specialized text or drawing editor, or a program that finds files on a
large network, or an application that lets a user visualize the interrelationships in a big
data set. Where do you begin?

A good starting place is the design of the user interface. First, decide what the
user should be able to do with the program, and then pick a set of user interface objects
accordingly. The Windows user interface has a number of standard controls, such as
buttons, menus, scroll bars, and lists, that are already familiar to Windows users. With
this in mind, you can choose a set of controls and decide how they should be arranged

14

This book is continuously updated. See http://www.iftech.com/mfc

1
In

tro
d

uc
tio

n

on screen. You might start with a rough sketch of the interface if the program is small,
or go through a complete user interface specification and design cycle if the program
is large.

The next step is to implement the code. When creating a program for any Win-
dows platform, the programmer has two choices: C or C++. With C, the programmer
codes at the level of the Windows Application Program Interface (API). This interface
consists of a collection of hundreds of C functions described in the Window’s API
Reference books. The more modern version of the API, first introduced in Windows
NT, is typically referred to as the “Win32 API,” to distinguish it from the original 16-
bit API of earlier Windows products like Windows 3.1.

Microsoft also provides a C++ library that sits on top of the Windows API and
makes the programmer’s job easier. Called the MFC library, this library’s primary ad-
vantage is efficiency. It greatly reduces the amount of code that must be written to
create a Windows program. It also provides all the advantages normally found in C++
programming, such as inheritance and encapsulation. MFC is portable across versions
of Windows and the Mac, so that, for example, code created under Windows 3.1 can
move to Windows NT or Windows 95 very easily. MFC is therefore the preferred
method for developing Windows applications and will be used throughout this book.

When you use MFC, you write code that creates the necessary user interface
controls and customizes their appearance. You also write code that responds when the
user manipulates these controls. For example, if the user clicks a button, you want to
have code in place that responds appropriately. It is this sort of event-handling code
that will form the bulk of any application. Once the application responds correctly to
all of the available controls, it is finished.

You can see from this discussion that the creation of a Windows program is a
straightforward process when using MFC. The goal of this book is to fill in the details
and to show the techniques you can use to create professional applications as quickly
as possible. The Visual C++ application development environment is specifically
tuned to MFC, so by learning MFC and Visual C++ together you can significantly
increase your power as an application developer.

1.2 Windows Vocabulary

The vocabulary used to talk about user interface features and software develop-
ment in Windows is basic but unique. Here we review a few definitions to make
discussion easier for those who are new to the environment.

Each application on the screen has a main application window. This is the win-
dow you see when the program executes, and it normally contains the main pull-down
menu, user controls, and so on. A simple main window is shown in Figure 1.1 Under
Windows 95 things look a little different but do the same things.

This main window contains several standard elements. The bar at the top of the
window is called the

title bar

. From left to right it contains the

system menu

 (or control
menu) box, the

title

 (or caption) containing the word “Clock,” and the

minimize

 and

1.2
W

ind
o

w
s V

o
c

a
b

ula
ry

This book is continuously updated. See http://www.iftech.com/mfc

15

maximize

 buttons used to iconify and expand the window, respectively. Around the
window a thick frame allows the user to resize the window.

Below the title bar is a

menu bar

, here containing the single menu named “Set-
tings.” The “S” of “Settings” is underlined to indicate its use as a

menu mnemonic

. If you
hit

Alt-S

 on the keyboard, it is the same as clicking the settings menu with the mouse.
The area below the menu bar is left for the application itself, and it is called the

client area

. In Figure 1.1 the client area holds the current time. Typically, the client
area is filled with controls or child windows. Windows applications can use any of a
number of standard user controls:

• Static text labels
• Push buttons
• List boxes
• Combo boxes (a more advanced form of list)
• Radio boxes
• Check boxes
• Editable text areas (single and multi-line)
• Scroll bars
Windows supports several types of application windows. A typical application

will live inside a

frame window

. A frame window is a full-featured main window that
the user can resize, minimize to an icon, maximize to fill the screen, and so on. Win-
dows also supports two types of dialog boxes:

modal

 and

modeless

. A modal dialog box,
once on the screen, blocks input to the rest of the application until it is answered. A
modeless dialog box can appear at the same time as the application and seems to “float
above” it to keep from being overlaid.

Windows also provides an organizing scheme called the

Multiple Document In-
terface

, or MDI, an example of which is shown in Figure 1.2. The MDI system allows
the user to view multiple documents at the same time within a single instance of an
application. For example, a text editor might allow the user to open multiple files si-
multaneously. When implemented with MDI, the application presents a large
application window that can hold multiple sub-windows, each containing a docu-
ment. The single main menu is held by the main application window and it applies to
the topmost window held within the MDI frame. Individual windows can be iconified
or expanded as desired within the MDI frame, or the entire MDI frame can be mini-
mized into a single icon on the desktop. The MDI interface gives the impression of a

Figure 1.1

A typical Windows application

16

This book is continuously updated. See http://www.iftech.com/mfc

1
In

tro
d

uc
tio

n

second desktop out on the desktop, and it goes a long way toward organizing and re-
moving window clutter.

Each application that you create will use its own unique set of controls, its own
menu structure, and its own dialog boxes. A great deal of the effort that goes into cre-
ating any good application interface lies in the choice and organization of these
interface objects. Visual C++, along with its resource editors and ClassWizard, makes
the creation and customization of these interface objects extremely easy.

1.3 Event-driven Software and Vocabulary

All window-based GUIs contain the same basic elements and all operate in the
same way. On screen the user sees a group of windows, each of which contains con-
trols, icons, objects, and so on that are manipulated with the mouse or the keyboard.
The interface objects seen by the user are the same from system to system: push but-
tons, scroll bars, icons, dialog boxes, pull-down menus, etc. These interface objects all
work the same way, although some have minor differences in their “look and feel.” For
example, scroll bars look slightly different as you move from Windows to the Mac, but
they all do the same thing.

Figure 1.2

A typical MDI application

1.3
Eve

nt-d
rive

n So
ftw

a
re

 a
nd

 V
o

c
a

b
ula

ry

This book is continuously updated. See http://www.iftech.com/mfc

17

From a programmer’s standpoint, the systems are all similar in concept, al-
though they differ radically in their specifics. To create a GUI program, the
programmer first puts all the needed user interface controls into a window. For exam-
ple, if the programmer is trying to create a simple program such as a Fahrenheit to
Celsius converter, then the programmer selects user interface objects appropriate to
the task and displays them on screen. In this example, the programmer might let the
user enter a temperature in an editable text area, display the converted temperature in
another un-editable text area, and let the user exit the program by clicking on a push
button labeled “Quit.” This structure is shown in Figure 1.3.

As the user manipulates the application’s controls, the program must respond
appropriately. For example, if the user clicks the Quit button, the button must update
the screen appropriately, highlighting itself as necessary. Then the program must re-
spond by quitting. Normally the button manages its appearance itself, and the
program in some way receives a message from the button that says, “The Quit button
was pressed. Do something about it.” The program responds by exiting.

Windows follows this same general pattern. In a typical application you will cre-
ate a main window and place inside it different user interface controls. These controls
are often referred to as

child windows

–each control is like a smaller and more special-
ized sub-window inside the main application window. As the application
programmer, you manipulate the controls by sending them messages via function
calls, and they respond to user actions by sending messages back to your code.

If you have never done any “event-driven” programming, then all of this may
seem foreign to you. However, the event-driven style of programming is easy to un-
derstand when compared to a normal command-driven user interface.

Figure 1.3

Elements of a typical application showing the selection of user interface controls in
a Fahrenheit to Celsius conversion program

Fahrenheit

Temperature

32

Celsius

Temperature

0

Quit

Fahrenheit
Temperature

Celsius
Temperature

0

Quit

Label

Edit area

Label

Button

Main window

18

This book is continuously updated. See http://www.iftech.com/mfc

1
In

tro
d

uc
tio

n

In a command-driven user interface, the system interacts with the user in three
steps. First, the system prompts the user for a command. The prompt could be some-
thing explanatory such as:

Please enter the next command>

Or it could be something more obtuse:

%

The user is expected to know all the commands in the system and to type which-
ever one is needed. Second, the user types a command at the prompt and the system
reads it. Third, the system parses the command and any modifiers following the com-
mand. The parsing step allows the system to call appropriate code to “execute” the
command. Once command execution is complete, the program issues a new command
prompt and the cycle repeats. Users of DOS or UNIX are familiar with this process.

An event-driven user interface works somewhat differently. The exact details de-
pend on the system and the level at which you are interfacing with it, but the basic
concepts are similar. In an event-driven interface, the application paints several (or
many) user interface objects such as buttons, text areas, and menus onto the screen.
Now the application waits–typically in a piece of code called an

event loop

–for the user
to do something. The user can do anything to any of the objects on screen using either
the mouse or the keyboard. The user might click one of the buttons, for example. The
mouse click is called an

event

. Event-driven systems define events for user actions such
as mouse clicks and keystrokes, as well as for system activities such as screen updating.

At the lowest level of abstraction, you have to respond to each event in a fair
amount of detail. This is the case when you are writing normal C code directly to the
API. In such a scenario, you receive the mouse-click event in some sort of structure.
Code in your event loop looks at different fields in the structure, determines which
user interface object was affected, perhaps highlights the object in some way to give
the user visual feedback, and then performs the appropriate action for that object and
event. When there are many objects on the screen, the application becomes very large.
It can take a quite a bit of code simply to figure out which object was clicked and what
to do about it.

Fortunately, you can work at a much higher level of abstraction. In MFC, almost
all these low-level implementation details are handled for you. If you want to place a
user interface object on the screen, you create it with two lines of code. If the user
clicks on a button, the button does everything needed to update its appearance on the
screen and then calls a pre-arranged function in your program. This function contains
the code that implements the appropriate action for the button. MFC handles all the
details for you: You create the button and tell it about a specific handler function, and
it calls your function when the user presses it.

The labor involved in creating MFC applications is almost completely devoted
to the creation of the handler functions. Visual C++ contains tools, described in Part
3 of this book, that make this process easy and intuitive.

1.4
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

19

1.4 An Example

One of the best ways to begin understanding the structure and style of a typical
MFC program is to enter, compile, and run a small example. Listing 1.1 contains a
simple “Hello World” program. Figure 1.4 shows a screen dump of the program dur-
ing execution. If this is the first time you’ve seen this sort of program, it probably will
not make a lot of sense initially. Don’t worry about that. We will examine the code in
detail in the next chapter. For now, the goal is to use the Visual C++ environment to
create, compile, and execute this simple program.

Listing 1.1
hello.cpp – A simple “Hello World” program in MFC.

//hello.cpp

#include <afxwin.h>

// Declare the application class
class CHelloApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CHelloApp HelloApp;

// Declare the main window class
class CHelloWindow : public CFrameWnd
{

CStatic* cs;
public:

CHelloWindow();
};

// The InitInstance function is called each
// time the application first executes.
BOOL CHelloApp::InitInstance()
{

m_pMainWnd = new CHelloWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CHelloWindow::CHelloWindow()
{

// Create the window itself
Create(NULL,

"Hello World!",
WS_OVERLAPPEDWINDOW,

20

This book is continuously updated. See http://www.iftech.com/mfc

1
In

tro
d

uc
tio

n

CRect(0,0,200,200));
// Create a static label
cs = new CStatic();
cs->Create("hello world",

WS_CHILD|WS_VISIBLE|SS_CENTER,
CRect(50,80,150,150),
this);

}

This small program does three things. First, it creates an “application object.”
Every MFC program you write will have a single application object that handles the
initialization details of MFC and Windows. Next, the application creates a single win-
dow on the screen to act as the main application window. Finally, inside that window
the application creates a single static text label containing the words “Hello World.”
We will look at this program in detail in the next chapter to gain a complete under-
standing of its structure.

The steps necessary to enter and compile this program are straightforward. If
you have not yet installed Visual C++ on your machine, do so now. You will have the
option of creating standard and custom installations. For the purposes of this book a
standard installation is suitable and after answering two or three simple questions the
rest of the installation is quick and painless. Then turn to Appendix B.3.

1.5 Conclusion

In this chapter you have successfully compiled and executed your first program.
You will use these same steps for each of the programs you create in Parts 1 and 2 of
this book. You will find that you can either create a separate directory for each project
or you can create a single project file and directory, and then add and remove different
source files. For more information on the compiler, debugger, browser, and so on,
please see Appendix B.

In the next chapter, we will examine the program in Listing 1.1 in detail so you
gain a more complete understanding of its structure.

Figure 1.4
Screen dump of the “Hello World” program
during execution

21

2UNDERSTANDING AN MFC PROGRAM

In this chapter we will examine a simple MFC program piece by piece to gain an un-
derstanding of its structure and conceptual framework. We will start by looking at
MFC itself and then examine how you use MFC to create applications.

2.1 An Introduction to MFC

MFC is a large and extensive C++ class hierarchy that makes Windows applica-
tion development significantly easier. MFC encapsulates much of the Windows API,
letting you take advantage of all the features of C++ when writing Windows code. As
each new version of Windows comes out, MFC gets modified so that old code com-
piles and works under the new system. MFC also grows over time, adding new
capabilities to the hierarchy and making it easier to create complete applications.

The advantage of using MFC and C++–as opposed to directly accessing the
Windows API from a C program–is that MFC already contains and encapsulates all
the normal “boilerplate” code that all Windows programs written in C must contain.
Programs written in MFC are therefore much smaller than equivalent C programs. In
addition, aspects of Windows programming that are quite complicated when dealt
with in C become almost trivial in MFC. For example, creating an MDI framework
in MFC is trivial, but is rather complex in C. On the other hand, MFC is a fairly thin
covering over the C functions, so there is little or no performance penalty imposed by
its use. It is also easy to customize things using the standard C calls when necessary
because MFC does not modify or hide the basic structure of a Windows program.

The best part about using MFC is that it does all the hard work for you. The
hierarchy contains thousands and thousands of lines of correct, optimized, and robust
Windows code. Many of the member functions that you call invoke code that would
have taken you weeks to write yourself. In this way MFC tremendously accelerates
your project-development cycle.

MFC is fairly large. For example, Version 4.0 of the hierarchy contains over 200
different classes. Fortunately, you don’t need to use all of them in a typical program.
In fact, it is possible to create some fairly spectacular software using only ten or so of
the different classes available in MFC. The hierarchy is broken down into six different
class categories:

22

This book is continuously updated. See http://www.iftech.com/mfc

2
U

nd
e

rs
ta

nd
in

g
 a

n
M

FC
 P

ro
g

ra
m

• Application Architecture
• Visual Objects
• General Purpose
• Collections
• OLE 2
• Database
We will concentrate on visual objects initially. Part 2 contains an overview, with

examples, of a majority of the classes in the hierarchy. Figure 2.1 shows the critical
portion of the class hierarchy that deals with application support and windows
support.

There are several things to notice in Figure 2.1. First, most classes in MFC derive
from a base class called

CObject

. This class contains data members and member func-
tions that are common to most MFC classes. The second thing to notice is the
simplicity of the diagram. The

CWinApp

 class is used whenever you create an appli-
cation and it is used only once in any program. The

CWnd

 class collects all the

Figure 2.1

The portion of the Microsoft Foundation
Class Library that deals with applications
and windows.

CObject

CCmdTarget

CWinApp

CWnd

CStatic

CButton

CListBox

CComboBox

CScrollBar

CEdit

CFrameWnd

CDialog

2.2
D

e
sig

ning
 a

 Pro
g

ra
m

This book is continuously updated. See http://www.iftech.com/mfc

23

common features found in windows, dialog boxes, and controls. The

CFrameWnd

class inherits from

CWnd

 and implements a normal framed application window.

CDialog

 handles the two normal flavors of dialogs: modeless and modal, respectively.
Finally, Windows supports six native control types: static text, editable text, push but-
tons, scroll bars, lists, and combo boxes (an extended form of list). Once you
understand this fairly small number of pieces, you are well on your way to a complete
understanding of MFC. The other classes in the MFC hierarchy implement other fea-
tures such as memory management, document control, database support, and so on.

To create a program in MFC, you either use its classes directly or, more com-
monly, you derive new classes from the existing classes. In the derived classes you
create new member functions that allow instances of the class to behave properly in
your application. You can see this derivation process in the simple program we used
in Chapter 1, which is described in greater detail in Section 2.3. Both

CHelloApp

 and

CHelloWindow

 in Listing 1.1 are derived from existing MFC classes.

2.2 Designing a Program

Before discussing the code itself, it is worthwhile to briefly discuss the program
design process under MFC. As an example, imagine that you want to create a program
that displays the message “Hello World” to the user. This is obviously a very simple
application but it still requires some thought.

A “Hello World” application first needs to create a window on the screen that
holds the words “Hello World.” It then needs to get the actual “Hello World” words
into that window. Three objects are required to accomplish this task:

1. An application object that initializes the application and hooks it to Windows.
The application object handles all low-level event processing.

2. A window object that acts as the main application window.
3. A static text object that will hold the static text label “Hello World.”

Every program that you create in MFC will contain the first two objects. The
third object is unique to this particular application. Each application will define its
own set of user interface objects that display the application’s output as well as gather
input from the user.

Once you have completed the user interface design and decided on the controls
necessary to implement the interface, you write the code to create the controls on the
screen. You also write the code that handles the messages generated by these controls
as they are manipulated by the user. In the case of a “Hello World” application, only
one user interface control is necessary. It holds the words “Hello World.” More real-
istic applications may have hundreds of controls arranged in the main window and
dialog boxes.

2.3 Understanding the Code for “Hello World”

Listing 2.1 shows the code for the simple “Hello World” program that you en-
tered, compiled, and executed in Chapter 1. Line numbers have been added to allow

24

This book is continuously updated. See http://www.iftech.com/mfc

2
U

nd
e

rs
ta

nd
in

g
 a

n
M

FC
 P

ro
g

ra
m

discussion of the code in the sections that follow. By walking through this program line
by line, you can gain a good understanding of the way MFC is used to create simple
applications. Part 3 of this book discusses how to create more complicated applications
using the AppWizard to generate an MFC application framework for you.

If you have not done so already, please compile and execute Listing 2.1 by fol-
lowing the instructions given in Appendix B.3.

Listing 2.1
hello.cpp - A simple “Hello World” program

1 //hello.cpp

2 #include <afxwin.h>

3 // Declare the application class
4 class CHelloApp : public CWinApp
5 {
6 public:
7 virtual BOOL InitInstance();
8 };

9 // Create an instance of the application class
10 CHelloApp HelloApp;

11 // Declare the main window class
12 class CHelloWindow : public CFrameWnd
13 {
14 CStatic* cs;
15 public:
16 CHelloWindow();
17 };

18 // The InitInstance function is called each
19 // time the application first executes.
20 BOOL CHelloApp::InitInstance()
21 {
22 m_pMainWnd = new CHelloWindow();
23 m_pMainWnd->ShowWindow(m_nCmdShow);
24 m_pMainWnd->UpdateWindow();
25 return TRUE;
26 }

27 // The constructor for the window class
28 CHelloWindow::CHelloWindow()
29 {
30 // Create the window itself
31 Create(NULL,
32 "Hello World!",
33 WS_OVERLAPPEDWINDOW,
34 CRect(0,0,200,200));
35 // Create a static label
36 cs = new CStatic();

2.3
U

nd
e

rsta
nd

ing
 the

 C
o

d
e

 fo
r “H

e
llo

 W
o

rld
”

This book is continuously updated. See http://www.iftech.com/mfc

25

37 cs->Create("hello world",

38 WS_CHILD|WS_VISIBLE|SS_CENTER,

39 CRect(50,80,150,150),

40 this);

41 }

Take a moment and look though this program. Get a feeling for the “lay of the
land.” The program consists of six small parts, each of which does something
important.

1. The program first includes afxwin.h (line 2). This header file contains all
the types, classes, functions, and variables used in MFC. It also includes other
header files for such things as the Windows API libraries.

2. Lines 3 through 8 derive a new application class named CHelloApp from the
standard CWinApp application class declared in MFC. The new class is created
so the InitInstance member function in the CWinApp class can be overridden.

Some of the variable names in Listing 2.1 may seem a bit odd because Mi-
crosoft code uses something called “Hungarian notation” to prefix its variable
names. This notational system encodes information about the variable’s type
in the variable’s name. For example, a variable named bFlag starts with “b” to
indicate that it is a Boolean variable. The name szString uses “sz” to indicate
that it is a null (zero) terminated string. In Listing 2.1, the name m_pMainWnd
uses “m_” to indicate that the variable is a class member and “p” to indicate
that it is a pointer. By looking at several variable names and their types, you will
quickly learn what each character means. Here is a table of common letters
and their translations:

b BOOL

c char

h handle

i int

l long

m_ member

p pointer

sz null terminated string

w UINT

You will find that each programmer tends to have slightly different preferenc-
es, so the notation may vary slightly from program to program. You will also find
that you either like or dislike this system. If you dislike it, don’t use it. There is no
requirement that your variable names comply with this system.

26

This book is continuously updated. See http://www.iftech.com/mfc

2
U

nd
e

rs
ta

nd
in

g
 a

n
M

FC
 P

ro
g

ra
m

InitInstance

 is a virtual function that is called as the application begins execu-
tion.

3. In Line 10, the code declares an instance of the application object as a global
variable. This instance is important because it causes the program to execute.
When the application is loaded into memory and begins running, the creation
of that global variable causes the default constructor for the

CWinApp

 class to
execute. This constructor automatically calls the

InitInstance

 function in lines
18 though 26.

4. In lines 11 through 17, the

CHelloWindow

 class is derived from the

CFrameWnd

 class declared in MFC.

CHelloWindow

 acts as the application’s
window on the screen. A new class is created so that a new constructor and data
member can be implemented.

5. Lines 18 through 26 implement the

InitInstance

 function. This function cre-
ates an instance of the

CHelloWindow

 class, thereby causing the constructor
for the class in Lines 27 through 41 to execute. It also gets the new window
onto the screen.

6. Lines 27 through 41 implement the window’s constructor. The constructor
actually creates the window and then creates a static control inside it.
An interesting thing to notice in this program is that there is no

main

 or

Win-
Main

 function, and no apparent event loop. Yet we know from executing it in
Chapter 1 that it processed events. The window could be minimized and maximized,
moved around, and so on. All this activity is hidden in the main application class

CWinApp

 and we therefore don’t have to worry about it.Event handling is totally au-
tomatic and invisible in MFC.

The following sections describe the different pieces of this program in more de-
tail. It is unlikely that all of this information will make complete sense to you right
now. It’s best to read through it to get your first exposure to the concepts. In Chapter
3, where a number of specific examples are discussed, the different pieces will come
together and begin to clarify themselves.

2.3.1 The Application Object

Every program that you create in MFC will contain a single application object
that you derive from the

CWinApp

 class. This object must be declared globally (line
10) and can exist only once in any given program.

An object derived from the

CWinApp

 class handles initialization of the applica-
tion, as well as the main event loop for the program. The

CWinApp

 class has several
data members and a number of member functions. We will look at all these different
functions and variables in detail in later chapters (see in particular Chapter 10). For
now, almost all are unimportant. If you would like to browse through some of these
functions, however, search for

CWinApp

 in the MFC documentation. In the program
above, we have overridden only one virtual function in

CWinApp

, that being the

Init-
Instance

 function.

2.3
U

nd
e

rsta
nd

ing
 the

 C
o

d
e

 fo
r “H

e
llo

 W
o

rld
”

This book is continuously updated. See http://www.iftech.com/mfc

27

The purpose of the application object is to initialize and control your application.
Because Windows allows multiple instances of the same application to run simulta-
neously, MFC breaks the initialization process into two parts and uses two functions–

InitApplication

 and

InitInstance

–to handle it. Here we have used only the

InitIn-
stance

 function because of the simplicity of the application.

InitInstance

 is called each
time a new instance of the application is invoked. The code in Lines 3 through 8 creates
a class called

CHelloApp

 derived from

CWinApp

. It contains a new

InitInstance

 func-
tion that overrides the existing function in

CWinApp

 (which does nothing):

3 // Declare the application class
4 class CHelloApp : public CWinApp
5 {
6 public:
7 virtual BOOL InitInstance();
8 };

Inside the overridden

InitInstance

 function at lines 18 through 26, the pro-
gram creates and displays the window using

CWinApp

’s data member named

m_pMainWnd

:

18 // The InitInstance function is called each
19 // time the application first executes.
20 BOOL CHelloApp::InitInstance()
21 {
22 m_pMainWnd = new CHelloWindow();
23 m_pMainWnd->ShowWindow(m_nCmdShow);
24 m_pMainWnd->UpdateWindow();
25 return TRUE;
26 }

The

InitInstance

 function returns a TRUE value to indicate that initialization
was completed successfully. Had the function returned a FALSE value, the application
would terminate immediately. We will see more details of the window initialization
process in the next section.

When the application object is created at line 10, its data members (inherited
from

CWinApp

) are automatically initialized. For example,

m_pszAppName

,

m_lpCommandLine

, and

m_nCmdShow

 all contain appropriate values. See the
MFC documentation for more information. We’ll see a use for one of these variables
in a moment.

2.3.2 The Window Object

MFC defines two types of windows: 1) frame windows, which are fully function-
al windows that can be resized, minimized, and so on, and 2) dialog windows, which
are not resizable. A frame window (or a MDI frame window) is typically used for the
main application window of a program.

In the code shown in Listing 2.1, a new class named

CHelloWindow

 is derived
from the

CFrameWnd

 class in lines 8 through 14:

11 // Declare the main window class
12 class CHelloWindow : public CFrameWnd
13 {
14 CStatic* cs;

28

This book is continuously updated. See http://www.iftech.com/mfc

2
U

nd
e

rs
ta

nd
in

g
 a

n
M

FC
 P

ro
g

ra
m

15 public:
16 CHelloWindow();
17 };

The derivation contains a new constructor, along with a data member that will
point to the single user interface control used in the program. Each application that
you create will have a unique set of controls residing in the main application window.
Therefore, the derived class will have an overridden constructor that creates all the
controls required in the main window. Typically this class will also have an overridden
destructor to delete them when the window closes, but the destructor is not used here
(See Section 2.4 for details). In Chapter 4, we will see that the derived window class
will also declare a message handler to handle messages that these controls produce in
response to user events.

Typically, any application you create will have a single main application win-
dow. The

CWinApp

 application class therefore contains a data member named

m_pMainWnd

 that can point to this main window. To create the main window for
this application, the

InitInstance

 function (lines 18 through 26) creates an instance of

CHelloWindow

 and uses

m_pMainWnd

 to point to the new window. Our

CHelloWindow

 object is created at line 22:

18 // The InitInstance function is called each
19 // time the application first executes.
20 BOOL CHelloApp::InitInstance()
21 {
22 m_pMainWnd = new CHelloWindow();
23 m_pMainWnd->ShowWindow(m_nCmdShow);
24 m_pMainWnd->UpdateWindow();
25 return TRUE;
26 }

 Simply creating a frame window is not enough, however. Two other steps are
required to make sure that the new window appears on screen correctly. First, the code
must call the window’s

ShowWindow

 function to make the window appear on screen
(line 18). Second, the program must call the

UpdateWindow

 function to make sure
that each control, and any drawing done in the interior of the window, is painted cor-
rectly onto the screen (line 19).

You may wonder where the

ShowWindow

 and

UpdateWindow

 functions are
defined. For example, if you wanted to look them up to learn more about them, you
might look in the MFC documentation at the

CFrameWnd

 class description.

CFrameWnd

 does not contain either of these member functions, however. It turns
out that

CFrameWnd

 inherits its behavior–as do all controls and windows in MFC–
from the

CWnd

 class (see figure 2.1). If you refer to

CWnd

 in the MFC documenta-
tion, you will find that it is a huge class containing more than 200 different functions.
Obviously, you are not going to master this particular class in a couple of minutes, but
among the many useful functions are

ShowWindow

 and

UpdateWindow

. We will be
referring to the

CWnd

 class throughout this book, and you will gain a thorough fa-
miliarity with it.

While we are on the subject, take a minute now to look up the

CWnd::Show-
Window

 function in the MFC documentation. Notice that

ShowWindow

 accepts a

2.3
U

nd
e

rsta
nd

ing
 the

 C
o

d
e

 fo
r “H

e
llo

 W
o

rld
”

This book is continuously updated. See http://www.iftech.com/mfc

29

single parameter, and that the parameter can be set to one of ten different values. We
have set it to a data member held by

CHelloApp

 in our program,

m_nCmdShow

 (line
23). The

m_nCmdShow

 variable is initialized based on conditions set by the user at
application start-up. For example, the user may have started the application from the
Program Manager and told the Program Manager to start the application in the mini-
mized state by setting the check box in the application’s properties dialog. The

m_nCmdShow

 variable will be set to SW_SHOWMINIMIZED, and the application
will start in an iconic state. The

m_nCmdShow

 variable is a way for the outside world
to communicate with the new application at start-up. If you would like to experiment,
you can try replacing

m_nCmdShow

 in the call to

ShowWindow

 with the different
constant values defined for

ShowWindow

. Recompile the program and see what they
do.

Line 22 instantiates the window. It allocates memory for it by calling the

new

function. At this point in the program’s execution the constructor for the

CHello-
Window

 is called. The constructor is called whenever an instance of the class is allo-
cated. Inside the window’s constructor, the window must create itself. It does this by
calling the

Create

 member function for the

CFrameWnd

 class at line 31:

27 // The constructor for the window class
28 CHelloWindow::CHelloWindow()
29 {
30 // Create the window itself
31 Create(NULL,
32 "Hello World!",
33 WS_OVERLAPPEDWINDOW,
34 CRect(0,0,200,200));

Four parameters are passed to the create function. By looking in the MFC doc-
umentation you can see the different types. The initial NULL parameter indicates that
a default class name be used (more on this in Chapter 10). The second parameter is
the title of the window that will appear in the title bar. The third parameter is the style
attribute for the window. This example indicates that a normal, overlappable window
should be created. Style attributes are covered in detail in Chapter 3. The fourth pa-
rameter specifies that the window should be placed onto the screen with its upper left
corner at point 0,0 and that the initial size of the window should be 200 x 200 pixels.
If the value

rectDefault

 is used as the fourth parameter instead, Windows will place
and size the window automatically for you.

Because this is an extremely simple program, it creates a single static text control
inside the window. In later chapters, we will see far more involved derivations from
the

CFrameWnd

 class. In this particular example, the program uses a single static text
label as its only control, and it is created at lines 25 through 40. This step is described
in more detail in the next section.

2.3.3 The Static Text Control

The program derives the

CHelloWindow

 class from the

CFrameWnd

 class
(lines 11 through 17). In doing so it declares a private data member of type

CStatic*

,
as well as a constructor.

30

This book is continuously updated. See http://www.iftech.com/mfc

2
U

nd
e

rs
ta

nd
in

g
 a

n
M

FC
 P

ro
g

ra
m

As seen in the previous section, the

CHelloWindow

 constructor does two
things. First it creates the application’s window by calling the

Create

 function (line
31), and then it allocates and creates the control that belongs inside the window. In
this case a single static label is used as the only control. Object creation is always a two-
step process in MFC. First, the memory for the instance of the class is allocated, there-
by calling the constructor to initialize any variables. Next, an explicit

Create

 function
is called to actually create the object on screen (see Section XXX for an explanation).
The code allocates and creates a single static text object using this two-step process at
lines 36 through 40:

27 // The constructor for the window class
28 CHelloWindow::CHelloWindow()
29 {
30 // Create the window itself
31 Create(NULL,
32 "Hello World!",
33 WS_OVERLAPPEDWINDOW,
34 CRect(0,0,200,200));
35 // Create a static label
36 cs = new CStatic();
37 cs->Create("hello world",
38 WS_CHILD|WS_VISIBLE|SS_CENTER,
39 CRect(50,80,150,150),
40 this);
41 }

The constructor for the

CStatic

 item is called when the memory for it is allocat-
ed, and then an explicit

Create

 function is called to create the

CStatic

 control’s
window. The parameters used in the

Create

 function here are similar to those used for
window creation at line 31. The first parameter specifies the text to be displayed by
the control. The second parameter specifies the style attributes. The style attributes are
discussed in detail in the next chapter, but here we request that the control be a child
window (and therefore displayed within another window), that it should be visible,
and that the text within the control should be centered. The third parameter deter-
mines the size and position of the static control, as shown in Figure 2.2. The fourth
indicates the parent window for which this control is the child. Having created the
static control, it will appear in the application’s window and display the specified text.

2.4 Completing the Program

The code demonstrated so far in Listings 1.1 and 2.1 is not quite complete. It
will run correctly, but if you were to turn on the trace option and run it under the
debugger (see Appendix B.2) you would get complaints that the application does not
free up its allocated memory properly. To fix that problem, you need to create a de-
structor for the

CHelloWindow

 class and delete the memory allocated for the

CStatic

label. This correction is shown in Listing 2.2.

Listing 2.2
hello.cpp – The simple “Hello World” program with a proper destructor

2.4
C

o
m

p
le

ting
 the

 Pro
g

ra
m

This book is continuously updated. See http://www.iftech.com/mfc

31

//hello.cpp

#include <afxwin.h>

// Declare the application class
class CHelloApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CHelloApp HelloApp;

// Declare the main window class
class CHelloWindow : public CFrameWnd
{

CStatic* cs;
public:

CHelloWindow();

~CHelloWindow();

};

// The InitInstance function is called each
// time the application first executes.
BOOL CHelloApp::InitInstance()
{

m_pMainWnd = new CHelloWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CHelloWindow::CHelloWindow()
{

// Create the window itself
Create(NULL,

Figure 2.2

Placement of the CStatic label

Hello World
50

80 150

150

32

This book is continuously updated. See http://www.iftech.com/mfc

2
U

nd
e

rs
ta

nd
in

g
 a

n
M

FC
 P

ro
g

ra
m

"Hello World!",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Create a static label
cs = new CStatic();
cs->Create("hello world",

WS_CHILD|WS_VISIBLE|SS_CENTER,
CRect(50,80,150,150),
this);

}

// The destructor for the window class
CHelloWindow::~CHelloWindow()
{

delete cs;
}

2.5 MFC Application Structure

In this chapter you have seen the simplest possible MFC program. However, the
structure of this program applies to all MFC applications, whether the code fits in 100
lines or 100,000. There are six pieces that every MFC application will always have:

1. A class derived from CWinApp that acts as the application class for the pro-
gram. This class will always override the InitInstance function.

2. An instance of that application class declared as a global variable. The construc-
tor for the CWinApp class automatically calls InitInstance.

3. A class derived from CFrameWnd (or CMDIFrameWnd or
CMiniFrameWnd) that acts as the application’s main window on the screen.

4. Code implementing the InitInstance function that creates the window.
5. Code for the window class’s constructor.
6. Code for the window class’s destructor.

You will find all these pieces in the “hello world” application created above. You
will also find them in the code generated by the AppWizard, although the AppWizard
will add quite a few other pieces as well. Your goal is to understand these pieces so well
that when you see them generated by the AppWizard you understand why they are
there and how to modify them.

2.6 Conclusion

In looking at this code for the first time, it will be unfamiliar and therefore po-
tentially annoying. Don’t worry about it. The only part in the entire program that
matters from an application programmer’s perspective is the CStatic creation code at
lines 36 through 40. The rest you will type in once and then ignore. In the next chap-
ter you will come to a full understanding of what lines 36 through 40 do and see a
number of options that you have in customizing a CStatic control.

33

3CUSTOMIZING CONTROLS

Controls

 are the user interface objects that create interfaces for Windows applications.
Most Windows applications and dialog boxes that you see are nothing but a collection
of controls arranged in a way that appropriately implements the functionality of the
program. To build effective applications, you must completely understand how to use
the controls available in Windows. There are only six basic controls–

CStatic

,

CBut-
ton

,

CEdit

,

CList

,

CComboBox

, and

CScrollBar

–along with an additional collec-
tion of Windows 95 controls discussed in Chapter 20. You need to understand what
each control can do, how you can tune its appearance and behavior, and how to make
the controls respond appropriately to user events. By combining this knowledge with
an understanding of menus and dialogs (discussed in Chapters 6 and 7 of this book),
you gain the ability to create any Windows application that you can imagine.

The simplest of the controls,

CStatic

, displays static text. The

CStatic

 class has
no data members and only four member functions: the constructor, the

Create

 func-
tion, and two functions for getting and setting icons on static controls. It does not
respond to user events. Because of its simplicity, it is a good place to start learning
about Windows controls.

In this chapter we will look at the

CStatic

 class to understand how controls can
be modified and customized. In the following chapter, we examine the

CButton

 and

CScrollBar

 classes to gain an understanding of event handling. Chapter 5 then inte-
grates the concepts you have learned in Part 1 by creating two very simple
applications. Part 2 contains descriptions of all other controls, as well as a variety of
other useful MFC classes. Once you understand all the controls and classes, you are
ready to build complete applications as discussed in Part 3.

3.1 The Basics

A

CStatic

 object displays static text messages to the user. These messages can
serve purely informational purposes (for example, text in a message dialog that de-
scribes an error), or they can serve as small labels that identify other controls. Figure

34

This book is continuously updated. See http://www.iftech.com/mfc

3
C

us
to

m
iz

in
g

 C
o

nt
ro

ls

3.1 shows the standard

File Open

 dialog box. In this dialog you find six text labels.
Five of the labels identify the lists, text area, and check box and do not ever change.
The sixth displays the current directory and changes each time the current directory
changes.

CStatic

 objects have several other display formats, each of which is demonstrat-
ed in Figure 3.2. By changing the style of a label it can display itself as a solid rectangle,
as a border, or as an icon. The rectangular solid and frame forms of the

CStatic

 class
allow you to visually group related interface elements and to add separators between
controls.

Figure 3.1

A file open dialog that uses six text labels

Figure 3.2

The four different display formats for a

CStatic

 object. Clockwise from top left:
static text, black rectangle, icon, black
frame

3.1
The

 Ba
sic

s

This book is continuously updated. See http://www.iftech.com/mfc

35

A

CStatic

 control is always a child window to some parent window. Typically,
the parent window is the main window for an application or a dialog box. You create
the static control, as discussed in Chapter 2, with two lines of code and a variable
declaration:

// declaration

CStatic *cs;

...

// allocation

cs = new CStatic();

// creation

cs->Create(“hello world”,

WS_CHILD|WS_VISIBLE|SS_CENTER,

CRect(50,80, 150, 150),

this);

This two-line creation style is typical of all controls created programmatically us-
ing MFC. The call to

new

 allocates memory for an instance of the

CStatic

 class and,
in the process, calls the constructor for the class. The constructor performs any initial-
ization needed by the class. The

Create

 function creates the control at the Windows
level and puts it on the screen. See Chapter 23 for details.

Note that there is another way to create static controls–you can use a dialog tem-
plate, as described in Chapter 6, Part 3, and Part 4. This technique makes positioning
easier, but you must then create code that gets a pointer to the static control if you
want to manipulate it. Once you have that pointer, you use the same techniques dis-
cussed in this chapter to manipulate the control. You simply avoid the creation step,
because the dialog template performs the creation automatically.

The

Create

 function accepts up to five parameters, as described in the MFC
documentation.

CStatic::CreateCreates a CStatic object

BOOL CStatic::Create(LPCSTR lpText,

DWORD dwStyle,

const RECT& rect,

CWnd* pParentWnd,

UINT nID = 0xffff);

lpText Text displayed by the control
dwStyle Control’s window style
rect Position and size of the control within its parent window
pParentWnd Parent window (NULL is invalid. It must have a parent.)
nID Resource ID for the control (optional)
This function returns TRUE if successful, FALSE otherwise.
Most of these values are self-explanatory. The

lpText

 parameter specifies the text
displayed by the label. The

rect

 parameter controls the position, size, and shape of the
text when it is displayed in its parent window. The

pParentWnd

 parameter indicates
the parent of the

CStatic

 control. The control will appear in the parent window, and
the position of the control will be relative to the upper left corner of the client area of

36

This book is continuously updated. See http://www.iftech.com/mfc

3
C

us
to

m
iz

in
g

 C
o

nt
ro

ls

the parent. The

nID

 parameter is an integer value used as a control ID by certain func-
tions in the API. We’ll see examples of this parameter in the next chapter.

The

dwStyle

 parameter is the most important parameter. It controls the appear-
ance and behavior of the control. The following sections describe this parameter in
detail.

3.2 CStatic Styles

All controls have a variety of display

styles

. Styles are determined at creation using
the

dwStyle

 parameter passed to the

Create

 function. The style parameter is a bit
mask that you build by or-ing together different mask constants. The constants avail-
able to a

CStatic

 control can be found in the MFC documentation (Find the page for
the

CStatic::Create

 function and click on the

Static Styles

 item that you find on that
page) and are also briefly described below:

Valid styles for the CStatic class
Styles inherited from CWnd:

WS_CHILD Mandatory for CStatic.
WS_VISIBLE The control should be visible to the user.
WS_DISABLED The control should reject user events.
WS_BORDER The control’s text is framed by a border.

Styles native to CStatic:

SS_BLACKFRAME The control displays itself as a rectangular border.
Color is the same as window frames.

SS_BLACKRECT The control displays itself as a filled rectangle.
Color is the same as window frames.

SS_CENTER The text is center justified.
SS_GRAYFRAME The control displays itself as a rectangular border.

Color is the same as the desktop.
SS_GRAYRECT The control displays itself as a filled rectangle.

Color is the same as the desktop.
SS_ICON The control displays itself as an icon. The text

string is used as the name of the icon in a resource
file. The rect parameter controls only positioning.

SS_LEFT The text displayed is left justified. Extra text is
word-wrapped.

SS_LEFTNOWORDWRAPThe text is left justified, but extra text is clipped.
SS_NOPREFIX “&” characters in the text string indicate accelera-

tor prefixes unless this attribute is used.
SS_RIGHT The text displayed is right justified. Extra text is

word-wrapped.
SS_SIMPLE A single line of text is displayed left justified. Any

CTLCOLOR messages must be ignored by the
parent.

SS_USERITEM User-defined item.

3.3
C

Sta
tic

 Te
xt A

p
p

e
a

ra
nc

e

This book is continuously updated. See http://www.iftech.com/mfc

37

SS_WHITEFRAME The control displays itself as a rectangular border.
Color is the same as window backgrounds.

SS_WHITERECT The control displays itself as a filled rectangular.
Color is the same as window backgrounds.

These constants come from two different sources. The “SS” (Static Style) con-
stants apply only to

CStatic

 controls. The “WS” (Window Style) constants apply to
all windows and are therefore defined in the

CWnd

 object from which

CStatic

 inher-
its its behavior. There are many other “WS” style constants defined in

CWnd

. They
can be found by looking up the

CWnd::Create

 function in the MFC documentation.
The four above are the only ones that apply to a

CStatic

 object.
A

CStatic

 object will always have at least two style constants or-ed together:
WS_CHILD and WS_VISIBLE. The control is not created unless it is the child of
another window, and it will be invisible unless WS_VISIBLE is specified.
WS_DISABLED controls the label’s response to events. Because a label has no sensi-
tivity to events such as keystrokes or mouse clicks anyway, specifically disabling it is
redundant.

All the other style attributes are optional and control the appearance of the label.
By modifying the style attributes passed to the

CStatic::Create

 function, you control
how the static object appears on screen. You can learn quite a bit about the different
styles by using style attributes to modify the text appearance of the

CStatic

 object, as
discussed in the next section.

3.3 CStatic Text Appearance

The code shown in Listing 3.1 is useful for understanding the behavior of the

CStatic

 object. It is similar to the listing discussed in Chapter 2, but it modifies the
creation of the

CStatic

 object slightly. If you compile and execute Listing 3.1, you will
see output similar to the screen dump shown in Figure 3.3. Please turn to Appendix
B.3 for instructions on entering and compiling this code.

Listing 3.1
static1.cpp - A simple CStatic test program

//static1.cpp

#include <afxwin.h>
#pragma hdrstop

// Declare the application class
class CTestApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CTestApp TestApp;

38

This book is continuously updated. See http://www.iftech.com/mfc

3
C

us
to

m
iz

in
g

 C
o

nt
ro

ls

// Declare the main window class
class CTestWindow : public CFrameWnd
{

CStatic* cs;
public:

CTestWindow();
};

// The InitInstance function is called
// once when the application first executes
BOOL CTestApp::InitInstance()
{

m_pMainWnd = new CTestWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CTestWindow::CTestWindow()
{

CRect r;

// Create the window itself
Create(NULL,

"CStatic Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the size of the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a static label
cs = new CStatic();
cs->Create("hello world",

WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER,
r,
this);

}

The code of interest in Listing 3.1 is in the window constructor, which is repeat-
ed below with line numbers:

CTestWindow::CTestWindow()
{

CRect r;

// Create the window itself
1 Create(NULL,

"CStatic Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the size of the client rectangle

3.3
C

Sta
tic

 Te
xt A

p
p

e
a

ra
nc

e

This book is continuously updated. See http://www.iftech.com/mfc

39

2 GetClientRect(&r);
3 r.InflateRect(-20,-20);

// Create a static label
4 cs = new CStatic();
5 cs->Create("hello world",

WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER,
r,
this);

}

The function first calls the

CTestWindow::Create

 function for the window at
line 1. This is the

Create

 function for the

CFrameWnd

 object, because

CTestWin-
dow

 inherits its behavior from

CFrameWnd

. The code in line 1 specifies that the
window should have a size of 200 by 200 pixels and that the upper left corner of the
window should be initially placed at location 0,0 on the screen. The constant

rectDe-
fault

 can replace the

CRect

 parameter if desired.
At line 2, the code calls

CTestWindow::GetClientRect

, passing it the parame-
ter

&r

. The

GetClientRect

 function is inherited from the

CWnd

 class (see the sidebar
for search strategies to use when trying to look up functions in the Microsoft docu-
mentation). The variable

r

 is of type

CRect

 and is declared as a local variable at the
beginning of the function.

Two questions arise here in trying to understand this code: 1) What does the

GetClientRect

 function do? and 2) What does a

CRect

 variable do? Let’s start with
question 1. When you look up the

CWnd::GetClientRect

 function you find it re-
turns a value of type

CRect

 that contains the size of the client rectangle of the
particular window. It stores the value at the address passed in as a parameter, in this
case

&r

. That address should point to a location of type

CRect

. The

CRect

 type is a
class defined in MFC. It is a convenience class used to manage rectangles. If you look
up the class in the MFC documentation, you will find that it defines more than 30
member functions and operators to manipulate rectangles.

In our case, we want to center the words “Hello World” in the window. There-
fore, we use

GetClientRect

 to get the rectangle coordinates for the client area. In line
3 we then call

CRect::InflateRect

, which symmetrically increases or decreases the size

Figure 3.3

Screen dump for the simple CStatic test
program shown in Listing 3.1

40

This book is continuously updated. See http://www.iftech.com/mfc

3
C

us
to

m
iz

in
g

 C
o

nt
ro

ls

of a rectangle. Here we have decreased the rectangle by 20 pixels on all sides. Had we
not, the border surrounding the label would have blended into the window frame and
we would not be able to see it.

The actual

CStatic

 label is created in lines 4 and 5. The style attributes specify
that the words displayed by the label should be centered and surrounded by a border.
The size and position of the border is determined by the

CRect

 parameter

r

. The re-
sulting screen dump shown in Figure 3.3 is as expected.

By modifying the different style attributes you can gain an understanding of the
different capabilities of the

CStatic

 object. For example, Listing 3.2 contains a re-
placement for the

CTestWindow

 constructor function in Listing 3.1. Figure 3.4
shows a screen dump for this code.

Listing 3.2
A demonstration of CStatic’s word-wrapping abilities.

CTestWindow::CTestWindow()

{

CRect r;

// Create the window itself

Create(NULL,

"CStatic Tests",

WS_OVERLAPPEDWINDOW,

CRect(0,0,200,200));

// Get the size of the client rectangle

GetClientRect(&r);

r.InflateRect(-20,-20);

// Create a static label

cs = new CStatic();

cs->Create("Now is the time for all good men to \

come to the aid of their country",

WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER,

r,

this);

}

The code of Listing 3.2 is identical to that of Listing 3.1 except the text string is
much longer. As you can see in Figure 3.4, the CStatic object has wrapped the text
within the specified bounding rectangle and centered each line individually.

If the bounding rectangle is too small to contain all the lines of text, then the
text is clipped as needed to make it fit the available space. This feature of the CStatic
Object is shown in Listing 3.3 and Figure 3.5. In Listing 3.3, the bounding rectangle
has been reduced to the point where it forces truncation (compare InflateRect
parameters).

3.3
C

Sta
tic

 Te
xt A

p
p

e
a

ra
nc

e

This book is continuously updated. See http://www.iftech.com/mfc

41

Looking up functions in the Microsoft documentation

Say you want to find out about the GetClientRect function. How do you look it
up? This is not a trivial matter in a system as big as Windows. GetClientRect
could be defined somewhere in MFC, in the normal Windows API, in the stan-
dard C run-time library, or in some standard C++ library like iostream.h. It can
be literally anywhere among the thousands of pages of documentation and,
when you are new to the documentation, finding it can be difficult. Once you
are familiar with the system, you will know where all the common functions
come from. Right now, just finding the right page is a problem. You need an or-
ganized approach to find anything.

The best place to start your search for the GetClientRect function is with the
current object. We are in a function called CTestWindow::CTestWindow, which
is the constructor for the CTestWindow class. The first place to look, therefore, is
at the class declaration for CTestWindow to see if GetClientRect has been de-
fined there. We look at the top of Listing 3.1, at the definition of CTestWindow,
and we find only a constructor defined. GetClientRect must be elsewhere.

The next place to look is the class from which CTestWindow inherits its behavior.
Again, this can be found in the class declaration for CTestWindow. Looking
there we find that this class inherits behavior from CFrameWnd. Looking up
CFrameWnd in the MFC documentation, we again find nothing for GetClien-
tRect.

The next step is to continue following the inheritance chain to its end.
CFrameWnd inherits its behavior from CWnd–you can see that by looking at
the first line in the MFC documentation for the CFrameWnd class where it says:

class CFrameWnd : public CWnd

You can also see it by looking at a diagram for the MFC class hierarchy, as par-
tially shown in Figure 2.1. It is in the CWnd class that we find GetClientRect.

But say it wasn’t there and you had to keep looking. You would follow the inher-
itance chain to CObject, which is always the end of the chain in MFC. Then you
would look in the Windows API. For example, if we had been looking up the
function MessageBeep we would have found it in the API. If it wasn’t in the API
we would then try the C run-time library. This documents all the normal C and
C++ run-time functions like printf, time, and so on. The function strftime, for ex-
ample, is found here, as are all the standard C functions such as sin. If not there,
we would look at the top of the code file for the inclusion of unusual header
files, then we would track the function down in one of those. The system makes
this relatively painless by showing all of the different possibilities in a list. Your job
is to select one item from the list. It gets easier as you become more familiar
with MFC.

42

This book is continuously updated. See http://www.iftech.com/mfc

3
C

us
to

m
iz

in
g

 C
o

nt
ro

ls

Listing 3.3
A long string and a small bounding rectangle force CStatic to truncate text.

CTestWindow::CTestWindow()
{

CRect r;

// Create the window itself
Create(NULL,

"CStatic Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

Figure 3.4
Screen dump for code in Listing 3 showing
CStatic word wrapping

Compiling multiple executables

This chapter contains several different example programs. There are two dif-
ferent ways for you to compile and run them. The first way is to place each dif-
ferent program into its own directory and then create a new project for each
one. Using this technique, you can compile each program separately and
work with each executable simultaneously or independently. The disadvan-
tage of this approach is the amount of disk space it consumes.

In the second approach, you create a single directory that contains all of the
source files from this chapter. You then create a single project file in that direc-
tory. To compile each program, you can edit the project and change its
source file (see Appendix B.1.4). Simply add a different source file into the
project, remove the old file, and rebuild. This arrangement minimizes disk con-
sumption, and is generally preferred for short example programs like the ones
in this chapter. For big multi-file applications it makes sense to create a sepa-
rate directory and project for each application that you create. Starting in
Version 4.0 a project can contain multiple EXEs.

3.3
C

Sta
tic

 Te
xt A

p
p

e
a

ra
nc

e

This book is continuously updated. See http://www.iftech.com/mfc

43

// Get the size of the client rectangle

GetClientRect(&r);

r.InflateRect(-50,-50);

// Create a static label

cs = new CStatic();

cs->Create("Now is the time for all good men to come to \

the aid of their country",

WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER,

r,

this);

}

In all the code we have seen so far, the style SS_CENTER has been used to cen-
ter the text. The CStatic object also allows for left or right justification. Figure 3.6
shows an example of left justification, created by replacing the SS_CENTER attribute
with an SS_LEFT attribute. Right justification aligns the words to the right margin
rather than the left and is specified with the SS_RIGHT attribute.

One other text attribute is available. It turns off the word wrap feature and is
used often for simple labels that identify other controls (see Figure 3.1 for an exam-
ple). The SS_LEFTNOWORDWRAP style forces left justification and causes no
wrapping to take place. The effect of this style is shown in Figure 3.7. Despite the
height available in the bounding rectangle, the object has not made use of it.

Figure 3.5
CStatic’s truncation feature as exercised
by Listing 3.3

44

This book is continuously updated. See http://www.iftech.com/mfc

3
C

us
to

m
iz

in
g

 C
o

nt
ro

ls

3.4 Rectangular Display Modes for CStatic

The

CStatic

 object also supports two different rectangular display modes: sol-
id filled rectangles and frames. You normally use these two styles to visually group
other controls within a window. For example, you might place a black rectangular
frame in a window to collect together several related editable areas. You can choose
from six different styles when creating these rectangles: SS_BLACKFRAME,
SS_BLACKRECT, SS_GRAYFRAME, SS_GRAYRECT, SS_WHITEFRAME,
and SS_WHITERECT. The RECT form is a filled rectangle, while the FRAME
form is a border. The color names are a little misleading–for example,
SS_WHITERECT displays a rectangle of the same color as the window back-
ground. Although this color defaults to white, the user can change it with the
Control Panel and the rectangle may not be actually white on some machines.

When a rectangle or frame attribute is specified, the

CStatic

’s text string is ig-
nored. Typically, an empty string is passed. The process of creating a rectangle is
shown in Listing 3.4 and Figure 3.8.

Figure 3.6

An example of left justification

Figure 3.7

The effect of the SS_LEFTNOWORDWRAP
style

3.4
Re

c
ta

ng
ula

r D
isp

la
y M

o
d

e
s fo

r C
Sta

tic

This book is continuously updated. See http://www.iftech.com/mfc

45

Listing 3.4
The creation of a black rectangle.

CTestWindow::CTestWindow()
{

CRect r;

// Create the window itself
Create(NULL,

"CStatic Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the size of the client rectangle
GetClientRect(&r);
r.InflateRect(-50,-50);

// Create a static label
cs = new CStatic();
cs->Create("",

WS_CHILD|WS_VISIBLE|SS_BLACKRECT,
r,
this);

}

A frame window can hold many controls. Figure 3.9 shows a gray rectangle over-
laid by a static text label. Listing 3.5 produced this figure. The only difference here are
two CStatic objects–cs1 and cs2–which are declared in the CTestWindow class and
then deleted in its destructor. Note that the order of creation determines the stacking
order. Also note that if cs2 has a large enough rectangle, it can completely obscure the
gray rectangle underneath it and make it invisible.

Figure 3.8
A black rectangle frame produced by
Listing 3.4

46

This book is continuously updated. See http://www.iftech.com/mfc

3
C

us
to

m
iz

in
g

 C
o

nt
ro

ls

Listing 3.5
Code that creates a gray rectangle overlaid by text.

CTestWindow::CTestWindow()

{

CRect r;

// Create the window itself

Create(NULL,

"CStatic Tests",

WS_OVERLAPPEDWINDOW,

CRect(0,0,200,200));

// Get the size of the client rectangle

GetClientRect(&r);

r.InflateRect(-50,-50);

// Create the grey rectangle

cs1 = new CStatic();

cs1->Create("",

WS_CHILD|WS_VISIBLE|SS_GRAYRECT,

r,

this);

// Create the text that sits on top of it

r.InflateRect(-10,-10);

cs2 = new CStatic();

cs2->Create("Now is the time",

WS_CHILD|WS_VISIBLE|SS_LEFTNOWORDWRAP,

r,

this);

}

Figure 3.9
Screen dump for Listing 3.5

3.5
Fo

nts

This book is continuously updated. See http://www.iftech.com/mfc

47

3.5 Fonts

You can change the font of a

CStatic

 object by creating a

CFont

 object. Doing
so demonstrates how one MFC class can interact with another in certain cases to mod-
ify behavior of a control. The

CFont

 class in MFC holds a single instance of a
particular Windows font. For example, one instance of the

CFont

 class might hold a
Times font at 18 points while another might hold a Courier font at 10 points. You
can modify the font used by a static label by calling the

SetFont

 function that

CStatic

inherits from

CWnd

. Listing 3.6 shows the code required to implement fonts, and
Figure 3.10 shows a screen dump of this code.

Listing 3.6
Code for modifying the font of a CStatic object.

CTestWindow::CTestWindow()
{

CRect r;

// Create the window itself
Create(NULL,

"CStatic Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the size of the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a static label
cs = new CStatic();
cs->Create("Hello World",

WS_CHILD|WS_VISIBLE|WS_BORDER|SS_CENTER,
r,
this);

// Create a new 36 point Arial font
font = new CFont;
font->CreateFont(36,0,0,0,700,0,0,0,

 ANSI_CHARSET,OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS,
 DEFAULT_QUALITY,
 DEFAULT_PITCH|FF_DONTCARE,
 "arial");

// Cause the label to use the new font
cs->SetFont(font);

}

The code in Listing 3.9 starts by creating the window and the CStatic object as
usual. The code then creates an object of type CFont. The font variable should be de-
clared as a data member in the CTestWindow class with the line “CFont *font”. The

48

This book is continuously updated. See http://www.iftech.com/mfc

3
C

us
to

m
iz

in
g

 C
o

nt
ro

ls

CFont::Create

 function has 15 parameters, but only three matter in most cases (see
Chapter 11 for details). For example, the 36 specifies the size of the font in points, the
700 specifies the density of the font (400 is “normal,” 700 is “bold,” and values can
range from 1 to 1000. The constants FW_NORMAL and FW_BOLD have the same
meanings. See the FW constants in the documentation), and the word “arial” names
the font to use. Windows always ships with five True Type fonts (Arial, Courier New,
Symbol, Times New Roman, and Wingdings), and by sticking to one of these you can
be fairly certain that the font will exist on just about any machine. If you specify a font
name that is unknown to the system, then the

CFont

 class will choose the default font
seen in all the other examples used in this chapter.

For more information on the

CFont

 class see the MFC documentation and
Chapter 11. There is also a good overview on fonts. Search for “Fonts and Text
Overview.”

The

SetFont

 function comes from the

CWnd

 class. It sets the font of a window,
in this case the

CStatic

 child window. One question you may have at this point is,
“How do I know which functions available in

CWnd

 apply to the

CStatic

 class?” You
learn this by experience. Take half an hour and read through all the functions in

CWnd

. You will learn quite a bit and you will find many functions that allow you to
customize controls. We will see other

Set

 functions found in the

CWnd

 class in the
next chapter.

3.6 Conclusion

In this chapter we looked at the many different capabilities of the

CStatic

 object.
One we ignored is the SS_ICON style. It is discussed in Chapter 6 because it requires
an understanding of resource files. We also left out some of the

Set

 functions inherited
from the

CWnd

 class so they can be discussed in Chapter 4 where they are more ap-
propriate. Chapter 11 contains more information on fonts. Chapter 5 contains two
programs that use multiple static labels.

Figure 3.10

A modified font produced by Listing 3.6

49

4HANDLING EVENTS

Any user interface object that an application places in a window has two controllable
features: 1) its appearance, and 2) its behavior when responding to events. In the last
chapter you gained an understanding of the

CStatic

 control and saw how you can use
style attributes to customize the appearance of user interface objects. These concepts
apply to all the different control classes available in MFC.

In this chapter we will examine the

CButton

 control to gain an understanding
of message maps and simple event handling. We’ll then look at the

CScrollBar

 con-
trol to see a somewhat more involved example and also look at how an application can
handle system messages.

4.1 Understanding Message Maps

As discussed in Chapter 2, MFC programs do not contain a main function or
event loop. All the event handling happens “behind the scenes” in C++ code that is
part of the

CWinApp

 class. Because it is hidden, we need a way to tell the invisible
event loop to notify us about events of interest to the application. This is done with a
mechanism called a

message map

. The message map identifies interesting events and
then indicates functions to call in response to those events.

For example, say you want to write a program that will quit whenever the user
presses a button labeled “Quit.” In the program you place code to specify the button’s
creation: you indicate where the button goes, what it says, etc. Next, you create a mes-
sage map for the parent of the button–whenever a user clicks the button, it tries to
send a message to its parent. By installing a message map for the parent window, you
create a mechanism to intercept and use the button’s messages. The message map will
request that MFC call a specific function whenever a specific button event occurs. In
this case, a click on the Quit button is the event of interest. You then put the code for
quitting the application in the indicated function.

MFC does the rest. When the program executes and the user clicks the Quit but-
ton, the button will highlight itself as expected. MFC then automatically calls the

50

This book is continuously updated. See http://www.iftech.com/mfc

4
H

a
nd

lin
g

 E
ve

nt
s

right function and the program terminates. With just a few lines of code your program
becomes sensitive to user events.

4.2 The CButton Class

The

CStatic

 control discussed in Chapter 3 is unique in that it cannot respond
to user events. No amount of clicking, typing, or dragging will do anything to a

CStat-
ic

 control because it ignores the user completely. However, the

CStatic

 class is an
anomaly. All the other controls available in Windows respond to user events in two
ways. First, they update their appearance automatically when the user manipulates
them (e.g., when the user clicks on a button it highlights itself to give the user visual
feedback). Second, each different control tries to send messages to your code so the
program can respond to the user as needed. For example, a button sends a

button
clicked

 whenever it gets clicked. If you write code to receive the messages, then your
code can respond to user events.

To gain an understanding of this process, we will start with the

CButton

 con-
trol. Listing 4.1 demonstrates the creation of a button, and Figure 4.1 shows a screen
dump for this piece of code.

Listing 4.1
Creating a CButton object.

// button1.cpp

#include <afxwin.h>

#define IDC_BUTTON 100

// Declare the application class
class CButtonApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CButtonApp ButtonApp;

// Declare the main window class
class CButtonWindow : public CFrameWnd
{

CButton *button;
public:

CButtonWindow();
};

// The InitInstance function is called once
// when the application first executes
BOOL CButtonApp::InitInstance()
{

m_pMainWnd = new CButtonWindow();

4.2
The

 C
Butto

n C
la

ss

This book is continuously updated. See http://www.iftech.com/mfc

51

m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}
// The constructor for the window class
CButtonWindow::CButtonWindow()
{

CRect r;

// Create the window itself
Create(NULL,

"CButton Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the size of the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button
button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r,
this,
IDC_BUTTON);

}

The code in listing 4.1 is nearly identical to the code discussed in previous chap-
ters. The Create function for the CButton class, as seen in the MFC documentation,
accepts five parameters. The first four are exactly the same as those found in the CStat-
ic class. The fifth parameter indicates the resource ID for the button. The resource ID
is a unique integer value used to identify the button in the message map. A constant
value IDC_BUTTON has been defined at the top of the program for this value. The
“IDC_” is arbitrary, but here indicates that the constant is an ID value for a control.

Figure 4.1
Appearance of a CButton object as
created by Listing 4.1

52

This book is continuously updated. See http://www.iftech.com/mfc

4
H

a
nd

lin
g

 E
ve

nt
s

It is given a value of 100 because values less than 100 are reserved for system-defined
IDs. You can use any value above 99.

The style attributes available for the

CButton

 class are different from those for
the

CStatic

 class, as discussed in Chapter 3. Eleven different “BS” (“Button Style”)
constants are defined. See the

CButton::Create

 function in the MFC documentation
for a complete list. Here we have used the BS_PUSHBUTTON style for the button,
indicating that we want this button to display itself as a normal push button. We have
also used two familiar “WS” attributes: WS_CHILD and WS_VISIBLE. We will ex-
amine some of the other styles in later sections.

When you run the code, you will notice that the button responds to user events.
That is, it highlights as you would expect. It does nothing else because we haven’t told
it what to do. We need to wire in a message map to make the button do something
interesting.

4.3 Creating a Message Map

The code in Listing 4.2 contains a message map as well as a new function that
handles the button click so the program beeps when the user clicks on the button. The
portions of the code that differ from Listing 4.1 are shown in boldface.

Listing 4.2
A program that creates a button and beeps when the button is pressed.

// button2.cpp

#include <afxwin.h>

#define IDC_BUTTON 100

// Declare the application class
class CButtonApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CButtonApp ButtonApp;

// Declare the main window class
class CButtonWindow : public CFrameWnd
{

CButton *button;
public:

CButtonWindow();
afx_msg void HandleButton();

DECLARE_MESSAGE_MAP()
};

// The message handler function

4.3
C

re
a

ting
 a

 M
e

ssa
g

e
 M

a
p

This book is continuously updated. See http://www.iftech.com/mfc

53

void CButtonWindow::HandleButton()
{

MessageBeep(0xFFFFFFFF);
}

// The message map
BEGIN_MESSAGE_MAP(CButtonWindow, CFrameWnd)

ON_BN_CLICKED(IDC_BUTTON, HandleButton)
END_MESSAGE_MAP()

// The InitInstance function is called once
// when the application first executes
BOOL CButtonApp::InitInstance()
{

m_pMainWnd = new CButtonWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CButtonWindow::CButtonWindow()
{

CRect r;

// Create the window itself
Create(NULL,

"CButton Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the size of the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button
button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r,
this,
IDC_BUTTON);

}

Three modifications have been made to Listing 4.1 to create Listing 4.2:

1. The class declaration for CButtonWindow now contains a new member func-
tion as well as a macro that indicates a message map is defined for the class. The
HandleButton function, which is identified as a message handler by the use of
the afx_msg tag, is a normal C++ function. There are some special constraints on
this function that we will discuss shortly (e.g., it must be void and it cannot
accept any parameters). The DECLARE_MESSAGE_MAP macro makes the
creation of a message map possible. Both the function and the macro must be public.

54

This book is continuously updated. See http://www.iftech.com/mfc

4
H

a
nd

lin
g

 E
ve

nt
s

2. The

HandleButton

 function is created in the same way as any member func-
tion. In this function, we called the

MessageBeep

 function available from the
Windows API. You could also call

Beep

 or any other function.
3. Special MFC macros create a message map. In the code, you can see that the

BEGIN_MESSAGE_MAP macro accepts two parameters. The first is the
name of the specific class to which the message map applies. The second is the
base class from which the specific class is derived. It is followed by an
ON_BN_CLICKED macro that accepts two parameters: The ID of the con-
trol and the function to call whenever that ID sends a command message.
Finally, the message map ends with the END_MESSAGE_MAP macro.

Note
the placement of parentheses and the lack of semicolons on the macros.

When a user clicks the button, it sends a command message containing its ID to
its parent, which is the window containing the button. That is default behavior for a
button, and that is why this code works. The button sends the message to its parent
because it is a child window. The parent window intercepts this message and uses the
message map to determine the function to call. MFC handles the routing, and when-
ever the specified message is seen, the indicated function gets called. The program
beeps whenever the user clicks the button.

The ON_BN_CLICKED message is one of two messages a

CButton

 object can
send. It is equivalent to the ON_COMMAND message in the

CWnd

 class and is sim-
ply a convenient synonym for it. ON_BN_DOUBLECLICKED is the other possible
message for a

CButton

(Note that ON_BN_DOUBLE CLICKED will not work un-
less you modify the parent window’s class to contain the CS_DBLCLKS style. See
Chapter 11 for details on registering new window styles.). You can find information
about these messages by looking up the

CButton

 class description in the
documentation.

4.4 Sizing Messages

In Listing 4.2 the code for the application’s window, which is derived from the

CFrameWnd

 class, recognized the button-click message generated by the button and
responded to it because of its message map. The ON_BN_CLICKED macro added
into the message map (search for the

CButton

 overview as well as the
ON_COMMAND macro in the MFC documentation) specifies the ID of the button
and the function that the window should call when it receives a command message
from that button. Because the button automatically sends to its parent its ID in a com-
mand message whenever the user clicks it, this arrangement allows the code to handle
button events properly.

 Windows is also capable of sending messages itself. There are about 100 differ-
ent messages available, all inherited from the

CWnd

 class. By browsing through the
member functions for the

CWnd

 class in the MFC documentation you can see what
all these messages are. Look for any member function beginning with the word “On”.
Many of them are quite interesting.

4.4
Sizing

 M
e

ssa
g

e
s

This book is continuously updated. See http://www.iftech.com/mfc

55

You may have noticed that all the code demonstrated so far does not handle re-
sizing very well. When the window resizes, the frame of the window adjusts accord-
ingly but the contents stay where they were placed originally. It is possible to make
resized windows respond more attractively by recognizing re-sizing events. One of the
messages that is sent by Windows is a sizing message. The message is generated when-
ever the window changes shape. We can use this message to control the size of child
windows inside the frame, as shown in Listing 4.3.

Listing 4.3
Handling window re-sizing with the ON_WM_SIZE message.

// button3.cpp

#include <afxwin.h>

#define IDC_BUTTON 100

// Declare the application class
class CButtonApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CButtonApp ButtonApp;

// Declare the main window class
class CButtonWindow : public CFrameWnd
{

CButton *button;
public:

CButtonWindow();
afx_msg void HandleButton();
afx_msg void OnSize(UINT, int, int);

DECLARE_MESSAGE_MAP()
};

// A message handler function
void CButtonWindow::HandleButton()
{

MessageBeep(0xFFFFFFFF);
}

// A message handler function
void CButtonWindow::OnSize(UINT nType, int cx,

int cy)
{

CRect r;

GetClientRect(&r);
r.InflateRect(-20,-20);

56

This book is continuously updated. See http://www.iftech.com/mfc

4
H

a
nd

lin
g

 E
ve

nt
s

button->MoveWindow(r);
}

// The message map
BEGIN_MESSAGE_MAP(CButtonWindow, CFrameWnd)

ON_BN_CLICKED(IDC_BUTTON, HandleButton)
ON_WM_SIZE()

END_MESSAGE_MAP()

// The InitInstance function is called once
// when the application first executes
BOOL CButtonApp::InitInstance()
{

m_pMainWnd = new CButtonWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}
// The constructor for the window class
CButtonWindow::CButtonWindow()
{

CRect r;

// Create the window itself
Create(NULL,

"CButton Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the size of the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button
button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r,
this,
IDC_BUTTON);

}

To understand this code, start by looking in the message map for the window.
There you will find the entry ON_WM_SIZE. This entry indicates that the message
map is sensitive to sizing messages coming from the

CButtonWindow

 object. Sizing
messages are generated on this window whenever the user resizes it.

Notice also that the ON_WM_SIZE entry in the message map has no parame-
ters. As you can see in the MFC documentation under the

CWnd

 class, it is
understood that the ON_WM_SIZE entry in the message map will always call a func-
tion named

OnSize

, and that function must accept the three parameters shown. The

OnSize

 function must be a member function of the class owning the message map,
and the function must be declared in the class as an

afx_msg

 function (as shown in
the definition of the

CButtonWindow

 class).

4.5
W

ind
o

w
 M

e
ssa

g
e

s

This book is continuously updated. See http://www.iftech.com/mfc

57

If you look in the MFC documentation, there are almost 100 functions named
“On...” in the

CWnd

 class.

CWnd::OnSize

 is one of them. All these functions have
a corresponding tag in the message map with the form ON_WM_. For example,
ON_WM_SIZE corresponds to

OnSize

. None of the ON_WM_ entries in the mes-
sage map accept parameters.

The

OnSize

 function always corresponds to the ON_WM_SIZE entry in the
message map. You must name the handler function

OnSize

, and it must accept the
three parameters shown in the listing. You can find the specific parameter require-
ments of any

On...

 function by looking up that function in the MFC documentation.
You can look the function up directly by typing

OnSize

 into the search window or
you can find it as a member function to the

CWnd

 class.
Inside the

OnSize

 function itself, three lines of code modify the size of the but-
ton held in the window:

void CButtonWindow::OnSize(UINT nType, int cx,
int cy)

{
CRect r;

GetClientRect(&r);
r.InflateRect(-20,-20);
button->MoveWindow(r);

}

The call to

GetClientRect

 retrieves the new size of the window’s client rectan-
gle. This rectangle is then deflated and the

MoveWindow

 function is called on the
button.

MoveWindow

 is inherited from

CWnd

 and resizes and moves the child win-
dow for the button in one step.

When you execute the program in Listing 4.3 and resize the application’s win-
dow, you will find the button resizes itself correctly. In the code, the resize event
generates a call through the message map to the

OnSize

 function, which calls the

MoveWindow

function to resize the button appropriately.

4.5 Window Messages

By looking in the MFC documentation, you can see the wide variety of

CWnd

messages that the main window handles. Some are similar to the sizing message seen
in the previous section. For example, ON_WM_MOVE messages are sent when a
user moves a window and ON_WM_PAINT messages are sent when any part of the
window has to be repainted. In all our programs so far, repainting has happened au-
tomatically because controls are responsible for their own appearance. In Chapter 11,
however, we will see that the application is responsible for repainting any drawings it
places directly in the window. In this context the ON_WM_PAINT message is
important.

There are also some event messages sent to the window that are more esoteric.
For example, you can use the ON_WM_TIMER message in conjunction with the

SetTimer

 function to cause the window to receive messages at pre-set intervals. The
code in Listing 4.4 demonstrates the process. When you run this code, the program

58

This book is continuously updated. See http://www.iftech.com/mfc

4
H

a
nd

lin
g

 E
ve

nt
s

will beep once each second. The beeping can be replaced by a number of useful pro-
cesses. For example, in Chapter 11 we will see one example of this capability–the timer
is used to update the face of a simple digital clock.

Listing 4.4
The SetTimer function and ON_WM_TIMER message cause the application to beep
once each second.

// button4.cpp

#include <afxwin.h>

#define IDC_BUTTON 100
#define IDT_TIMER1 200

// Declare the application class
class CButtonApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CButtonApp ButtonApp;

// Declare the main window class
class CButtonWindow : public CFrameWnd
{

CButton *button;
public:

CButtonWindow();
afx_msg void HandleButton();
afx_msg void OnSize(UINT, int, int);
afx_msg void OnTimer(UINT);

DECLARE_MESSAGE_MAP()
};

// A message handler function
void CButtonWindow::HandleButton()
{

MessageBeep(0xFFFFFFFF);
}

// A message handler function
void CButtonWindow::OnSize(UINT nType, int cx,

int cy)
{

CRect r;

GetClientRect(&r);
r.InflateRect(-20,-20);
button->MoveWindow(r);

}

4.5
W

ind
o

w
 M

e
ssa

g
e

s

This book is continuously updated. See http://www.iftech.com/mfc

59

// A message handler function
void CButtonWindow::OnTimer(UINT id)
{

MessageBeep(0xFFFFFFFF);
}

// The message map
BEGIN_MESSAGE_MAP(CButtonWindow, CFrameWnd)

ON_BN_CLICKED(IDC_BUTTON, HandleButton)
ON_WM_SIZE()
ON_WM_TIMER()

END_MESSAGE_MAP()

// The InitInstance function is called once
// when the application first executes
BOOL CButtonApp::InitInstance()
{

m_pMainWnd = new CButtonWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CButtonWindow::CButtonWindow()
{

CRect r;

// Create the window itself
Create(NULL,

"CButton Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Set up the timer
SetTimer(IDT_TIMER1, 1000, NULL); // 1000 ms.

// Get the size of the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button
button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r,
this,
IDC_BUTTON);

}

Inside the program in Listing 4.4 we created a button, as shown previously, and
left its re-sizing code in place. In the constructor for the window we also added a call
to the SetTimer function. This function accepts three parameters: an ID for the timer

60

This book is continuously updated. See http://www.iftech.com/mfc

4
H

a
nd

lin
g

 E
ve

nt
s

(so that multiple timers can be active simultaneously, the ID is sent to the function
called each time a timer goes off), the time in milliseconds that is to be the timer’s in-
crement, and a function. Here, we passed NULL for the function so that the window’s
message map will route the function automatically. In the message map we have wired
in the ON_WM_TIMER message, and it will automatically call the

OnTimer

 func-
tion passing it the ID of the timer that went off.

When the program runs, it beeps once each 1,000 milliseconds. Each time the
timer’s increment elapses, the window sends a message to itself. The message map
routes the message to the

OnTimer

 function, which beeps. You can place a wide va-
riety of useful code into this function.

4.6 Scroll Bar Controls

Windows has two different ways to handle scroll bars. Some controls, such as the
edit control (Chapters 5 and 8) and the list control (Chapter 9), can be created with
scroll bars already attached. When this is the case, the master control handles the scroll
bars automatically. For example, if an edit control has its scroll bars active, then when
the scroll bars are used, the edit control scrolls as expected without any additional
code.

Scroll bars can also work on a stand-alone basis. When used this way they are
seen as independent controls in their own right. You can learn more about scroll bars
by referring to the

CScrollBar

 section of the MFC documentation. Scroll bar controls
are created the same way we created static labels and buttons. They have four member
functions that allow you to get and set both the range and position of a scroll bar.

The code shown in listing 4.5 demonstrates the creation of a horizontal scroll
bar and its message map. Figure 4.2 shows a screen dump for this listing.

Listing 4.5
The creation of a horizontal scroll bar and its message map.

// sb1.cpp
#include <afxwin.h>

#define IDC_SCROLLBAR 100
const int MAX_RANGE=100;
const int MIN_RANGE=0;

// Declare the application class
class CScrollBarApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CScrollBarApp ScrollBarApp;

// Declare the main window class

4.6
Sc

ro
ll Ba

r C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

61

class CScrollBarWindow : public CFrameWnd
{

CScrollBar *sb;
public:

CScrollBarWindow();
afx_msg void OnHScroll(UINT nSBCode, UINT nPos,

CScrollBar* pScrollBar);

DECLARE_MESSAGE_MAP()
};

// The message handler function
void CScrollBarWindow::OnHScroll(UINT nSBCode,

UINT nPos, CScrollBar* pScrollBar)
{

MessageBeep(0xFFFFFFFF);
}

// The message map
BEGIN_MESSAGE_MAP(CScrollBarWindow, CFrameWnd)

ON_WM_HSCROLL()
END_MESSAGE_MAP()

// The InitInstance function is called once
// when the application first executes
BOOL CScrollBarApp::InitInstance()
{

m_pMainWnd = new CScrollBarWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CScrollBarWindow::CScrollBarWindow()
{

CRect r;

// Create the window itself
Create(NULL,

"CScrollBar Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the size of the client rectangle
GetClientRect(&r);
// Create a scroll bar
sb = new CScrollBar();
sb->Create(WS_CHILD|WS_VISIBLE|SBS_HORZ,

CRect(10,10,r.Width()-10,30),
this,
IDC_SCROLLBAR);

sb->SetScrollRange(MIN_RANGE,MAX_RANGE,TRUE);
}

62

This book is continuously updated. See http://www.iftech.com/mfc

4
H

a
nd

lin
g

 E
ve

nt
s

Windows distinguishes between horizontal and vertical scroll bars and also sup-
ports an object called a

size box

 in the

CScrollBar

 class. A size box is a small square. It
is formed at the intersection of a horizontal and vertical scroll bar and can be dragged
by the mouse to automatically resize a window. Looking at the code in Listing 4.5,
you can see that the

Create

 function creates a horizontal scroll bar using the
SBS_HORIZ style. Immediately following creation, the range of the scroll bar is set
for 0 to 100 using the two constants MIN_RANGE and MAX_RANGE (defined at
the top of the listing) in the

SetRange

 function.
The event-handling function

OnHScroll

 comes from the

CWnd

 class. We have
used this function because the code creates a horizontal scroll bar. For a vertical scroll
bar you should use

OnVScroll

. In the code here the message map wires in the scrolling
function and causes the scroll bar to beep whenever the user manipulates it. When you
run the code you can click on the arrows, drag the thumb, and so on. Each event will
generate a beep, but the thumb will not actually move because we have not wired in
the code for movement yet.

Each time the scroll bar is used and

OnHScroll

 is called, your code needs a way
to determine the user’s action. Inside the

OnHScroll

 function you can examine the
first parameter passed to the message handler, as shown in Listing 4.6. If you use this
code with Listing 4.5, the scroll bar’s thumb will move appropriately with each user
manipulation.

Listing 4.6
A scroll bar message handler that handles all possible user actions.

// The message handling function
void CScrollBarWindow::OnHScroll(UINT nSBCode,

UINT nPos, CScrollBar* pScrollBar)
{

int pos;

pos = sb->GetScrollPos();
switch (nSBCode)
{

case SB_LINEUP:
pos -= 1;
break;

case SB_LINEDOWN:
pos += 1;
break;

Figure 4.2
A simple horizontal scroll bar as produced
by Listing 4.5

4.6
Sc

ro
ll Ba

r C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

63

case SB_PAGEUP:
pos -= 10;
break;

case SB_PAGEDOWN:
pos += 10;
break;

case SB_TOP:
pos = MIN_RANGE;
break;

case SB_BOTTOM:
pos = MAX_RANGE;
break;

case SB_THUMBPOSITION:
pos = nPos;
break;

default:
return;

}

if (pos < MIN_RANGE)
pos = MIN_RANGE;

else if (pos > MAX_RANGE)
pos = MAX_RANGE;

sb->SetScrollPos(pos, TRUE);
}

The different constant values such as SB_LINEUP and SB_LINEDOWN are
described in the OnHScroll function documentation in the documentation. The
code in Listing 4.6 starts by retrieving the current scroll bar position using GetScroll-
Pos. It then decides what the user did to the scroll bar using a switch statement. The
constant value names imply a vertical orientation but are used in horizontal scroll bars
as well: SB_LINEUP and SB_LINEDOWN apply when the user clicks the left and
right arrows. SB_PAGEUP and SB_PAGEDOWN apply when the user clicks in the
shaft of the scroll bar itself. SB_TOP and SB_BOTTOM apply when the user moves
the thumb to the top or bottom of the bar. SB_THUMBPOSITION applies when
the user drags the thumb to a specific position. The code adjusts the position accord-
ingly, then makes sure that it’s still in range before setting the scroll bar to its new
position. Once the scroll bar is set, the thumb moves on the screen to inform the user
visually.

A vertical scroll bar is handled the same way as a horizontal scroll bar except that
you use the SBS_VERT style and the OnVScroll function. You can also use several
alignment styles to align both the scroll bars and the grow box in a given client
rectangle.

64

This book is continuously updated. See http://www.iftech.com/mfc

4
H

a
nd

lin
g

 E
ve

nt
s

4.7 Understanding Message Maps

The message map structure is unique to MFC. It is important that you under-
stand why it exists and how it actually works so you can exploit this structure in your
own code.

Any C++ purist who looks at a message map has an immediate question: Why
didn’t Microsoft use virtual functions instead? Virtual functions are the standard C++
way to handle what mesage maps are doing in MFC, so the use of rather bizarre mac-
ros like DECLARE_MESSAGE_MAP and BEGIN_MESSAGE_MAP seems like the
work of eccentrics.

MFC uses message maps to get around a fundamental problem with virtual
functions. Look at the

CWnd

 class in the MFC documentation. It contains more than
100 event-handling member functions (they start with “On”), all of which would have
to be virtual if message maps were not used. Now look at all the classes that derive
from the

CWnd

 class. For example, search for “Hierarchy Charts” in the MFC docu-
mentation and look at the object hierarchy. Thirty or so classes in MFC use

CWnd

 as
their base class. This set includes all the visual controls such as buttons, static labels,
and lists. Now imagine that MFC used virtual functions and you created an applica-
tion that contained 20 controls. The virtual function tables for all those functions
would create quite a bit of overhead. Because the vast majority of those tables are never
used, they are unneeded.

Message maps duplicate the action of a virtual function table, but do so on an
on-demand basis. When you create an entry in a message map, you are saying to the
system, “when you see the specified message, please call the specified function.” Only
those functions that actually get overridden appear in the message map, saving mem-
ory and CPU overhead.

 When you declare a message map with DECLARE_MESSAGE_MAP and
BEGIN_MESSAGE_MAP, the system routes all messages through to your message
map. If your map handles a given message, then your function gets called and the mes-
sage stops there. However, if your message map does not contain an entry for a
message, then the system sends that message to the class specified in the second pa-
rameter of BEGIN_MESSAGE_MAP. That class may or may not handle it and the
process repeats. Eventually, if no message map handles a given message, the message
arrives at a default handler that eats it.

You can see that message maps do approximately the same thing as virtual func-
tions, but on a function-by-function basis. The construction of a message map lets you
specify just one or two overrides for a class without any additional overhead. See
Chapter 23 for details.

4.8 Conclusion

All the message handling concepts described in this chapter apply to every one
of the controls available in Windows. We will see examples of these concepts through-
out Part 2.

4.8
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

65

Chapter 5 uses the scroll bar and button controls described in this chapter to cre-
ate two simple applications. Chapter 11 uses the timer capability described in Section
4.5 to create a simple digital clock.

68

This book is continuously updated. See http://www.iftech.com/mfc

5
Si

m
p

le
 A

p
p

lic
a

tio
ns

application. A second tool called the

ClassWizard

, in conjunction with the

resource ed-
itors

 available in Visual C++, makes it easy to add user interface elements such as
menus and dialogs to the framework. See Chapter 6 for details.

In this chapter we will discuss the creation of two Category 5 applications. Here
we will create them “by hand,” so that you can contrast this approach with the auto-
matic approach presented in Part 3. Those who are impatient may wish to move
directly to Part 2 or 3 now.

The two example programs presented in this chapter are simple applications that
use standard controls to implement the user interface. A surprising number of appli-
cations fit this mold, including most Input-Process-Output or “IPO” programs.
These programs accept input from the user and then calculate and display a result. For
simple applications of this type, it is occasionally easier to write the code yourself, as
discussed in this chapter, rather than bring the full power of the AppWizard to bear
on the problem. You can also better understand and appreciate what the AppWizard
is doing if you know what is going on behind the scenes.

Imagine that you want to create a simple IPO application in MFC. For example,
you might want to create a Fahrenheit to Celsius converter or a simple calculator of
some sort. Where do you start? Probably the best place to begin, as described in Chap-
ter 1, is the user interface. Decide what the program should be able to do and then
choose a set of user interface objects that accomplish those goals. You have to decide
which controls are best suited for accepting input from the user and which are most
useful for displaying program output. You can sketch the layout of these objects to de-
cide on their placement.

You now possess enough knowledge to create your own applications. You know
how to create a main application window and you are familiar with three important
controls available in MFC: the static label, the button, and the scroll bar. Let's start
by creating the Fahrenheit to Celsius conversion program.

What controls does the user need to operate this program? The user definitely
needs a way to input the Fahrenheit temperature. In most GUIs there are only two
built-in controls to gather numeric input: an edit area in which the user types a value
or some type of sliding control which the user manipulates with the mouse. We have
not discussed edit areas yet, so for now we are constrained to the scroll bar.

We also need a way to output the result of the conversion, as well as a formal
way to quit the application. We can use a

CStatic

 control to display the temperature
in Celsius and Fahrenheit. A

CButton

 control labeled “Quit” can be used to handle
quitting. A rough sketch of the proposed application using these different controls is
shown in Figure 5.1.

You will use this same basic technique to design any Windows application. Even
a large application with hundreds of dialog boxes is really nothing but a collection of
user interface controls or custom interactive drawings (see Chapter 11) arranged on
screen. The interface is designed so the user can comfortably manipulate all the data
held by the application.

5.2
Im

p
le

m
e

nting
 the

 Fa
hre

nhe
it to

 C
e

lsius C
o

nve
rte

r

This book is continuously updated. See http://www.iftech.com/mfc

69

5.2 Implementing the Fahrenheit to Celsius Converter

Using the code examples from the previous chapters, we can easily piece together
most of the Fahrenheit to Celsius converter. The results are shown in Listing 5.1. A
screen dump of this program during execution is shown in Figure 5.2.

Listing 5.1
Code to implement a Fahrenheit to Celsius converter.

// f2c.cpp

#include <afxwin.h>
#include <strstrea.h>

const int IDC_SB1=100;
const int IDC_CS1=101;
const int IDC_CS2=102;
const int IDC_BUTTON=103;

const int MIN_RANGE=0;
const int MAX_RANGE=100;

// Define an application object
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application object
CApp App;

Figure 5.1
Proposed layout for the controls for the Fahrenheit to Celsius converter

Fahrenheit=0

Quit

Fahrenheit=0

Quit

Label

Button

Main window

Label Celsius=-17 Celsius=-17

Scroll Bar

70

This book is continuously updated. See http://www.iftech.com/mfc

5
Si

m
p

le
 A

p
p

lic
a

tio
ns

// Define the window object
class CWindow : public CFrameWnd
{

CScrollBar* sb1;
CStatic* cs1;
CStatic* cs2;
CButton* button;

public:
CWindow();
afx_msg void OnHScroll(UINT nSBCode,

UINT nPos, CScrollBar* pScrollBar);
afx_msg void handleButton();
DECLARE_MESSAGE_MAP()

};

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_HSCROLL()
ON_BN_CLICKED(IDC_BUTTON, handleButton)

END_MESSAGE_MAP()

// Window constructor
CWindow::CWindow()
{

// Create the window
Create(NULL, "c2f", WS_OVERLAPPEDWINDOW,

CRect(0,0,208,208));

// Create the fahrenheit label
cs1 = new CStatic();
cs1->Create("Farhenheit = 32",

WS_CHILD|WS_VISIBLE|WS_BORDER,
CRect(0,0,200,50),
this, IDC_CS1);

// Create celsius label
cs2 = new CStatic();
cs2->Create("Celsius = 0",

WS_CHILD|WS_VISIBLE|WS_BORDER,
CRect(0,51,200,100),
this, IDC_CS2);

// Create the scroll bar
sb1 = new CScrollBar();
sb1->Create(WS_CHILD|WS_VISIBLE|SBS_HORZ,

CRect(0,101,200,130),
this, IDC_SB1);

sb1->SetScrollRange(MIN_RANGE,MAX_RANGE,TRUE);
sb1->SetScrollPos(32);

// Create quit button
button = new CButton();
button -> Create("Quit",

WS_CHILD|WS_VISIBLE|WS_BORDER,
CRect(0,131,200,180),
this, IDC_BUTTON);

5.2
Im

p
le

m
e

nting
 the

 Fa
hre

nhe
it to

 C
e

lsius C
o

nve
rte

r

This book is continuously updated. See http://www.iftech.com/mfc

71

}

// Handle the horizontal scroll bar
void CWindow::OnHScroll(UINT nSBCode,

UINT nPos, CScrollBar* pScrollBar)
{

int pos;

pos = pScrollBar->GetScrollPos();
switch (nSBCode)
{

case SB_LINEUP:
pos -= 1;
break;

case SB_LINEDOWN:
pos += 1;
break;

case SB_PAGEUP:
 pos -= 10;

break;
case SB_PAGEDOWN:

pos += 10;
break;

case SB_TOP:
pos = MIN_RANGE;
break;

case SB_BOTTOM:
pos = MAX_RANGE;
break;

case SB_THUMBPOSITION:
pos = nPos;
break;

default:
return;

}
if (pos < MIN_RANGE)

pos = MIN_RANGE;
else if (pos > MAX_RANGE)

pos = MAX_RANGE;
sb1->SetScrollPos(pos, TRUE);

// set the labels to the new values
char s[100];
ostrstream ostr(s,100);
ostr << "Fahrenheit= " << pos << ends;
SetDlgItemText(IDC_CS1,s);
ostr.seekp(ios::beg);
ostr << "Celsius= " << (pos-32)*5/9 << ends;
SetDlgItemText(IDC_CS2,s);

}

void CWindow::handleButton()
// Quits the application
{

DestroyWindow();
}

72

This book is continuously updated. See http://www.iftech.com/mfc

5
Si

m
p

le
 A

p
p

lic
a

tio
ns

// Init the application and the main window
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

Looking at this program you see a number of familiar pieces. The CApp class is
derived from CWinApp and overrides the InitInstance function. The CWindow
class is derived from CFrameWnd. It declares pointers to the four user interface con-
trols, declares the message map, and defines two functions that handle messages sent
by the scroll bar and the button.

The constructor for CWindow creates two static labels, a scroll bar, and a but-
ton. It sets the range for the scroll bar and its initial position. The techniques used here
are the same as those used in Chapters 3 and 4 to create labels, buttons, and scroll bars.

The two functions, CWindow::OnHScroll and CWindow::HandleButton,
handle messages returned by the scroll bar and the button, respectively. The
OnHScroll function uses the same process seen in Chapter 4. It determines which ac-
tion the user has performed on the scroll bar and then updates the scroll bar's position
accordingly. This function also updates the two static labels so they display the appro-
priate Fahrenheit and Celsius temperatures, using the following lines:

char s[100];
ostrstream ostr(s,100);
ostr << "Fahrenheit= " << pos << ends;
SetDlgItemText(IDC_CS1,s);
ostr.seekp(ios::beg);
ostr << "Celsius= " << (pos-32)*5/9 << ends;
SetDlgItemText(IDC_CS2,s);

Figure 5.2
Screen dump of the Fahrenheit to Celsius
converter shown in Listing 5.1

5.2
Im

p
le

m
e

nting
 the

 Fa
hre

nhe
it to

 C
e

lsius C
o

nve
rte

r

This book is continuously updated. See http://www.iftech.com/mfc

73

 This code uses the C++ string stream library to format strings into memory. An
alternative implementation in C would use

sprintf

 instead.

The function

SetDlgItemText

 is inherited from

CWnd

. The name of this func-
tion assumes that controls are found only in dialog boxes, but our program uses
controls in a normal window. The

SetDlgItemText

 function, and its nearly identical
partner

SetDlgItemInt

, set the string of

CStatic

,

CButton

, and

CEdit

 controls. The
text version accepts a normal C string (or an MFC

CString

 object–see Chapter 12)
and places it in the control specified by the ID parameter. The integer version accepts
an integer instead. The first parameter is the resource ID of the control to set, while
the second is the new value. Note that the control's ID is determined in the

Create

function for the control. In this program, all four controls are given a unique ID at
creation by using constants defined at the top of the program.

The

handleButton

 function is the button handler. It simply calls the

Destroy-
Window

 function to quit.
The main window for this application allows re-sizing and maximization. Be-

cause the controls in the window do not readjust their size or position in response
to the extra screen space, the program looks unattractive after resizing. One way to
solve this problem is to disable resizing altogether. This is the approach taken, for

Changing Controls

At this point in your MFC career, you may have noticed a trend. There are
at least three different ways to change the appearance of any control:
1. You can modify some aspects of the control at creation using its style

constants (WS_BORDER, SS_CENTER, etc.)
2. You can modify some aspects of the control during execution using spe-

cial functions in the CWnd class like CWnd::SetFont.
3. You can modify the control's data using SetDlgItemText and SetDlgItem-

Int and the control's ID.
There are other ways as well. The SetWindowLong function in the API lets you
change a control's attributes. Many controls also have functions that you can
call to modify the control in specific ways: Examples include CStatic::SetIcon
and CListBox::AddString.

How do you discover all of these different techniques? One way is through ex-
perience, such as the experience you are gaining through this book. You can
also gain experience by reading other people's code. Look in the SAMPLES di-
rectory that came with Visual C++ for many megabytes of sample code. You
should look through the MFC documentation and read about the functions in
the CWnd class and the control classes.

You might also consider searching the documentation for the word “Set”. There
are perhaps 100 functions that start with that word and many of them are quite
interesting.

74

This book is continuously updated. See http://www.iftech.com/mfc

5
Si

m
p

le
 A

p
p

lic
a

tio
ns

example, by the Calculator accessory shipped with Windows. If you run the calcu-
lator you will notice it has a thin border that disables re-sizing. You can take
advantage of this effect by changing the style attributes for the window from
WS_OVERLAPPEDWINDOW to the following:

WS_OVERLAPPED | WS_MINIMIZE | WS_SYSMENU
The WS_OVERLAPPEDWINDOW style automatically includes a thick resiz-

ing frame and a maximize button. By switching to the WS_OVERLAPPED style you
can choose the specific border decorations that you want to include. By leaving out
the thick frame and the maximize button, the application cannot resize itself. See the

CWnd::Create

 function in the MFC documentation for more information.
One last feature you may wish to add to this application is an appropriate icon.

Addition of an icon requires the use of resource files, discussed in Chapter 6.

5.3 The CEdit Control

Scroll bars work well when input is restricted to integer values that fall within a
small range. However, if the user needed to select values between zero and 1,000,000,
then a scroll bar doesn't work well because its gradations are too coarse. When scroll
bars are inappropriate (e.g., when reading floating point values, large integers, or text),
single- line edit areas work well. The

CEdit

 class implements this control. The

CEdit

class can also be used in much more advanced ways to create complete text editors.
These applications are discussed in detail in Chapter 8. Here we'll focus on using

CEdit

 to implement a simple single-line text input control.
The code in Listing 5.2 demonstrates the creation of a simple

CEdit

 object.

Listing 5.2
Code demonstrating the use of a CEdit control.

// edit.cpp

#include <afxwin.h>

const int ED=100;
const int CS=101;

// Define an application object
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window object
class CWindow : public CFrameWnd
{

CEdit* ed;
CStatic* cs;

5.3
The

 C
Ed

it C
o

ntro
l

This book is continuously updated. See http://www.iftech.com/mfc

75

public:
CWindow();
afx_msg void HandleChange();
DECLARE_MESSAGE_MAP()

};

// Message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_EN_CHANGE(ED, HandleChange)
END_MESSAGE_MAP()

// Window constructor
CWindow::CWindow()
{

// Create the window
Create(NULL, "Interest",

WS_OVERLAPPEDWINDOW,
CRect(CPoint(10,10),CSize(150,100)));

// Create the edit control
ed = new CEdit();
ed->Create(WS_CHILD|WS_VISIBLE|WS_BORDER,

CRect(CPoint(5,5),CSize(100,24)),
this, ED);

ed->LimitText(10);

// Create a static label
cs = new CStatic();
cs->Create("xxx",

WS_CHILD|WS_VISIBLE|WS_BORDER,
CRect(CPoint(5,30),CSize(100,24)),
this, CS);

ed->SetFocus();
}

void CWindow::HandleChange()
// Handles any change to the edit control
{

UINT amount=GetDlgItemInt(ED);
SetDlgItemInt(CS,amount);

}

// Init the application and the main window
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

In Listing 5.2, the constructor for the main window creates both a single-line
edit control and a static label. Notice that this code uses a new technique for specifying

76

This book is continuously updated. See http://www.iftech.com/mfc

5
Si

m
p

le
 A

p
p

lic
a

tio
ns

the location and size of the bounding rectangles of the controls. Instead of specifying
the top left and bottom right coordinates, it specifies the top left corner along with the
width and height of the bounding rectangle. The two techniques are interchangeable.
The

LimitText

 function sets the maximum length of the text entry to 10 characters.
The call to

SetFocus

 at the bottom of the window constructor ensures that the edit
control will have user focus when the window initially appears.

The message map wires in the ON_EN_CHANGE map entry so that the
EN_CHANGE (EN = Edit Notification) message generated by the edit control is in-
tercepted. This message is sent by an edit control each time its value changes (look at
the description of the

CEdit

 class in the MFC documentation for a discussion). An
alternative would place a button in the window that the user presses to accept the value
typed into the edit control. This alternative creates an interface that has a “Press return
at the end of the line” feel to it.

The code in Listing 5.2 demonstrates how to extract integer values from an edit
control. Each time the user modifies the edit control, the

HandleChange

 function is
called via the message map. The

HandleChange

 function calls

GetDlgItemInt

 to ex-
tract the current value from the edit control and then calls

SetDlgItemInt

 to set the
value into the static label. When you execute the program, notice that the value dis-
played in the label changes with each character typed. Also notice that invalid input is
rejected. For example, if you enter “123aaa” in the edit control, only “123” will appear
in the label.

Retrieval of text rather than integer input from an edit control is just as easy.
Modify the code in

HandleChange

 so that it calls

GetDlgItemText

 and

SetDlg-
ItemText

. Retrieval of values such as real numbers requires slightly more work. The
following replacement for the

HandleChange

 function demonstrates the process.
This code interprets the contents of the edit area as the radius of a circle and calculates
the circle's area:

void CWindow::HandleChange()
// Handles any change to the edit control
{

float f;
char s[100], t[100];

GetDlgItemText(ED,s,100);

// convert s to a float
istrstream istr(s,100);
istr >> f;

// calculate the area of a circle
f = (float) 3.14159 * f * f;

// convert the area back to a string for display
ostrstream ostr(t,100);
ostr << "area = " << setprecision(10);
ostr << f << ends;
SetDlgItemText(CS,t);

}

5.4
A

n Inte
re

st C
a

lc
ula

to
r

This book is continuously updated. See http://www.iftech.com/mfc

77

The code uses the

strstream

 library and therefore must include <strstrea.h> and
<iomanip.h> at the top of the program. See Appendix A for details. In this version of

HandleChange

, the code uses

GetDlgItemText

 to retrieve the current value of the
edit control. This value is then converted to a floating point value. The insertion op-
erator used to convert the string to a floating point value is smart enough to ignore
data that is irrelevant, so characters other than digits or a period are ignored. The code
then calculates the area of the circle and converts that value back to a string that can
be displayed in the static label using

SetDlgItemText

.
There are several style attributes that you can apply to the edit control to cus-

tomize its behavior. For example, it can be forced to display all input as upper- or
lower-case characters or it can obscure input for applications such as password accep-
tance. See the description of the

CEdit

 control in the MFC documentation for details
on these styles, as well as Chapter 8. Experiment with the different options in the code
shown above.

5.4 An Interest Calculator

As a final example of the

CEdit

 control we will use it to create an interest calcu-
lator. Here is an English description of the calculator application:

The program should display three editable areas labeled “Amount,” “Interest
Rate,” and “Time.” The user can input account information in these three areas. The
program should use the three values to calculate the future value of the account and
display the result.

Probably the best way to accept the values is with edit controls. The purpose of
each edit control can be identified for the user using static text labels, and the account
balance can also be displayed in a label. A quit button at the bottom will allow the user
to quit. The code in Listing 5.3 implements this program. Figure 5.3 shows a screen
dump of the program during execution.

Listing 5.3
Implementation of the interest calculator.

// interest.cpp

#include <afxwin.h>
#include <math.h>
#include <strstrea.h>
#include <iomanip.h>

const int IDC_ED1=100;
const int IDC_ED2=101;
const int IDC_ED3=102;
const int IDC_RESULT=103;
const int IDC_BUTTON=104;

// Define an application object
class CApp : public CWinApp
{

78

This book is continuously updated. See http://www.iftech.com/mfc

5
Si

m
p

le
 A

p
p

lic
a

tio
ns

public:
virtual BOOL InitInstance();

};

// Create an instance of the application
CApp App;

// Define the window object
class CWindow : public CFrameWnd
{

CEdit* ed1;
CEdit* ed2;
CEdit* ed3;
CStatic* cs1;
CStatic* cs2;
CStatic* cs3;
CStatic* result;
CButton* button;

public:
CWindow();
afx_msg void HandleChange();
afx_msg void HandleButton();
DECLARE_MESSAGE_MAP()
virtual BOOL PreTranslateMessage(MSG* msg);

};

// This function interprets tab keys properly
BOOL CWindow::PreTranslateMessage(MSG *msg)
{

return ::IsDialogMessage(m_hWnd,msg);
}

// Message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_EN_CHANGE(IDC_ED1, HandleChange)
ON_EN_CHANGE(IDC_ED2, HandleChange)
ON_EN_CHANGE(IDC_ED3, HandleChange)
ON_BN_CLICKED(IDC_BUTTON, HandleButton)

END_MESSAGE_MAP()

// Window constructor
CWindow::CWindow()
{

// Create the window
Create(NULL, "Interest",

WS_OVERLAPPED | WS_MINIMIZEBOX | WS_SYSMENU,
CRect(CPoint(10,10),CSize(144,226)));

// Create the labels
cs1 = new CStatic();
cs1->Create("Amount",

WS_CHILD|WS_VISIBLE,
CRect(CPoint(8,10),CSize(66,16)),
this);

cs2 = new CStatic();
cs2->Create("Rate(%)",

5.4
A

n Inte
re

st C
a

lc
ula

to
r

This book is continuously updated. See http://www.iftech.com/mfc

79

WS_CHILD|WS_VISIBLE,
CRect(CPoint(8,46),CSize(66,16)),
this);

cs3 = new CStatic();
cs3->Create("Time(yrs)",

WS_CHILD|WS_VISIBLE,
CRect(CPoint(8,80),CSize(66,16)),
this);

// Create the edit controls
ed1 = new CEdit();
ed1->Create(

WS_CHILD|WS_VISIBLE|WS_BORDER|WS_TABSTOP,
CRect(CPoint(76,10),CSize(64,24)),
this, IDC_ED1);

ed2 = new CEdit();
ed2->Create(

WS_CHILD|WS_VISIBLE|WS_BORDER|WS_TABSTOP,
CRect(CPoint(76,46),CSize(64,24)),
this, IDC_ED2);

ed3 = new CEdit();
ed3->Create(

WS_CHILD|WS_VISIBLE|WS_BORDER|WS_TABSTOP,
CRect(CPoint(76,80),CSize(64,24)),
this, IDC_ED3);

// Create the result label
result = new CStatic();
result->Create("Result=0",

WS_CHILD|WS_VISIBLE,
CRect(CPoint(10,120),CSize(200,24)),
this, IDC_RESULT);

// Create quit button
button = new CButton();
button -> Create("&Quit",

WS_CHILD|WS_VISIBLE|WS_TABSTOP,
CRect(CPoint(2,162),CSize(138,38)),
this, IDC_BUTTON);

ed1->SetFocus();
}

// Handle the quit button
void CWindow::HandleButton()
// Quits the application
{

DestroyWindow ();
}

// Handle changes to any edit area
void CWindow::HandleChange()
// Handles modifications to any edit control
{

UINT amount=GetDlgItemInt(ED1);
UINT rate=GetDlgItemInt(ED2);
UINT time=GetDlgItemInt(ED3);

80

This book is continuously updated. See http://www.iftech.com/mfc

5
Si

m
p

le
 A

p
p

lic
a

tio
ns

double result=amount*
exp((double)rate/100.0*time);

char s[100];
ostrstream ostr(s,100);
ostr << "Result = ";

// ostr << setprecision(2);
// ostr << setiosflags(ios::fixed);
// The above line currently causes a crash
// on large values.

ostr << setprecision(10);
ostr << result << ends;
SetDlgItemText(IDC_RESULT,s);

}

// Init the application and the main window
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

The code for this program is straightforward. The window constructor creates
the eight controls and the HandleButton function quits the application. The message
map routes EN_CHANGE messages from all three edit controls to the same Han-
dleChange function. This function extracts the contents of the three controls and
calculates the account balance. The result is displayed in the result label. The code cur-
rently uses integer input values. However, it would be a straightforward modification
to use code from the previous section and allow real number input.

The interest calculator application includes a unique feature that improves its
user interface. The window class overrides a virtual function named PreTranslate-

Figure 5.3
Screen dump for the interest calculator

5.5
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

81

Message

 inherited from

CWnd

. This virtual function allows the application to
intercept messages intended for any window or control that you create (because they
all inherit from

CWnd

) before they are processed by MFC. In the code above, the ap-
plication passes the messages to the

IsDialogMessage

 function. This function extracts
keystrokes such as the tab key and interprets them in the same way that a dialog box
would. By setting the WS_TABSTOP attribute for the three edit controls and the
button, the user can tab between these four items using the keyboard as well as the
mouse. This technique is the basis for

forms

 as automatically implemented by the
AppWizard and first discussed in Part 3.

Also notice that the label on the button, “&Quit,” contains an “&.” The place-
ment of this ampersand indicates that the “Q,” which is the character immediately
following the ampersand, be used as a mnemonic. You will find the application re-
sponds to the ALT-Q keystroke by quitting the application because of this mnemonic
and the pre-translation of messages.

5.5 Conclusion

In this chapter you have combined your initial knowledge of MFC gained in
previous chapters with some simple user interface design rules to create your first use-
ful applications. Part 2 discusses other MFC user interface features so we can build
larger, more complicated applications. Part 3 shows how to combine these features
with application design and development tools in Visual C++ to significantly speed
your application development cycle.

Part 2

V

ISU
A

L

 C
++

A
N

D

 M
FC

 D

ETA
ILS

Part 1 of this book introduced you to the fundamentals of MFC programming. In Part
3 you will learn about application development tools like the AppWizard and Class-
Wizard that make the creation and implementation of Windows applications so easy
in Visual C++. The purpose of Part 2 is to help you become familiar with the details
of MFC and Visual C++. You will need to understand these details in order to get the
most out of Part 3.

The AppWizard is a code-generation tool. It makes it extremely easy to create a
new application by generating the initial MFC code framework for you. Note, how-
ever, that the code generated by the AppWizard requires quite a bit of MFC
knowledge before you can use it appropriately. For example, the AppWizard generates
code that makes extensive use of the MFC debugging features. Until you understand
these features completely (see Chapter 13), it is difficult to appropriately modify
source code generated by the AppWizard to take advantage of the debugging capabil-
ities. Part 2 familiarizes you with these details.

You, therefore, have two choices at this point in the book. You can work through
Part 2 and prepare yourself fully for Part 3. Or you can jump to Part 3 and read about
topics in Part 2 as the need arises. If you are the “jump-in-immediately” type, you may
wish to visit Chapter 6 first to pick up information on resource files and the resource
editors, and then proceed directly to Part 3 to start creating applications immediately.
For those who prefer to know what they are doing before they jump in, work through
Part 2 and then proceed to Part 3 fully prepared.

Part 2 starts by introducing you to the concept of

resource files

 and

resource edi-
tors

. You may have noticed in Chapter 5 that you had to write quite a bit of code to
create the controls that make up even a very simple application. You can imagine that
in a large application the amount of code could quickly become ridiculous. Resources
solve this problem. Resources are also extremely important in Part 3, so the introduc-
tion that you receive in Chapter 6 makes it much easier to understand some of the
mechanics of the AppWizard and ClassWizard.

Chapter 7 discusses the canned dialogs available in MFC. For example, any time
you need to ask the user for a file name you can use the

CFileDialog

 class to present
the standard File Open dialog. The canned dialogs make most standard tasks such as
file opening, color selection, and message production much easier. Part 2 then com-
pletes your introduction to the Windows controls with two chapters that introduce
you to the

CEdit

,

CListBox,

 and

CComboBox

 controls. The

CStatic

,

CButton,

 and

CScrollBar

 controls were covered in Part 1: If you look at the visual object hierarchy

84

This book is continuously updated. See http://www.iftech.com/mfc

chart, you will find that these six controls make up the total set of controls available
in Windows.

Chapter 10 then gives you an in-depth overview of the features and capabilities
of the

CWinApp

 class. This class is central in MFC, and extremely important to the
AppWizard, so a good understanding of its features is important. Chapter 11 provides
a tremendous amount of detail about the Windows drawing model. While it is possi-
ble to create many different types of programs with the available controls, Windows
is, at its heart, a graphical environment. Therefore, many programs that you want to
create will be graphical in nature, presenting the user with drawings and diagrams in-
stead of lists and text. This chapter explains the important concepts that help you to
use the drawing features of Windows effectively.

Chapter 12 discusses utility and collection classes in MFC. Part of the joy of us-
ing MFC is the fact that it contains classes that make your life as a programmer easier.
This chapter discusses many of these classes and shows examples of how to use them
effectively. Finally, Chapter 13 immerses you in the MFC debugging features. The de-
signers of MFC took the long-term run-time stability of the hierarchy very seriously
and incorporated a number of debugging and diagnostic features into MFC. This
chapter will show you how to use those features to reduce your debugging time.

85

6RESOURCES, DIALOGS, AND MENUS

One of the most powerful features of Visual C++ and the MFC class hierarchy is the
ability to create, and easily integrate into your applications, something called

resources

.
Resources help you solve one of the more bothersome problems seen in Chapter 5. In
that chapter you created two small, simple applications, and you ended up having to
write a tremendous amount of code to create and position the controls. For example,
if you look back at the window constructor for the interest calculator example in List-
ing 5.3, you find that it takes 50 lines of code just to set up the eight controls displayed
in the application's main window. You can easily imagine that any “real” application
will have hundreds of controls, and it would take quite a bit of time to create these
controls if you had to do it “by hand” like this.

What if you need to create a dialog that lets the user enter name and address in-
formation for a company database? You would like to use a tool that lets you lay out
the dialog controls and position them visually. In Visual C++ you can do just that, us-
ing a tool called a

dialog editor

 to set up the dialog. Then you use a class called

CDialog

 in MFC to make the process of communicating with the dialog resource easy
and straightforward.

Visual C++ contains several customized resource editors for the general task of
editing

resource files

. These files and editors handle not only dialogs, but also such
things as menus, accelerator tables, icons, and bitmaps. This chapter will introduce
you to the concept of resource files and help you understand how to create and modify
them with the tools available in Visual C++. In Part 3 you will see how to easily use
these tools to rapidly develop your own complex applications.

6.1 Resources and Resource Files

Resources

 are program objects such as icons, menus, and dialog boxes that are de-
fined outside your program's C++ code in special text and binary files. These files,
called

resource files

 or

resource scripts

, describe the different resources by using a pro-
gramming language understood by the

resource compiler

. The resource compiler is

86

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

invoked through your normal Visual C++ project file, and its output is linked to the
program's executable just like any other binary object file. The application loads the
resources and uses them to implement different elements of the user interface.

In the not-so-distant past, you created resource scripts “by hand.” That is, you
typed resource-creation code into resource scripts just like you type C++ code into text
files now. Then you ran the resource code through the resource compiler and linked
the output to your executable. In Visual C++ this process is completely automated,
using graphical editors that make the process extremely quick and straightforward.

Resources make application development easier. There are several important ad-
vantages to using resources in your applications:

1. Resource files can be modified without touching your code, and this allows you
to make changes much more quickly. For example, you can reposition a control
in a dialog box very easily in a resource file without ever touching or recompil-
ing the C++ program that uses it.

2. Resource files concentrate text strings in one place, allowing you to easily han-
dle different human languages. For example, a program will place all its menus
and dialog box labels in its resource script. Dialog boxes and menus generally
contain all the language-specific text strings used in an application, so if you
want to change the language, you simply change the resource file. You can
maintain several different resource files, one for each language your application
supports (English, French, German, Spanish, etc.), and link them in as needed.

3. You can build resources very quickly with the resource editors. These tools let
you visually manipulate things like dialogs and menus, and this increases your
productivity tremendously. The dialog editor, for example, allows you to create
and position the controls for a dialog using a point-and-click user interface. It
is, therefore, very easy to re-size and move the different dialog controls.
A resource-definition file, commonly called a

script

 or

rc

 file, is a text file with
the extension .RC. With the resource editors, you never have to actually look at or
touch the script file. You simply include it into the project and Visual C++ invokes
the resource compiler on it automatically. The application can access the resources by
using a unique name or constant value assigned to each resource in the script file. A
header file, generally named RESOURCE.H, accompanies the script file and contains
all the constant names and values.

Here are five facts about resource files that will make them easier to understand
in the following sections:

1. A resource file, or RC file, contains one or more of the following resource cate-
gories:
• Accelerator
• Bitmap
• Cursor
• Dialog

6.1
Re

so
urc

e
s a

nd
 Re

so
urc

e
 File

s

This book is continuously updated. See http://www.iftech.com/mfc

87

• Icon
• Menu
• Toolbar
• String Table
• Version
In the case of the first seven resource categories, each category can contain zero
or more resources of its type. For example, a program might have 15 different
dialogs, three menus, five icons, two bit maps and three accelerator tables. In
the case of string tables and version information, on the other hand, the pro-
gram contains just one resource of that type.

2. To add a new resource to a resource file see Appendix B.5.1. Each type of
resource has its own special editor in Visual C++. The appropriate editor will
appear when you create the new resource, allowing you to modify the resource.

3. All resources have

properties

. You can select a specific resource and then select
the

Properties

 option in the

Edit

 menu (or double-click on the resource) to
view the properties for the resource. One property is the constant ID or name
of the resource. Other common properties include things like width and height.
Generally, you can easily modify any resource using its property dialog.

4. Resources can be identified by an integer constant or by a name. An integer
constant is the default identification chosen by the resource editors for any new
resource, but many functions in MFC prefer to work with resource names.
Constant values must be included into the application, so the resource editors
manipulate a header file called RESOURCE.H that contains the constant val-
ues. A typical constant identifier is IDI_ICON1. The “ID” portion identifies it
as a resource ID, the “I” identities it as an icon, and the “ICON1” is a unique
name for the specific icon. In RESOURCE.H, this constant name might be
associated with the value 105. To replace a constant value with a name, choose
the

Properties

 option in the

Edit

 menu and type the name,

in quotes

, into the

ID

 field.
5. Resource scripts get compiled and linked to your application through the project

file. All you have to do is include the header file for the resource file in your
application and add the RC file to your project. The header file contains con-
stant values defined in the script file and needed by your code to retrieve differ-
ent resources. The RC file describes the resources for the resource compiler. The
project file knows how to invoke the resource compiler on the RC file and then
link the resources into your application. Figure 6.1 illustrates the process.
The goal of this chapter is to show you how resource files integrate into Visual

C++ programs and to demonstrate the editors to you. You will then learn in Part 3
how to use these editors within the AppWizard framework and the ClassWizard to ac-
celerate the application development process.

88

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

6.2 The Icon Resource

It may take several passes to get used to the idea of resource files, so let's start
with the simplest possible example. In Chapter 3 we experimented extensively with
the

CStatic

 control. One option we omitted was the ability of a static control to dis-
play

icons

. Icons in applications are almost always handled through resource files. In
this section and the next we will walk through the creation of a resource file and icon
resource and show how to display the icon resource from a normal MFC program like
the ones you developed in Part 1.

The code shown in Listing 6.1 creates a

CStatic

 control that can display an icon.
The screen dump in Figure 6.2 demonstrates the output of the program.

Figure 6.1

Compiling and linking resource files

Create C++
code files

(.cpp)
. Include

RESOURCE.H

Create resources

with

tools like the

dialog editor

Add the

resource script

to the project

Compile the code

files with C++

compiler

Compile the

resources with the

resource compiler

Build Project

link

Final executable

Create a new

resource script

(RC file)

6.2
The

 Ic
o

n Re
so

urc
e

This book is continuously updated. See http://www.iftech.com/mfc

89

Listing 6.1
Code that creates a CStatic label displaying an icon.

// icon.cpp

#include <afxwin.h>

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

//Declare the window class
class CWindow : public CFrameWnd
{

CStatic* cs;
public:

CWindow();
~CWindow();

};

// The InitInstance function is called once
// when the application first executes
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CWindow::CWindow()
{

CRect r;

// Create the window
Create(NULL,

"Icon Test",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Create a label that holds an icon
cs = new CStatic();
cs->Create("icon",

WS_CHILD|WS_VISIBLE|SS_ICON,
CRect(20,20,0,0),
this);

}

90

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

// The destructor for the window
CWindow::~CWindow()
{

delete cs;
}

In the code in Listing 6.1, the line that creates the CStatic control is important.
The SS_ICON style attribute tells the control that it should display an icon, and in
this context the name “icon” passed as the first parameter names the icon that should
be displayed.

If you try to compile and run the application in Listing 6.2 using the techniques
discussed in Appendix B.3 of the book, you will find that it does not work. To display
the icon, the application needs to be able to load the bit-level description for the icon
from a resource file using the name “icon”. The creation of this resource is described
in the next section.

6.3 Creating a Resource File
You use the resource editors in Visual C++ to create and edit any type of re-

source. The collection of editors include a dialog editor, a menu editor, an accelerator
table editor, an icon editor, a cursor editor, a bitmap editor, a string resource editor,
the toolbar editor, and a version editor. To use any of these editors you must first cre-
ate a new resource script. Let's walk through the whole process of creating a new
project, adding in the C++ code, creating a resource script, and then adding an icon
resource. This will allow you to see how resource scripts and C++ files work together
to create complete applications

6.3.1 Step 1– Create a New Project

We will use the same technique discussed in Appendix B.3 to create a new
project. Call the project ICON and the code file for Listing 6.1 ICON.CPP.

6.3.2 Step 2 – Create a New Resource Script

To create a new resource script for this application see Appendix B.5.2.

Figure 6.2
An icon displayed by a CStatic label

6.3
C

re
a

ting
 a

 Re
so

urc
e

 File

This book is continuously updated. See http://www.iftech.com/mfc

91

6.3.3 Step 3 – Add the RC File to the Project

Now add the RC file to the project in exactly the same way you added the CPP
file to it.

6.3.4 Step 4 – Create the Icon Resource

To create the icon resource used by Listing 6.1, create a new icon resource as de-
scribed in Appendix B.5.3.

Create an icon like the one shown in Figure 6.3, or make up your own, using
the various drawing and painting tools in the palette. If the pal ette is not visible see
Appendix B.5.4. The resource editor will give the icon an arbitrary constant value
named IDI_ICON1.

When you have finished your icon, choose the

Save

option in the

File

 menu. If
you now look in the resource view, you will see that it shows a new resource.

6.3.5 Step 5 – Change the Icon ID

When the icon editor created the new icon, it gave it a

constant value

 and named
that constant IDI_ICON1. It placed this constant name and value in a file it created
called RESOURCE.H. We need to change this. In our case, because of the way the
code appears in Listing 6.1, the icon needs to have the

name

 “icon” rather than a

con-
stant value

. To do this, open IDI_ICON1 by double-clicking it in the resource view.
Choose the

Properties

 item in the

Edit

 menu. You will see an Icon Properties dialog.
In the ID field, type the word “icon” (

be sure to include the quotes

) in place of
IDI_ICON1. Close the properties dialog. The new name should appear in the title
bar of the icon's window, and also in the resource view.

Figure 6.3

Editing the icon resource

92

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

6.3.6 Step 6 – Compile and Run

You should now be able to compile and run the application. Provided you have
followed all the steps correctly, Visual C++ will compile the resource file, compile the
CPP file, link the two together, and produce an executable. When you run the appli-
cation you should find that it looks like the application in Figure 6.2.

6.3.7 Review

Here is a review of the steps taken to display an icon in a

CStatic

 control:

1. Create a new MFC project. See Appendix B.3 for details.
2. Create a CPP file that includes the

CStatic

 control and give the control the
SS_ICON style. (See the

style

 part of the

CStatic::Create

 function in the
MFC documentation for more information on the SS_ICON style.)

3. Add the CPP file to the project.
4. Create a new resource script. See Appendix B.5 for details.
5. Add the new resource script to the project.
6. Create a new icon resource.
7. In the properties dialog for the new icon give the icon the name “icon”. Note that

this is a quoted string:

Include the quotes in the ID field of the properties dialog

.
8. Build and run the application.

After you do it several times and get comfortable with the process and tools, you
will find that using resource scripts and resource editors to create resources is extreme-
ly easy.

An interesting side effect of knowing how to create icon resources is that you can
now give the application an icon when it is minimized on the desktop. Create a new
icon and, in the ID field of the Properties dialog for the icon, use the name
AFX_IDI_STD_FRAME. This constant name is recognized automatically by MFC
as the identifier for the application's icon. When you run the application, it will have
its own icon on the desktop. The AppWizard leverages automatic features like this
constantly to make it easy to create full-fledged applications. Be sure to create both
16x16 and 32x32 bit icons as described in Appendix B.5.3.

You may also want to use the

LoadIcon

 and

SetIcon

 functions to change the
icon. See Chapter 10 for an example.

For complete information on the icon editor, press the F1 key while the icon ed-
itor window is visible in Visual C++.

6.4 Menus

Menus are another resource that you commonly create with a resource editor.
Visual C++ provides a menu editor that is extremely easy to use.

The code in Listing 6.2 creates a simple application that displays a menu. To try
out this code, create a new project using the same steps you followed in Section 6.3.1,
and add the code shown in Listing 6.2 to the project. If you compile and run the ap-

6.4
M

e
nus

This book is continuously updated. See http://www.iftech.com/mfc

93

plication now it will execute, but you will see no menu because we have not yet created
the menu resource named “MainMenu” with the resource editor. As with the icon re-
source in Section 6.3, Visual C++ simply does not load the resource if it cannot find it.

Listing 6.2
Creating a menu with a menu resource.

// menu.cpp
#include <afxwin.h>

// Define the application object class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Define the edit window class
class CWindow : public CFrameWnd
{

CMenu *menu;
public:

CWindow();
DECLARE_MESSAGE_MAP()

};

// Create and instance of the application object
CApp App;

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)
END_MESSAGE_MAP()

// CWindow constructor
CWindow::CWindow()
{

Create(NULL, "Menu Samp", WS_OVERLAPPEDWINDOW, rectDefault);
menu = new CMenu();
menu->LoadMenu("MainMenu");
SetMenu(menu);
DrawMenuBar();

}

// Initialize the CApp m_pMainWnd data member
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd -> ShowWindow(m_nCmdShow);
m_pMainWnd -> UpdateWindow();
return(TRUE);

}

94

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

In Listing 6.2, the window's constructor loads the menu resource. It loads a
menu by the name of “MainMenu.”

To create the menu resource, create a new resource script for this project follow-
ing the steps in Appendix B.5.2, and then add the new script to the project. Create a
new

Menu

 resource as described in Appendix B.5.5. You will see a window like the
one shown in Figure 6.4.

Looking at Figure 6.4, you can see several different objects. First, there is a menu
named

File

. The

File

 menu contains the options

Open

,

Close,

 and

Quit

. Below the

Quit

 option and to the right of the

File

menu there are blank boxes. These indicate
areas where you can add new options or menus. You can drag these blank boxes, or
the menus and options themselves, to different positions. If you click on one of the
blank boxes and begin typing you can create a new menu or menu option. If you dou-
ble-click on any existing menu option (or single-click and choose the

Properties

option in the

Edit

 menu), its Properties dialog will appear.
Create the menu structure shown in Figure 6.4 on your own. Simply click on a

blank box in the menu bar or a menu and type, for example, the word “File”. The
Properties dialog will appear automatically and the word “File” will fall into the

Cap-
tion

 field. At the end of the word press return and the Properties dialog will disappear.
You will find that it takes just a minute or two to create the menu. Then double-click
on the new

Open

 option to see its properties again.
In the Properties dialog for the

Open

 option in the

File

 menu that you just cre-
ated you should note several important fields:

1. The ID field contains the name of the constant for the menu option. You will
use this constant inside message maps to detect when the user selects that
option, as we will see in a moment. The resource editor has given this constant
an obvious name (ID_FILE_OPEN), but you can change it to anything you
like. In fact, you should change it. If you leave it as it is, the compiler will gen-
erate a number of warnings when you compile the code because the constants
chosen for the menu option IDs are already used by MFC and the AppWizard.
To eliminate the warnings, you should rename each menu option ID using an
IDM_ preface in place of ID_. Double-click on each menu option and then
change its name in the ID field to IDM_FILE_OPEN, IDM_FILE_CLOSE,
and IDM_FILE_QUIT, respectively (yes, you can change it to

Exit

 if you like).

Figure 6.4

The menu editor showing a simple
menu

6.4
M

e
nus

This book is continuously updated. See http://www.iftech.com/mfc

95

2. The Caption field contains the text that appears in the menu. This is the text
you typed when you created the option. You can change it at any time,
although the ID field will not reflect the new name unless you manually change
it as well.

3. The Prompt field contains a message that goes in the status bar of applications
equipped with a status bar. We will see how to use the status bar in Chapter 18.

4. The dialog contains several different check boxes to control the menu item's
behavior.
Try some of these out on your different menus. Each one is explained below:
• Separator – If selected, the menu option will appear as a horizontal line.
• Checked – If selected, the menu option will initially have a check mark next

to it.
• Popup – If selected, the option becomes a popup menu. The File menu is a

popup. You create multi-level menus by placing a popup inside another pop-
up.

• Grayed – If selected, the menu item is grayed out and inactive.
• Inactive – If selected, the menu option is initially inactive but not grayed to

indicate that. Use Grayed instead.
After creating the menu, you need to rename it “MainMenu” so the application

can find it. By default the menu resource editor has assigned the new menu resource
the ID of IDR_MENU1. To change it, go back to the resource file's main window.
Single-click on IDR_MENU1 as shown and then select the

Properties

 option in the

Edit

 menu. In the ID field of the Properties dialog, type “MainMenu”,

making sure
that you include the quotes and use the correct capitalization

. Close the dialog and save
the resource file by selecting the

Save

 option in the

File

 menu. Make sure you are sav-
ing it to the proper directory. Name the file SCRIPT.RC.

To include the menu in your application, take the same steps as for the icon in
the previous section.

Include the file RESOURCE.H at the top of Listing 6.2.

You have
to do this because RESOURCE.H contains the constant values for
IDM_FILE_OPEN, IDM_FILE_CLOSE, and IDM_FILE_QUIT.

 Add the resource
file to your project.

 You have to do this or the resource file will not be compiled and
linked to the application. Build the modified project.

When you run the application you should see the menu bar and it should work
as expected. None of the items will be enabled initially, but we will see in a moment
how to remedy that. If you do not see the menu bar, assume that there is a problem
with the naming of the menu or with the resource file itself and fix the problem.

Here is a review of the steps taken to display a menu in an MFC application:

1. Create a new MFC project.
2. Create a CPP file that loads a menu resource in the window's constructor.
3. Add the CPP file to the project.
4. Create a new resource script.
5. Add the new resource script to the project.

96

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

6. Create a new menu resource.
7. In the properties dialog for the new menu, give the menu the ID “MainMenu”.

Note that this is a quoted string:

Include the quotes in the ID field of the properties
dialog

.
8. Build and run the application.

For more information on the menu editor, press the F1 button with the menu
editor window visible.

6.5 Responding to Menus

You respond to menu options chosen by the user through the message map. No
menu item is enabled unless it has an entry in a message map (you can change this
behavior by modifying the

m_bAutoMenuEnable

 member in the

CFrameWnd

class). If a message map entry exists for a menu option, the menu option sends a mes-
sage containing its ID to the window each time the user selects it. If you place an
ON_COMMAND entry for a menu item in the message map and give that entry a
function to call, the menu will respond to the user by calling the function. The mech-
anism is identical to the mechanism used to recognize clicks in push buttons, as
described in Chapter 4.

For example, the code in Listing 6.3 demonstrates how to respond to the

Quit

option in the

File

 menu.

Listing 6.3
Responding to the quit option

// menu2.cpp

#include <afxwin.h>
#include "resource.h"

// Define the application object class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Define the edit window class
class CWindow : public CFrameWnd
{

CMenu *menu;
public:

CWindow();
afx_msg void HandleQuit();
DECLARE_MESSAGE_MAP()

};

// Create and instance of the application object
CApp App;

6.5
Re

sp
o

nd
ing

 to
 M

e
nus

This book is continuously updated. See http://www.iftech.com/mfc

97

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_COMMAND(IDM_FILE_QUIT, HandleQuit)

END_MESSAGE_MAP()

void CWindow::HandleQuit()
{

DestroyWindow();
}

// CWindow constructor
CWindow::CWindow()
{

Create(NULL, "Menu Sample", WS_OVERLAPPEDWINDOW,
rectDefault);

menu = new CMenu();
menu->LoadMenu("MainMenu");
SetMenu(menu);
DrawMenuBar();

}

// Initialize the CApp m_pMainWnd data member
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd -> ShowWindow(m_nCmdShow);
m_pMainWnd -> UpdateWindow();
return(TRUE);

}

Listing 6.3 has three modifications that distinguishes it from Listing 6.2:

1. The CWindow class contains a new member function named HandleQuit.
2. The message map contains an ON_COMMAND entry that recognizes

IDM_FILE_QUIT and calls HandleQuit in response to it.
3. The HandleQuit function calls DestroyWindow to close the application.

See Chapter 4 for more information on message maps.
When you build Listing 6.3 and run the application, you will find that the Quit

option is enabled and when selected it terminates the application properly.
You will follow this same three-step pattern in the message map to respond to

any menu option. In Part 3 you will learn about a tool called the ClassWizard that au-
tomates the process of adding message handlers to your applications and makes menus
even easier to create.

The following sections demonstrate several menu features that are important
when you create complete applications.

6.5.1 Checked and Enabled Menu Items

The code below demonstrates how to handle checked menu options. When you
select a checked option it toggles back and forth between checked and unchecked. To

98

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

create this effect in the sample program, first use the menu resource editor to add a
new menu option named

Word Wrap

 to the

File

 menu. Then modify the class defi-
nition for

CWindow

 and its message map, and add a new function as shown in the
code fragment below:

// Define the edit window class
class CWindow : public CFrameWnd
{

CMenu *menu;
BOOL wordwrap; // init in the constructor

public:
CWindow();
afx_msg void HandleQuit();
afx_msg void OnWordWrap();
DECLARE_MESSAGE_MAP()

};

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_COMMAND(IDM_FILE_QUIT, HandleQuit)
ON_COMMAND(IDM_FILE_WORDWRAP, OnWordWrap)

END_MESSAGE_MAP()

void CWindow::OnWordWrap()
{

if (wordwrap)
menu->CheckMenuItem(IDM_FILE_WORDWRAP,

MF_BYCOMMAND|MF_UNCHECKED);
else

menu->CheckMenuItem(IDM_FILE_WORDWRAP,
MF_BYCOMMAND|MF_CHECKED);

wordwrap = !wordwrap;
}

When you build and run the modified program, you will find that the

Word
Wrap

 option toggles between a checked and unchecked state. If you wish for it to be
initially checked, then select the

Checked

 option in the menu item's property dialog.
To disable and enable menu options dynamically in a program, use the

Enable-
MenuItem

 function in a manner identical to the way the

CheckMenuItem

 is
demonstrated above. For example:

menu->EnableMenuItem(IDM_FILE_CLOSE,
MF_BYCOMMAND|MF_DISABLE);

You will find an example of this feature in Chapter 8. However, you will find in
Part 3 that MFC contains a

CCmdUI

 class that automates the menu enabling process
and makes it even easier. You can use it for handling check marks as well.

6.5.2 Creating Mnemonics

When you create a caption for a menu or a menu option, you have the option
of placing an “&” (ampersand) character in front of any one of the characters in the
caption. For example, you might type “&File” instead of “File” for the caption of the

File

 menu. The ampersand preceeding a character marks that character as the menu's
or option's

mnemonic character

. Try adding ampersands to the captions of each item

6.5
Re

sp
o

nd
ing

 to
 M

e
nus

This book is continuously updated. See http://www.iftech.com/mfc

99

in the menu you created above. Double-click on each item in the menu editor and add
the ampersand in the caption of the property dialog that appears. The only constraint
is that you cannot mark the same character as a mnemonic character more than once
in the same menu or menu bar.

Recompile and run the program and you will find that your menu has mnemon-
ic characters just like any other Windows application.

6.5.3 Creating Accelerators

Most applications allow you to use accelerators as “hot keys” for different menu
options. Some accelerators are standard, like Alt-F4 for exiting an application. Others
are completely arbitrary and determined by the application's designer. Accelerators are
provided to make it easier to access frequently used menu options.

To activate the accelerator keys, your code must load an

accelerator table

 from
the resource file, usually in the window's constructor immediately following menu
loading. Use the

LoadAccelTable

 function to load the table and create an Accelerators
resource to hold the table.

An accelerator table consists of a set of accelerator specifications, each one dis-
played on a separate line in the table. Each line defines one accelerator key and maps
it to a command ID. The line format is described below. You can double-click on the
first blank line in a new table to modify it and add an accelerator to the application.
The Accelerators Properties dialog will let you enter four things:

1.

ID

– Indicates the integer constant of the message that is generated when the
accelerator is used. Typically this ID corresponds to the ID of one of the avail-
able menu options, such as IDM_FILE_OPEN. However, this is not always the
case--you might create an accelerator with the ID of ID_INSERT_TOGGLE
and associate it with the Insert key on the keyboard.

2.

Key

– Indicates the keystroke for this accelerator. The keystroke can be either an
ASCII character or a virtual key like a function key. Typically ASCII characters,
when used, are modified by a key like the Control or Alt key. If you click the

Next Key Typed

 button to set the keystroke, the accelerator resource editor will
automatically choose whether to use an ASCII keystroke or a VirtKey for you
and you do not have to worry about the distinction.

3.

Type

– ASCII or VIRTKEY. See

Key

.
4.

Modifiers

 – One or more of ALT, SHIFT, and CONTROL can be used to select
special key combinations.
For example, you might associate the Ctrl-O keystroke with the

Open

 option in
the

File

 menu by choosing IDM_FILE_OPEN for the accelerator ID. Then click the

Next Key Typed

 button and hit the Ctrl-O key combination. You will see the accel-
erator's entry as a single line in the accelerator table.

If you create an accelerator in the accelerator table and correctly load the accel-
erator table resource with the

LoadAccelTable

 function in the same place that you
load the menu, the accelerator will work as you expect. However, the user will not

100

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

know that the accelerator exists. To show the user the accelerator key as a part of the
menu option, modify the caption for the menu option. For example, if you define a
Ctrl-Q accelerator for the

Quit

 option, and also define “Q” to be the mnemonic char-
acter, the proper caption for the

Quit

 option is:

&Quit\tCrtl-Q

You can change it to

Exit

 and use Alt-F4. Try it.
For more information on accelerator tables, see Chapters 8 and 18

6.5.4 Creating Hierarchical Menus

To create a hierarchical menu (a menu within a menu), simply select any menu
option in the menu resource editor and mark its type as

Popup

 in its properties dialog.
Then the menu editor will let you add options to it hierarchically and handle all the
details for you. No further modifications are required. Items in a hierarchical menu
are treated in exactly the same way as normal menu options by the message map.

6.6 Dialog Resources

Visual C++ contains a powerful dialog editor that makes the creation of custom
dialog templates extremely easy. Used in combination with MFC's

CDialog

 class, you
can easily add dialogs to your programs. This section shows a very simple example of
how to create a dialog template and dialog class by hand. See also Chapters 15, 18,
and 23 for more information on creating dialogs with the dialog editor and

CDialog

-
derived classes with the ClassWizard. By using the ClassWizard and its DDX/DDV
features, you can create dialogs extremely quickly in Visual C++.

The code in Listing 6.4 shows half of an application that will display a dialog
box to the user and extract the string that the user enters. Following the steps in Ap-
pendix B.3, create a new project and copy this code to a new code file in that directory.

Add the CPP file to the project. Make sure the project is an MFC project, as described in
Appendix B.3.

Listing 6.4
A program that displays a simple dialog.

// dialog.cpp

#include <afxwin.h>
#include "resource.h"
// Define the application object class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Define the window class
class CWindow : public CFrameWnd
{

CMenu *menu;

6.6
D

ia
lo

g
 Re

so
urc

e
s

This book is continuously updated. See http://www.iftech.com/mfc

101

public:
CWindow();
afx_msg void OnPrompt();
afx_msg void OnExit();
DECLARE_MESSAGE_MAP()

};

// Define the Prompt Dialog Class
class CPromptDialog: public CDialog
{
private:

CStringinputString;
public:

CPromptDialog(CString initString = NULL,
CWnd* pParentWnd = NULL)
: CDialog(IDD_DIALOG1, pParentWnd)
{ inputString = initString; }

virtual void OnOK();
virtual BOOL OnInitDialog();
CString& GetInputString()

{ return inputString; }
};

void CPromptDialog::OnOK()
{

GetDlgItemText(IDC_EDIT1,
inputString.GetBuffer(100), 100);

inputString.ReleaseBuffer();
EndDialog(IDOK);

}

// On InitDialog is called just before the dialog
// appears on the screen.
BOOL CPromptDialog::OnInitDialog()
{

SetDlgItemText(IDC_EDIT1, inputString);
return TRUE;

}

void CWindow::OnPrompt()
{

CPromptDialog promptDialog("initial string",
this);

if(promptDialog.DoModal() == IDOK)
{

MessageBox(promptDialog.GetInputString(),
"String Entered", MB_ICONINFORMATION);

}
}

// On Exit handles the void
void CWindow::OnExit()
{

DestroyWindow();
}

102

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

// Creating the app object runs the program.
CApp app;

// CWindow constructor
CWindow::CWindow()
{

Create(NULL, "Simple Custom Dialog",
WS_OVERLAPPEDWINDOW,
rectDefault, NULL,
MAKEINTRESOURCE(IDR_MENU1));

}

// Initialize the CApp m_pMainWnd data member
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd -> ShowWindow(m_nCmdShow);
m_pMainWnd -> UpdateWindow();
return(TRUE);

}

BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)
ON_COMMAND(IDM_FILE_PROMPT, OnPrompt)
ON_COMMAND(IDM_FILE_EXIT, OnExit)

END_MESSAGE_MAP()

The other half of the application will be the resource file. The resource file will
contain a small menu, along with the template for the dialog box. To create the re-
source file take the following steps.

6.6.1 Step 1 – Create a New Resource Script

Create a new resource script as described in Appendix B.5.2. Give it the name
SCRIPT.RC. Add SCRIPT.RC to the project as described in Appendix B.5.2.

6.6.2 Step 2 – Create a New Menu

Create a new menu resource (see Appendix B.5.5) consisting simply of a File
menu and the options Prompt and Exit. The Prompt option will cause the dialog to
appear, while the Exit option will cause the application to terminate. See Figure 6.5
for a picture of this menu. Change the ID of the two menu options to
IDM_FILE_PROMPT and IDM_FILE_EXIT. The resource editor will automati-
cally name the menu IDR_MENU1.

6.6.3 Step 3 – Create a New Dialog

Create a dialog resource like the one shown in Figure 6.6. To do this, create a
new dialog resource as described in Appendix B.5.6. A dialog palette will appear, and
it lets you choose the different controls that you want to add to the dialog. (If the pal-
ette does not appear, see Appendix B.5.4.)

6.6
D

ia
lo

g
 Re

so
urc

e
s

This book is continuously updated. See http://www.iftech.com/mfc

103

6.6.4 Step 4 – Add a Static Control to the Dialog

When you create the new dialog, it will automatically have

OK

 and

Cancel

 but-
tons. Double click on each one to see their properties. To add the

CStatic

 control that
says “Enter Text:”, click the button for the

CStatic

 control in the dialog palette. Drag
out a rectangle in your dialog and then enter the string “Enter Text:”. The dialog ed-
itor will choose the ID IDC_STATIC for this control, and that is fine. However, if
you wanted to create code to modify this control, you would change the ID to some-
thing unique and then use that ID in functions like

SetDlgItemText

(see Chapter 5).
Once you have created the

CStatic

control, double-click on it to view its prop-
erties (or select the

Properties

 option in the

Edit

 menu after single-clicking on the
static control). You will see a property dialog. If you return to Chapter 3 and look at
the styles that the

CStatic

 control supports, you will find that many (but not all) of
the standard

CStatic

 styles are supported here using check boxes. The remaining static
styles, such as SS_ICON and SS_BLACKFRAME, are supported by the “picture”
control.

Figure 6.5

A simple menu

Figure 6.6

A simple dialog box

104

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

6.6.5 Step 5 – Add an Edit Control to the Dialog

Now click the button for the

CEdit

 control in the dialog palette. Drag out a rect-
angle of the appropriate size. The dialog editor will give this control the ID
IDC_EDIT1, and this is fine.

If you double-click on the new edit control you can see its Properties dialog.
This dialog has several different tabs. If you look up the styles for the

CEdit

 control
in the MFC documentation, you will find that all its styles are supported by check
boxes.

Arrange and re-size the different elements of the dialog until they feel comfort-
able to you. You can use the different alignment tools in the toolbar of the dialog
editor if you like. Press the F1 key while the dialog editor is the topmost window for
more information. You can also test the dialog by choosing the

Test

 option.

6.6.6 Step 6 – Include RESOURCE.H

Include RESOURCE.H at the top of Listing 6.4, as shown. This file contains
IDs for the dialog, its controls, and the menu.

6.6.7 Step 7 – Compile and Run

Build the project and execute it. The dialog will appear when the user selects the

Prompt

 option in the

File

 menu. The dialog will appear with the string “initial string”
displayed in the

CEdit

 control. This demonstrates that it is possible to pre-load the
edit control with a value. You can delete this string and type your own. Once you press
the OK button in the dialog, the dialog will close and a message box containing the
string you entered will appear.

6.6.8 Step 8 – Understand the Code

The code in Listing 6.4 that makes this all possible is a fairly simple extension of
the menu code in Listing 6.3. It uses the same mechanism to display a menu bar and
respond to its options. When the user selects the

Prompt

 option in the

File

 menu, the
message map calls the

OnPrompt

 function, shown here:

void CWindow::OnPrompt()
{

CPromptDialog promptDialog("initial string",
this);

if(promptDialog.DoModal() == IDOK)
{

MessageBox(promptDialog.GetInputString(),
"String Entered", MB_ICONINFORMATION);

}
}

This function creates an instance of the

CPromptDialog

 class called

prompt-
Dialog

. It passes the initial string for the

CEdit

 control, along with the

this

 pointer,
to the constructor for the class. It then calls

promptDialog

's

DoModal

 function. If

DoModal

 returns IDOK, the function extracts the string from the dialog using the
dialog's

GetInputString

 function and displays it in a message box.

6.6
D

ia
lo

g
 Re

so
urc

e
s

This book is continuously updated. See http://www.iftech.com/mfc

105

The

CPromptDialog

 class is derived from

CDialog,

 as shown in Listing 6.4
and duplicated below:

// Define the Prompt Dialog Class
class CPromptDialog: public CDialog
{
private:

CStringinputString;
public:

CPromptDialog(CString initString = NULL,
CWnd* pParentWnd = NULL)
: CDialog(IDD_DIALOG1, pParentWnd)
{ inputString = initString; }

virtual void OnOK();
virtual BOOL OnInitDialog();
CString& GetInputString()

{ return inputString; }
};

void CPromptDialog::OnOK()
{

GetDlgItemText(IDC_EDIT1,
inputString.GetBuffer(100), 100);

inputString.ReleaseBuffer();
EndDialog(IDOK);

}

// On InitDialog is called just before the dialog
// appears on the screen.
BOOL CPromptDialog::OnInitDialog()
{

SetDlgItemText(IDC_EDIT1, inputString);
return TRUE;

}

If you look up the

CDialog

 class in the MFC documentation, you will find that
it is designed to facilitate the easy creation of dialogs from dialog resources. The

CPromptDialog

 class contains a constructor, new implementations for the

OnOK

and

OnInitDialog

 functions, and a new function called

GetInputString

 that pro-
vides a controlled way to retrieve the input string from the dialog. This latter function
follows the model established by the canned dialogs in Chapter 7 for retrieving data
from a dialog. It simply returns the value of the member variable named

inputString

.
The constructor calls the constructor for the

CDialog

 class, passing it the dialog
resource's ID and a parent pointer. It also initializes the

inputString

 member. The

CDialog

 constructor calls

OnInitDialog

 as part of the dialog creation process. The
dialog at this point already exists, so

OnInitDialog

 can initialize any fields in the di-
alog. Here it initializes the

CEdit

 control. See the page describing

OnInitDialog

 in
the MFC documentation for more information. In any dialog you create you will use
this function to initialize fields in the dialog.

When the user presses the OK button on the dialog, the

OnOK

 function gets
called automatically before the dialog's destruction. The overridden version shown

106

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

here extracts the string entered by the user from the

CEdit

 control and then destroys
the dialog with

EndDialog

, passing back the ID of the button. The value passed to

EndDialog

 will be returned by

DoModal

 (seen in the

OnPrompt

 function).
 What you can see in this code is the fact that it is extremely easy to create a di-

alog using the dialog editor and the

CDialog

 class. Simply create a dialog with the
dialog resource editor and place into it any controls that it needs. Then create a new
class that inherits from the

CDialog

 class. In the construct, or specify the dialog re-
source. In the

OnInitDialog

 function, initialize any fields in the dialog. In the

OnOK

function, extract data from any controls that the user could potentially modify. Then
create a function to extract that data from the dialog class or simply access it directly
through the member variables.

We will see in Part 3 and Part 4 that Visual C++ combines the dialog editor with
the ClassWizard and features called Dialog Data Exchange (DDX) and Dialog Data
Validation (DDV) to make the creation of any type of modal dialog nearly instanta-
neous. You will literally have to write no code to create new dialog in your applications
when you use the ClassWizard. See Chapters 15,18, and 22 for examples.

For more information on the dialog editor, press the F1 key while a dialog editor
window is visible on the screen.

6.7 String Resources

The string table is an interesting resource type. There is only one string table per
resource file. It contains strings and is extremely important to the creation of applica-
tions that support different human languages.

Imagine, for example, that you work for a company that produces an application
sold internationally. The company wishes to produce versions that run in English,
French, German, and Spanish. In the preceeding sections you have seen that resource
files go a long way toward making this process easier. For example, the resource file con-
tains all menus and custom dialogs for an application. Therefore, to produce a version
of the application for a different language, you can simply create a new resource file and
translate the menus and dialogs to the new language. Note that you do not have to
touch a single line of source code. You simply substitute the new resource file into the
project, re-compile, and the application suddenly speaks in a different tongue.

One problem that can limit the usefulness of this approach, however, is such
things as error messages, window titles, information strings, and so on. These elements
are often embedded directly in the code. In a large program, say one containing
200,000 lines of source code, this problem can become extremely frustrating. There
might be hundreds of message box calls like the one below:

MessageBox(“The value you have specified is invalid”,
“Problem Report”, MB_OK);

Searching through 200,000 lines of source code for these sorts of things, and
maintaining several different versions of the source code to accommodate the different
languages you support, can involve a massive amount of effort.

6.7
String

 Re
so

urc
e

s

This book is continuously updated. See http://www.iftech.com/mfc

107

String tables solve this problem. Instead of using embedded literal strings, you
store

all

 the application's strings in the string table in the application's resource file.
Then you load each string from the string table when you need it. The advantage of
this technique is that

all

 language-specific strings exist in a single, easily replaceable re-
source file. The disadvantage is the extra code that you have to write to load those
strings each time you need to use them. Fortunately, MFC makes the loading process
easy and painless, so the amount of extra code you have to write is minimal.

The code in Listing 6.5 demonstrates how to load strings from a resource file to
support a message box and a message label. The following sections outline the steps
you must take to create a project and string table suitable for executing this code.

Listing 6.5
Code that uses a string table instead of embedded strings

// strings.cpp

#include <afxwin.h>
#include “resource.h”

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

//Declare the window class
class CWindow : public CFrameWnd
{

CStatic* cs;
public:

CWindow();
~CWindow();

};

// The InitInstance function is called once
// when the application first executes
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CWindow::CWindow()
{

CRect r;

108

This book is continuously updated. See http://www.iftech.com/mfc

6
Re

so
ur

c
e

s,
 D

ia
lo

g
s,

 a
nd

 M
e

nu
s

// Create the window
Create(NULL,

"Icon Test",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Create a label that holds an icon
cs = new CStatic();

CString s;
AfxFormatString1(s, IDS_HELLOWORLD, "");

cs->Create(s,
WS_CHILD|WS_VISIBLE|SS_CENTER,
CRect(20,20,100, 50),
this);

AfxFormatString1(s, IDS_ERROR, "framis");

MessageBox(s);
}

// The destructor for the window
CWindow::~CWindow()
{

delete cs;
}

Note the use of the AfxFormatString1 function in the window's constructor.
This function and its companion AfxFormatString2 give you an easy way to extract
strings from the resource file using their IDs. To compile and run the code in Listing
6.5, take the following steps.

6.7.1 Step 1 – Create the Project

Create a new project file as described in Appendix B.3.

6.7.2 Step 2 – Create the String Table

Create a new resource script and a string table resource in it as described in Ap-
pendix B.5.2 and B.5.7. To add a new string to the table, double-click on the first line.
Give the new string the ID of IDS_HELLOWORLD and the caption “Hello World.”
Close the Property dialog. Double-click on the second blank line in the string table
and give this string the ID of IDS_ERROR. Give it the caption, “An error has oc-
curred in the %1 module.”

6.7.3 Step 3 – Compile and Run

Save the resource script file to SCRIPT.RC. Then add SCRIPT.RC to the project
as described in Appendix B.5.2. Compile and execute the program and the message box
should contain the error string from the string table. The window should display
“Hello World” from the string table as well.

6.8
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

109

Note that

AfxStringFormat1

 has the ability to substitute one string into a string
resource in place of the “%1” placeholder. In the case of the

CStatic

 label the facility
was not used. In the message box's error string it was. In fact, the word you substitute
might come from the string table as well. Note that the

AfxFormatString2

 does the
same thing, but allows the string resource to contain two substitution strings.

You may wish to create a function that handles the call to

AfxStringFormat1

and then returns the string. That way you can call the function directly in the call to

MessageBox

. Note also that

AfxMessageBox

 is already overridden so it can accept a
string table ID directly. See the MFC documentation for details.

6.8 Conclusion

The concepts demonstrated in this chapter should show you what the resource
editors in Visual C++ do and should also make you comfortable with the idea of re-
source files and resources. We will use these concepts extensively in Part 3.

111

7CANNED DIALOGS

Dialog boxes are a friendly and easy way to send messages to, and request information
from, the user. Using dialog boxes, you can display a nicely formatted message to the
user with just one line of code. When you want specific information from the user,
you display the appropriate dialog and then extract what you need from it after the
user presses the OK button.

MFC has a number of “canned” dialogs to handle common user interface tasks.
For example, there is a File Open dialog, a Font dialog, and a Color dialog. By using
the canned dialogs you ensure instant user acceptance and ease of use because your
program looks like every other. Also, as the operating system changes the canned dia-
logs are updated. They therefore always look as modern as possible. The dialog images
in this chapter were produced in NT 3.51, but may look different in Windows 95 or
later versions of NT for this very reason.

For some situations, however, you will want to create custom dialogs. For exam-
ple, if you are implementing an address list program you might create a custom dialog
to get the address information. Custom dialogs are very easy to create using the dialog
editor discussed in the previous chapter. See also Parts 3 and 4, which discuss the cre-
ation of dialogs within AppWizard frameworks.

In this chapter, we will examine the available canned dialogs. Chapter 8 presents
an example of an editor application that demonstrates many of these dialogs in an ac-
tual program.

7.1 The Message Box Dialog

The simplest canned dialog box available in Windows is the message box. You
use it to display messages such as errors and questions. It allows the user to respond by
pressing one or more buttons. The message box is a

modal

 dialog. While it is on screen
the application cannot accept events itself. You must respond to the dialog before you
can continue with the application.

The code in Listing 7.1 demonstrates the creation of a message box handler. Fig-
ure 7.1 is a screen dump of the message box.

112

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

Listing 7.1
Code that creates and handles a message box.

// msgbox.cpp

#include <afxwin.h>

#define IDC_BUTTON 100

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

// Declare the window class
class CWindow : public CFrameWnd
{

CButton *button;
public:

CWindow();
~CWindow();
afx_msg void HandleButton();
DECLARE_MESSAGE_MAP()

};

// Handler for the "Push me" button
void CWindow::HandleButton()
{

int result;
result=MessageBox("Is This\nmessage OK?",

"Message Box",
MB_ICONQUESTION | MB_YESNO);

if (result==IDYES)
Beep(1000,100);

else
Beep(200,100);

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_COMMAND(IDC_BUTTON, HandleButton)
END_MESSAGE_MAP()

// The InitInstance is called once
// when the application begins execution
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);

7.1
The

 M
e

ssa
g

e
 Bo

x D
ia

lo
g

This book is continuously updated. See http://www.iftech.com/mfc

113

m_pMainWnd->UpdateWindow();
return TRUE;

}

// The window constructor
CWindow::CWindow()
{

CRect r;

// Create the window
Create(NULL,

"Dialog Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button to activate the dialog
button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r,
this,
IDC_BUTTON);

}

// The window's destructor
CWindow::~CWindow()
{

delete button;
}

The code in Listing 7.1 creates a window that displays a push button labeled
“Push Me.” When you click that button it invokes the HandleButton function
through the message map:

void CWindow::HandleButton()
{

int result;

result=MessageBox("Is this\nmessage OK?",

Figure 7.1
A message box dialog

114

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

"Message Box",
MB_ICONQUESTION | MB_YESNO);

if (result==IDYES)
Beep(1000,100);

else
Beep(200,100);

}

This function creates a message box dialog and then responds to the value it
returns.

The

 MessageBox

 function, which is a member function of the

CWnd

 class, cre-
ates the message box (see the documentation for details). The first parameter specifies
the message that it should display. The message can contain newline characters as
demonstrated in the code, and the message box will parse them as expected. The sec-
ond parameter is the title for the dialog box’s window. The third parameter is used to
customize the message box’s behavior. The following constants are valid:

MB_ABORTRETRYIGNOREAbort, Retry, and Ignore buttons displayed.
MB_APPLMODAL The default – modal to application
MB_DEFBUTTON1 Makes the first button the default button
MB_DEFBUTTON2 Makes the second button the default

button
MB_DEFBUTTON3 Makes the third button the default button
MB_ICONEXCLAMATIONIncludes an exclamation icon (“!”)
MB_ICONINFORMATIONIncludes an information icon (“i”)
MB_ICONQUESTION Includes a question icon (“?”)
MB_ICONSTOP Includes a stop sign icon.
MB_OK Displays an OK button
MB_OKCANCEL Displays OK and Cancel buttons
MB_RETRYCANCEL Displays Retry and Cancel buttons
MB_SYSTEMMODAL Use with caution. Makes dialog system modal
MB_YESNO Displays Yes and No buttons
MB_YESNOCANCEL Displays Yes, No, and Cancel buttons
In the example in Listing 7.1, the MB_YESNO and MB_ICONQUESTION

constants are combined so that the message box displays a question mark icon and

Yes

and

No

buttons.
The message box returns an integer that specifies the user’s action. The following

constants are defined for the result:
IDABORT Abort button
IDCANCEL Cancel button
IDIGNORE Ignore button
IDNO No button
IDOK OK button
IDRETRY Retry button
IDYES Yes button
In cases where the MB_OK style is used, you can ignore the result and simply

proceed once the user has responded to the message by clicking on the OK button.

7.2
The

 File
 O

p
e

n/Sa
ve

 D
ia

lo
g

This book is continuously updated. See http://www.iftech.com/mfc

115

When the message box displays a question, you can use

if

 statements or a

switch

 state-
ment to respond to the user appropriately.

Because the

MessageBox

 function is a member of the

CWnd

 class, you can use
it only within functions that are members of a class derived from

CWnd

. When this
is not the case, use the function

AfxMessageBox

 to create the message box.

7.2 The File Open/Save Dialog

You will use the File Open/Save dialog whenever you need to ask the user for a
file name in one of your applications. The dialog automatically handles the traversal
of directories, the filtering of files in the current directory, and connections to network
drives. Figures 7.2a and 7.2b show screen dumps of the File Open/Save dialog in ac-
tion. Listing 7.2 shows you how to create and read the data from the File Open/Save
dialog and how to extract the data from it when it returns.

Listing 7.2
The File Open/Save dialog.

// filedlg.cpp

#include <afxwin.h>
#include <afxdlgs.h>
#include <strstrea.h>

#define IDC_BUTTON 100

// Define filters for use with the File Dialog
const char fileDialogFilter[] =

"C++ Files (*.cpp)|*.cpp|Header Files\
(*.h)|*.h|Resource Files (*.rc)|*.rc||";
const char fileDialogExt[] = "cpp";

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

// Declare the window class
class CWindow : public CFrameWnd
{

CButton *button;
public:

CWindow();
~CWindow();
afx_msg void HandleButton();
DECLARE_MESSAGE_MAP()

};

116

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

// Handler for the "Push me" button
// creates a file dialog
void CWindow::HandleButton()
{

char s[200];
ostrstream ostr(s, 200);

CFileDialog fileDialog(TRUE,
fileDialogExt, NULL,
OFN_FILEMUSTEXIST, fileDialogFilter);

if(fileDialog.DoModal() == IDOK)
{

ostr << "Pathname: "
<< fileDialog.GetPathName()
<< endl
<< "Filename: "
<< fileDialog.GetFileName()
<< endl
<< "Extension: "
<< fileDialog.GetFileExt()
<< endl
<< "File Title: "
<< fileDialog.GetFileTitle()
<< endl

 << ends;

MessageBox(s,
"Dialog Information",
MB_ICONINFORMATION);

}
}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_COMMAND(IDC_BUTTON, HandleButton)
END_MESSAGE_MAP()

// The InitInstance is called once
// when the application begins execution
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The window constructor
CWindow::CWindow()
{

CRect r;

// Create the window
Create(NULL,

7.2
The

 File
 O

p
e

n/Sa
ve

 D
ia

lo
g

This book is continuously updated. See http://www.iftech.com/mfc

117

"Dialog Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button to activate the dialog
button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r,
this,
IDC_BUTTON);

}

// The window's destructor
CWindow::~CWindow()
{

delete button;

}

Note that you must include AFXDLGS.H when using this canned dialog and
those that follow.

The general flow seen in Listing 7.2 is the same as that seen for the message box
dialog in the previous section. When the user clicks the button in the application’s
main window, the code first calls a function that creates the dialog, passing it initial
parameters to control its appearance and behavior. The code then displays the dialog
by calling the DoModal function. This function exits once the user presses the OK or

Figure 7.2a
The File Open/Save dialog

118

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

Cancel button. It returns an integer you can examine to determine which button was
pressed. If the user chose a file and pressed OK, you can use several helper functions
to examine the result of the user’s interaction with the dialog.

The constructor for the

CFileDialog

 class accepts six parameters when it is in-
voked (see the documentation for details). They are demonstrated in listing 7.2 and
described below:

CFileDialog(BOOL bOpenFileDialog,
LPCSTR lpszDefExt = NULL,
LPCSTR lpszFileName = NULL,
DWORD dwFlags =

OFN_HIDEREADONLY |
OFN_OVERWRITEPROMPT,

LPCSTR lpszFilter = NULL,
CWnd* pParentWnd = NULL);

bOpenFileDialog TRUE for file open dialog, FALSE for file save dialog
lpszDefExt Default extension for filenames entered without one
lpszFileName Initial file name
dwFlags Style flags
lpszFilter Filters for “List of files by type” list
pParentWnd Parent window
The first parameter is a Boolean that specifies whether the dialog is used for

opening a file or saving a file. In Save mode, the dialog implements Save As behavior.
The user can traverse the directory tree or enter a new file name. In Open mode, the
list of files is filled and can be traversed to select a file.

Figure 7.2b

The Network dialog available in the File Open/Save dialog

7.2
The

 File
 O

p
e

n/Sa
ve

 D
ia

lo
g

This book is continuously updated. See http://www.iftech.com/mfc

119

The second parameter is the default file extension. If the user types a file name
without an extension, this extension will be added automatically to the file name be-
fore the dialog returns it.

The third parameter is the initial file filter or name string. This string will be dis-
played in the file name box and will control the names visible in the name list below
this box. If it is NULL, the first string in the filter list (the fifth parameter) is used.

The fourth parameter is a set of style flags that control the behavior of the dialog.
The following flags are defined (see the OPENFILENAME structure description in
the API documentation for more information):

OFN_ALLOWMULTISELECTAllows multiple files to be selected
OFN_CREATEPROMPT Prompts the user if file name typed does not exist;

allows the dialog to be used for creating
new file names

OFN_EXTENSIONDIFFERENTThe dialog will recognize when the user se-
lects a file that does not have the default
extension

OFN_FILEMUSTEXIST The user must choose an existing file name
OFN_HIDEREADONLY Hides the read-only check box
OFN_NOCHANGEDIR Sets the current directory back to the one in effect

when the dialog was invoked
OFN_NONETWORKBUTTONHides the Network button
OFN_NOREADONLYRETURNRejects read-only files
OFN_NOTESTFILECREATEThe dialog does not attempt to create a test file

to check for errors
OFN_NOVALIDATE Allows dialog to return invalid characters in the

file name
OFN_OVERWRITEPROMPTDisplays an overwrite confirmation in save

mode
OFN_PATHMUSTEXIST Rejects non-existing path names
OFN_READONLY The read-only check box is initially on
OFN_SHOWHELP The dialog should display a help button
The fifth parameter is a filter string. In the code in Listing 7.2, both this string

and the extension string are declared as constants, but they can also come in as

CString

s from a string resource. This filter string specifies the file types that should
be shown in the

file type

 list. The dialog uses the “|” character to parse the string into
separate pieces and uses the “||” characters at the end of the string to mark the end of
the chain.

The last parameter is the parent of the dialog.
Once the dialog has been created, you paint it on screen with a call to the

Do-
Modal

 function. When this function returns you receive an integer that is set to either
IDOK or IDCANCEL. If it is IDCANCEL, the user dismissed the dialog with the

Cancel

 button and you can ignore it. If it is IDOK, you will want to extract the file

120

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

name chosen by the user. Use the five helper functions as shown in the code and listed
below:

GetPathName Full path name of the file
GetFileName File name only, minus the extension
GetFileExt Extension, minus the period
GetFileTitle Title of the file for use as the title text for a window
GetReadOnlyPref True if the user requested read-only access
If the appropriate style flags are set when you create the dialog, the dialog will au-

tomatically handle things such as potential file overwriting for you. There are also three
virtual functions declared for the dialog that you can override if you want more control:

virtual UINT OnShareViolation(LPCSTR lpszPathName);
virtual BOOL OnFileNameOK();
virtual void OnLBSelChangedNotify(UINT nIDBox,

UINT iCurSel, UINT nCode);

The

OnShareViolation

 function is called on share violations and passes the full
path name of the selected file to you. If you override the function, you can display a di-
alog informing the user of the problem or take more aggressive action. The

OnFileNameOK

 function is called when the OK button is pressed but before the dia-
log is dismissed. If you override this function, it allows you to inspect the chosen name.
Return TRUE if the name is OK or FALSE if the dialog needs to remain on screen. The

OnLBSelChangeNotify

 function is a standard list box function. It gets called whenever
the user changes the selection in one of the lists (for more information on lists see Chap-
ter 9). If you override it, you can perform custom actions after each selection change.

As you can see, this dialog gives a tremendous amount of control during the sim-
ple act of file name selection. If you want to do nothing more than get a file name,
however, it will do that too. Simply use the default style flags and call the

GetPath-
Name

 function when

DoModal

 returns. Used in this way, the dialog requires only
three lines of code to implement a File Open dialog.

This dialog encapsulates the behavior of the

GetOpenFileName

 and

GetSave-
FileName

 functions in the 32-bit API. See the descriptions of those functions if you
want to play with some of the more esoteric features of this dialog.

7.3 The Font Dialog

The font dialog allows the user to select a new font. The dialog inspects the fonts
available on the system and displays them along with sizing and other information. It
also allows the user to view font samples on the fly. Listing 7.3 contains a function dem-
onstrating the creation of the dialog, and Figure 7.3 shows you how the dialog looks.

Listing 7.3
Invoking the font dialog and retrieving results. Substitute this function as a
replacement for HandleButton in Listing 7.2.

void CWindow::HandleButton()
{

// Create a font dialog using defaults.

7.3
The

 Fo
nt D

ia
lo

g

This book is continuously updated. See http://www.iftech.com/mfc

121

CFontDialog fontDialog;

if(fontDialog.DoModal() == IDOK)
MessageBox(fontDialog.GetFaceName(),

"Dialog Information",
MB_ICONINFORMATION);

}

The font dialog is created using its constructor, which accepts four parameters
(as described in the documentation):

CFontDialog(LPLOGFONT lplfInitial = NULL,
DWORD dwFlags = CF_EFFECTS | CF_SCREENFONTS,
CDC* pdcPrinter = NULL,
CWnd* pParentWnd = NULL);

lplfInitial The initial font chosen.
dwFlags Style flags.
hdcPrinter The CDC for a printer, if the dialog is being used to set a

printer font (see Chapter 11 for more information).
pParentWnd The parent window.
As shown in Listing 7.3, it is possible to pass no parameters to the constructor.

The dialog will behave correctly because of the default parameters. Non-default pa-
rameters are needed only when you wish to do something special. The first parameter
allows you to specify an initial font in the dialog; you pass in a structure that deter-
mines the font. You may recall from Chapter 3 that it takes 15 parameters to specify
a particular font (see Chapter 11 for more information on this structure).

The second parameter contains style flags. The following flags can be used (see
the CHOOSEFONT structure in the API documentation for more information):

Figure 7.3
The font dialog

122

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

CF_ANSIONLY Only ANSI fonts are available
CF_APPLY Displays an Apply button
CF_BOTH Lists both printer and screen fonts
CF_EFFECTS Effects selections should be available (strikeout,

underline, etc.)
CF_FIXEDPITCHONLY Only fixed-pitch fonts are available.
CF_FORCEFONTEXIST Prompts the user if the chosen font does not exist.
CF_INITTOLOGFONTSTRUCTUse the LOGFONT parameter passed into

the constructor
CF_LIMITSIZE Allow only sizes in the range specified
CF_NOOEMFONTS Do not allow OEM fonts
CF_NOFACESEL Do not allow font selections
CF_NOSIMULATIONS Do not allow simulated fonts
CF_NOSTYLESEL Do not allow style selections
CF_NOSIZESEL Do not allow size selections
CF_NOVECTORFONTS Do not allow vector fonts
CF_PRINTERFONTS Only fonts supported by the specified printer are

allowed
CF_SCALABLEONLY Only scalable fonts are allowed
CF_SCREENFONTS Only screen fonts are allowed
CF_SHOWHELP Displays a help button
CF_TTONLY Displays only True Type fonts
CF_USESTYLE Use the supplied style information
CF_WYSIWYG Only fonts available on both the screen and print-

er are allowed
The third parameter allows you to pass in a printer device context so that the

dialog can determine which fonts the printer allows (see Chapter 11 for more infor-
mation on Printer DCs). The fourth parameter is the parent.

When the dialog returns from the call to

DoModal

, you can see which font the
user has selected by calling any or all of the following functions:

CString GetFaceName() const;
CString GetStyleName() const;
int GetSize() const;
COLORREF GetColor() const;
int GetWeight() const;
BOOL IsStrikeOut() const;
BOOL IsUnderline() const;
BOOL IsBold() const;
BOOL IsItalic() const;

Each of these functions returns the feature specified. The four Boolean functions
return TRUE if their respective check box was selected. It is also possible to copy an
entire LOGFONT structure from the m_lf public data member.

Two virtual functions are also available:

virtual void OnOK();
virtual void OnCancel();

7.4
The

 C
o

lo
r D

ia
lo

g

This book is continuously updated. See http://www.iftech.com/mfc

123

You can create a derived class and override these functions to take special actions
when the dialog’s buttons are pressed.

The

CFontDialog

 class encapsulates the

ChooseFont

 function in the 32-bit
API. See the description of this function if you wish to customize the behavior of this
dialog.

7.4 The Color Dialog

The color dialog gives the user a standardized way to choose colors. You might
use this dialog to choose pen colors in a drawing editor (see Chapter 11),or to choose
such things as background and foreground colors in an application. This dialog is fair-
ly simple compared to the prior two. Listing 7.4 demonstrates the code needed to use
the dialog and Figure 7.4 shows it in action.

Listing 7.4
Code that creates a color editor.

void CWindow::HandleButton()
{

char s[15];
CColorDialog colorDialog;

if(colorDialog.DoModal() == IDOK)
{

sprintf(s, "0x%x", colorDialog.GetColor());
MessageBox(s, "Dialog Information",

MB_ICONINFORMATION);
}

}

The constructor for the color dialog is shown below (and is described in the
documentation):

CColorDialog(COLORREF clrInit = 0,
DWORD dwFlags = 0,
CWnd* pParentWnd = NULL);

clrInit Initial color selection
dwFlags Style flags
pParentWnd Parent window
If a color should be initially selected in the dialog, the first parameter allows you

to specify it. The style flags in the second parameter let you specify the behavior of the
dialog as listed below:

CC_FULLOPEN The dialog is initially displayed with the custom
color palette visible

CC_PREVENTFULLOPENPrevent the user from using the custom color se-
lection area

CC_RGBINIT Causes the dialog to use the clrInit parameter
CC_SHOWHELP Displays a help button

124

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

The third parameter is the parent window.
When the dialog returns from the

DoModal

 function, you use the

GetColor

member function as shown to retrieve the color chosen by the user.

GetColor

 returns
a value of type COLORREF, which is a 32-bit integer value that contains the Red,
Green, Blue (RGB) triplet for the color chosen. The COLORREF type is accepted by
all functions that work with colors:

COLORREF GetColor() const;

Three virtual functions are available in classes that you derive from

CColorDia-
log

, as follows:

virtual void OnOK();
virtual void OnCancel();
virtual BOOL OnColorOK();

The

OnColorOK

 function allows you to validate the color chosen by the user
and display a message if there is a problem.

This dialog encapsulates the behavior of the

ChooseColor

 function in the 32-
bit API. See that function for more information on customization of this dialog.

7.5 The Print Dialog

The print dialog allows the user to choose a print range for the current docu-
ment, but also contains a setup button that lets the user choose from available printers
(along with options for the specific printer being used). Figures 7.5a, 7.5b, and 7.5c

Figure 7.4

The color dialog

7.5
The

 Print D
ia

lo
g

This book is continuously updated. See http://www.iftech.com/mfc

125

demonstrate the three different panes of this dialog. Listing 7.5 shows how to use the
dialog in your code.

Listing 7.5
Code that creates a print dialog.

void CWindow::HandleButton()
{

char s[30];
CPrintDialog printDialog(FALSE,

PD_PAGENUMS | PD_NOSELECTION);

if(printDialog.DoModal() == IDOK)
{

sprintf(s, "Number of Copies: %d",
printDialog.GetCopies());

MessageBox(s, "Dialog Information",
MB_ICONINFORMATION);

}
}

The constructor for the print dialog is shown below (and can also be found in
the documentation):

CPrintDialog(BOOL bPrintSetupOnly,
DWORD dwFlags = PD_ALLPAGES |

PD_USEDEVMODECOPIES | PD_NOPAGENUMS|
PD_HIDEPRINTTOFILE | PD_NOSELECTION,

CWnd* pParentWnd = NULL);

The first parameter should be set to TRUE if you want the dialog to bypass the
first pane shown in Figure 7.5a and go directly to the Setup pane. The second param-

Figure 7.5a
The first pane of the print dialog

126

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

eter contains style flags as described below (see the PRINTDLG structure in the API
documentation for more information):

PD_ALLPAGES Sets the “all pages” radio button
PD_COLLATE Checks the collate check box initially
PD_DISABLEPRINTTOFILEDisables the “Print to file” check box
PD_NOPAGENUMS Disables the page range portion of the

dialog
PD_NOSELECTION Disables the selection button
PD_NOWARNING Eliminates “No default printer” warning dialog
PD_PAGENUMS Causes the page range button to be initially on
PD_PRINTSETUP Displays the setup pane initially to allow printer

setup only

Figure 7.5b

The printer setup dialog

Figure 7.5c

Part two of the printer setup dialog

7.6
The

 Find
/Re

p
la

c
e

 D
ia

lo
g

This book is continuously updated. See http://www.iftech.com/mfc

127

PD_PRINTTOFILE Causes print-to-file check box to be set
initially

PD_RETURNDC Returns the device context for the selected printer
PD_RETURNDEFAULT The dialog does not appear and default printer in-

formation is copied so that it is available
PD_RETURNIC Returns an information context
PD_SELECTION Causes the selection button to be set initially
PD_SHOWHELP Shows the help button
PD_USEDEVMODECOPIESEnables multiple copies field if the printer sup-

ports it
The third parameter is the parent window.
Once the

DoModal

 function returns, the information gathered is available
through the member functions listed below:

int GetCopies() const;
BOOL GetDefaults() const;
CString GetDeviceName() const;
LPDEVMODE GetDevMode() const;
CString GetDriverName() const;
int GetFromPage() const;
CString GetPortName() const;
HDC GetPrinterDC() const;
int GetToPage() const;
BOOL PrintCollate() const;
BOOL PrintSelection() const;
BOOL PrintAll() const;
BOOL PrintRange() const;

Most of these functions are self-explanatory. The functions to get the driver
name, device name, port name, and printer DC are discussed along with printing in
Chapter 11.

If you derive a class from

CPrintDialog

 you can override the following
functions:

virtual void OnOK();
virtual void OnCancel();

This class encapsulates the

PrinterDlg

 function in the 32-bit API. For more in-
formation on customizing the printer dialog, see the description for

PrinterDlg

 in the
32-bit API.

7.6 The Find/Replace Dialog

The Find/Replace dialog makes it easy for you to add Find/Replace capabilities
to programs such as text editors. This dialog is unique because it is

modeless

. The dialog
and the application can both accept events, with the dialog appearing to “float” above
the application at all times. Listing 7.6 demonstrates the code required to use this dialog
in a program and Figure 7.6 shows you what the dialog looks like to the user.

Listing 7.6
The Find/Replace dialog.

128

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

// finddlg.cpp

#include <afxwin.h>
#include <afxdlgs.h>
#include <strstrea.h>

#define IDC_BUTTON 100

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

// Declare the window class
class CWindow : public CFrameWnd
{

static UINT findMessage;
CButton *button;

public:
CWindow();
~CWindow();
afx_msg void HandleButton();
DECLARE_MESSAGE_MAP()
afx_msg LONG FindHelper(UINT wParam,

LONG lParam);
};

// Init find/replace static variables globally.
// findMessage is a Windows message constant
// used in the message map
UINT CWindow::findMessage = ::RegisterWindowMessage(

FINDMSGSTRING);

void CWindow::HandleButton()
{

CFindReplaceDialog *findReplaceDialog;

button->EnableWindow(FALSE);
findReplaceDialog = new CFindReplaceDialog;
findReplaceDialog->Create(FALSE, "default");

}

LONG CWindow::FindHelper(UINT wParam, LONG lParam)
{

CFindReplaceDialog *findDialog =
CFindReplaceDialog::GetNotifier(lParam);

if(findDialog->IsTerminating())
{

button->EnableWindow(TRUE);
}

7.6
The

 Find
/Re

p
la

c
e

 D
ia

lo
g

This book is continuously updated. See http://www.iftech.com/mfc

129

else if(findDialog->FindNext())
{

// Place search engine code here
MessageBox(findDialog->GetFindString(),

"Find String",
MB_ICONINFORMATION);

}
else if(findDialog->ReplaceCurrent())
{

// Place replace code here
MessageBox(findDialog->GetReplaceString(),

"Replace String",
MB_ICONINFORMATION);

}
else if(findDialog->ReplaceAll())
{

// Place global find/replace code here
MessageBox(findDialog->GetReplaceString(),

"Replace All",
MB_ICONINFORMATION);

}
return 0;

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_COMMAND(IDC_BUTTON, HandleButton)
ON_REGISTERED_MESSAGE(findMessage, FindHelper)

END_MESSAGE_MAP()

// The InitInstance is called once
// when the application begins execution
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The window constructor
CWindow::CWindow()
{

CRect r;

// Create the window
Create(NULL,

"Dialog Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button to activate the dialog

130

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r,
this,
IDC_BUTTON);

}

// The window's destructor
CWindow::~CWindow()
{

delete button;
}

You can see four separate pieces in Listing 7.6: The HandleButton function
that creates the dialog, a global declaration for the static member findMessage, a
“helper” function named FindHelper, and a message map that contains the unusual
ON_REGISTERED_MESSAGE entry. The message map entry calls the find helper
function.

The HandleButton function creates and displays the dialog. However, it does
not use the DoModal function we’ve seen in the previous examples. Creation here is
a two-step process because the find dialog is modeless. Once the dialog is created, it will
remain on the screen in harmony with the application until it is destroyed. Note that,
because the dialog is modeless, the initiating push button must be disabled using the
EnableWindow function once the user presses it. If it were not disabled, it would be
possible to create two or more find dialogs on the screen simultaneously.

 The Create function for the find dialog looks like this:
BOOL Create(BOOL bFindDialogOnly,

LPCSTR lpszFindWhat,
LPCSTR lpszReplaceWith = NULL,
DWORD dwFlags = FR_DOWN,
CWnd* pParentWnd = NULL);

bFindDialogOnly Set to TRUE for a find-only dialog

Figure 7.6
The Find/Replace dialog

7.6
The

 Find
/Re

p
la

c
e

 D
ia

lo
g

This book is continuously updated. See http://www.iftech.com/mfc

131

lpszFindWhat The initial search string
lpszReplaceWith The initial replacement string
dwFlags Style flags
pParentWnd The parent window
The first parameter controls whether the dialog acts as a Find dialog or a Find/

Replace dialog. The second and third parameters act as initial values for the Find and
Replace text strings. The fourth parameter contains style flags, as described below (see
the FINDREPLACE structure in the API documentation for more information):

FR_DOWN The down check box is initially checked
FR_FINDNEXT Instructs the dialog to perform a find next
FR_HIDEUPDOWN Hides the direction check box
FR_HIDEMATCHCASE Hides the match case check box
FR_HIDEWHOLEWORD Hides the whole word check box
FR_MATCHCASE Initially checks the match case check box
FR_NOMATCHCASE The match case button is disabled
FR_NOUPDOWN The up/down button is disabled
FR_NOWHOLEWORD The whole word button is disabled
FR_REPLACE Instructs the dialog to perform a replace
FR_REPLACEALL Instructs the dialog to perform a replace all
FR_SHOWHELP Shows the help button
FR_WHOLEWORD The whole word button is initially checked
The fifth parameter is the parent.
There is also a helper function. This function is called each time the user clicks

any of the buttons in the dialog.
If the user clicks the Cancel button, the dialog will terminate automatically. In

response to the Cancel button, the code in Listing 7.6 simply enables the “Push Me”
button so the dialog can be created again. If it is not terminating, you need to respond
appropriately. What you would normally do is place your search engine at the desig-
nated place and search through the text. In order to decide how to search, and what
to search for, you can use the following functions:

BOOL FindNext();
static CFindReplaceDialog* PASCAL GetNotifier(LPARAM lParam);
CString GetFindString();
CString GetReplaceString();
BOOL IsTerminating() const;
BOOL MatchCase();
BOOL MatchWholeWord();
BOOL ReplaceAll();
BOOL ReplaceCurrent();
BOOL SearchDown();
Each of the functions returns the indicated value. You decide whether the user

clicked the Find Next, Replace, or Replace All buttons by calling the appropriate func-
tion and then extracting the strings from the dialog as shown in the code.

132

This book is continuously updated. See http://www.iftech.com/mfc

7
C

a
nn

e
d

 D
ia

lo
g

s

When you run the code shown in Listing 7.6, you will find that the dialog ap-
pears along with the application window and both can accept events. For example,
you can move and minimize the application window even though the dialog is visible
(this is not the case for the modal dialogs seen above). When you press one of the but-
tons on the Find dialog, a message box will appear. The message box is modal, so the
application will stall until you respond to it. The Find dialog will remain on the screen
until the user cancels it.

You might be looking at this code and asking yourself, “Why is this code for a
modeless dialog so much more complicated than a modal dialog?” The program con-
tains the helper function, the static global variable handling message registration, a
message map entry, and all the normal creation code. Briefly, here is what’s happening:

 The dialog and the application window need to accept events as equal partners.
However, the dialog needs a way to communicate back to the application when one
of its buttons is pressed. To do this, it sends a message that can be detected by the ap-
plication. This is not a standard Windows message: It is a custom message created for
the Find dialog. The application registers to receive that custom message using the
static member

findMessage

 and it places a message handler for the message in its mes-
sage map. The

FindHelper

 function is the function that responds to the messages
received from the Find dialog.

Once this mechanism is in place, the Find dialog and the application can share
the user’s attention. When the user clicks a Find dialog button, the dialog sends a mes-
sage to the application and the application handles the user’s request. Thus the
application and the dialog can share the screen.

The

CFindDialog

 function encapsulates the behavior of the

FindText

 and

Re-
placeText

functions in the 32-bit API. Read the descriptions of these functions if you
wish to customize the behavior of this dialog.

7.7 Conclusion

The dialogs demonstrated in this chapter are used extensively inside the App-
Wizard framework that you will learn about in Part 3. We will also use several of them
in the next chapter to implement a simple text editor.

133

8EDIT CONTROLS AND EDITORS

This chapter demonstrates how to use the

CEdit

 control in both its single-line and
multi-line modes. We first used the

CEdit

 control in its single line mode in Chapter
5. Here, we will exercise its capabilities much more thoroughly so you are aware of its
many features. By the end of this chapter you will see how to use the edit control, re-
source files from Chapter 6, and canned dialogs from Chapter 7 to create a simple but
complete text editor. In Part 3 you will see how to create the same editor using

CEdit-
View

 class and the AppWizard.

8.1 Using the CEdit Control in Single-Line Mode

We used the

CEdit

 control for the first time in Chapter 5, where we exercised
its single-line mode to retrieve both integer and real values from the user. In its single-
line mode, there are several styles and functions you can use to customize the behavior
of the edit control: ES_AUTOHSCROLL and

LimitText

 are common, for example.
You can also set a string into the control using

SetDlgItemText

 or

SetDlgItemInt

and retrieve the text with the two corresponding

Get

 functions as seen in Chapter 5.
The

Set

 and

Get

 functions are inherited from the

CWnd

 class.
Listing 8.1 demonstrates how to use the

CEdit

 control in single-line mode to
get a name from the user. Here it is done “by hand” as demonstrated in Chapter 5,
but as you saw in Chapter 6 it is also easy to create these same controls with the dialog
editor (in this case, the

GetDlgItem

 function is useful for converting the control’s ID
in the dialog into an actual

CEdit

 pointer so you can call

CEdit

 member functions).
In Listing 8.1, the maximum length of the name that the user can enter is limited to
20 characters with the

LimitText

 member function of the

CEdit

 control.

Listing 8.1
Demonstration of a CEdit control

// limit.cpp
#include <afxwin.h>

134

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

const int EDIT=100;

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

// Declare the main window class
class CWindow : public CFrameWnd
{

CStatic* cs;
CEdit *edit;

public:
CWindow();

};

// The InitInstance function is called each
// time the application first executes.
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CWindow::CWindow()
{

// Create the window itself
Create(NULL,

"CEdit Demo",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,60));

// Create a static label
cs = new CStatic();
cs->Create("Last Name:",

WS_CHILD|WS_VISIBLE|SS_LEFT,
CRect(0,4,80,40),
this);

edit = new CEdit();
edit->Create(

WS_CHILD|WS_VISIBLE|WS_BORDER|
ES_AUTOHSCROLL,
CRect(90,2,190,27),
this, EDIT);

edit->LimitText(20);
}

8.1
U

sing
 the

 C
Ed

it C
o

ntro
l in Sing

le
-Line

 M
o

d
e

This book is continuously updated. See http://www.iftech.com/mfc

135

Listing 8.1 uses both a

CStatic

 and a

CEdit

control to create a window like the
one shown in Figure 8.1. Note that when the program creates the

CEdit

 control in the
window’s constructor, the code specifies the ES_AUTOHSCROLL style. This style al-
lows the control to scroll horizontally. Without this style, the control limits the string
length to the maximum size of the edit area on the screen. With ES_AUTOHSCROLL
specified, the control scrolls as the cursor approaches the last visible character, giving
the control the perception of nearly infinite length. You can then constrain the length,
if you so choose, with the

LimitText

 function, you might want to do this when the
data the user enters has to fit inside a specific field in a database.

The

CEdit

 control has a number of specialized styles that control its behavior.
In code like that shown in Listing 8.1, you set these styles in the control’s

Create

 func-
tion. When working with the control in the dialog editor demonstrated in Chapter 6,
you set the styles in the Property dialog for the control. Those styles that are applicable
when working in single-line edit mode appear in the following list:

ES_AUTOHSCROLL Allows the control to accept characters beyond the
visible length of the control

ES_CENTER Causes the control to center the entered text
ES_LEFT Causes the control to left-justify the entered text
ES_LOWERCASE Causes the control to convert all entered text to

lower case
ES_NOHIDESEL Causes the control to continue showing selected

text even if it does not have focus
ES_OEMCONVERT Causes the control to convert characters between

ANSI and OEM character sets
ES_PASSWORD Causes the control to display any entered charac-

ter as a “*”
ES_RIGHT Causes the control to right justify the entered text
ES_UPPERCASE Causes the control to convert all entered text to

upper case
ES_READONLY Allows the user to view and scroll text in the edit

control, but not to modify it
 You should experiment with these styles by modifying the

CEdit

 control’s

Cre-
ate

 function in Listing 8.1.
The

CEdit

 control also has a number of member functions that let you tune the
behavior of the control. Several of the more interesting and useful are listed below for a

CEdit

 control used in single-line mode. See the MFC documentation for a complete list:
GetModify Returns TRUE if the user has modified control’s text
SetReadOnly Lets you flip the read-only state of the control

Figure 8.1

Screen Dump from Listing 8.1

136

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

GetSel Returns the starting and ending index of the selected text
LimitText Sets the maximum number of characters the control will ac-

cept
LineLength Returns the number of characters in the control
ReplaceSel Deletes the selected text and inserts the specified text
SetPasswordChar Lets the programmer set a specific password character (see

the ES_PASSWORD style)
SetSel Lets the programmer select a specific range of characters
Undo Undoes the last operation on the control
Clear Deletes the selected text
Copy Copies any selected text to the clipboard
Cut Deletes the selected text and copies it to the clipboard
Paste Inserts the contents of the clipboard into the control (if it is

text)

8.2 Using the CEdit Control in Multi-Line Mode

There are two behaviors for the

CEdit

 control: single-line and multi-line. You
can see the latter when you switch the control to multi-line mode by using the
ES_MULTILINE style in the

Create

 function. By doing so, you are essentially creat-
ing a complete single-font text editor. Listing 8.2 creates a multi-line edit control you
can use for experimentation.

Listing 8.2
Creating a multi-line edit control

// multi.cpp

#include <afxwin.h>

const int EDIT=100;

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

// Declare the main window class
class CWindow : public CFrameWnd
{

CEdit *edit;
public:

CWindow();
};

8.2
U

sing
 the

 C
Ed

it C
o

ntro
l in M

ulti-Line
 M

o
d

e

This book is continuously updated. See http://www.iftech.com/mfc

137

// The InitInstance function is called each
// time the application first executes.
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CWindow::CWindow()
{

// Create the window itself
Create(NULL,

"CEdit Demo",
WS_OVERLAPPEDWINDOW,
CRect(0,0,260,260));

// Create a multi-line edit control
edit = new CEdit();
edit->Create(

WS_CHILD|WS_VISIBLE|WS_BORDER|
ES_MULTILINE|ES_AUTOVSCROLL,
CRect(0, 0, 200, 200),
this, EDIT);

}

In Listing 8.2 the ES_MULTILINE style causes the control to switch to multi-
line edit mode. The lack of the ES_AUTOHSCROLL style causes the control to word
wrap. If the ES_AUTOHSCROLL style is specified, then the control scrolls horizon-
tally instead of word wrapping.

By browsing through the MFC documentation for CEdit you will find a num-
ber of useful functions that are activated in multi-line mode:

GetLineCount Gets the number of lines
GetHandle Gets a handle to a block of memory containing the current

document
SetHandle Sets the current document in the edit control to the handle

passed
FmtLines Handles soft line-breaks
LineIndex Returns the starting character number of the given line
SetRect Resets the formatting rectangle and reformats
SetRectNP Resets the formatting rectangle without reformatting
SetTabStops Sets custom tab stops
CanUndo Indicates if undo is currently possible
GetModify Indicates that the contents have been modified
SetModify Sets modification flag
GetRect Returns the current formatting rectangle

138

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

GetSel Returns the beginning and ending character of the current
selection

GetLine Gets the specified line of text
EmptyUndoBuffer Clears the undo flag
LimitText Sets the maximum size of document
LineFromChar Determines the line number of the specified character index
LineLength Returns the number of characters in the specified line
LineScroll Scrolls the number of lines specified up or down
ReplaceSel Replaces the selected text with the specified string
SetSel Sets the selected text.
Undo Undoes the last operation
Clear Deletes the selected text
Copy Copies the selected text to the clipboard
Cut Cuts the selected text to the clipboard
Paste Pastes the clipboard’s contents at the selection point
SetReadOnly Browse only
GetFirstVisibleLineReturns the line number of the top line in the control
The

CEdit

 control uses a fairly simple data structure to hold the text. Essentially,
the entire document is stored in one long character string as shown in Figure 8.2.
Lines in a multi-line edit control are separated by '\n' characters embedded in the
string. The

CEdit

 control keeps track of the starting point of each line and can there-
fore translate between character indexes and line numbers very easily. When you use
the

GetHandle

 function, the control returns a handle that points to the text string it
is holding (a handle is a pointer to a pointer). You can then work through the string
as you would with any other array of characters. The code fragment below demon-
strates the process:

PSTR stringPointer;
HANDLE stringHandle;
UINT len;

stringHandle = edit.GetHandle();
len = edit.GetWindowTextLength();
stringPointer = (PSTR)::LocalLock(stringHandle);
// Use stringPointer like any
// other string pointer. Unlock the
// handle when you are done.
::LocalUnlock(stringHandle);

The locking and unlocking functions come from the 32-bit API and are used to
hold a memory block pointed to by a handle at a fixed memory location. The memory
manager can, at its discretion, move blocks of memory pointed to by a handle to create
larger contiguous blocks on the heap. While a handle is locked, the memory block re-
mains at a fixed position and you can therefore safely reference it through a direct
pointer.

The other way to reference data in an edit control is line by line. The

GetLine

function retrieves a copy of the specified line from the edit control.

8.3
D

e
sig

ning
 a

 Sim
p

le
 Te

xt Ed
ito

r

This book is continuously updated. See http://www.iftech.com/mfc

139

8.3 Designing a Simple Text Editor

In this section we will develop a complete text editor application. Not only will
this section demonstrate most of the features of the

CEdit

 control when used in its
multi-line mode, but it will also allow you to see how all the different pieces described
in the previous chapters fit together to create a complete application. Although we will
use a text editor as the example in this section, many of the concepts described here
apply to any type of application that you may want to create. For example, the editor
uses a complete menu system, modal and modeless dialogs, the clipboard, the file sys-
tem, and the command line–features that you will use in every application you build.
We have chosen an editor as the sample application because it is something that ev-
eryone can relate to and understand immediately.

It is also interesting to develop a complete editor application so you can contrast
the code you develop here with code you create in Part 3. As it turns out, you will see
in Part 3 that you can create an editor nearly equivalent to the one demonstrated in
this section without writing a single line of code. All of the functionality described in
detail here actually already exists in the

CEditView

 class, and you can access that code
transparently using the AppWizard. If you are the sort of person who likes to know
what is going on “behind the scenes,” use this section to enhance your knowledge. If
you are not, then look at Part 3.

In this section we want to create a text editor similar to the Notepad application
shipped with Windows. Using Notepad as a starting point it is easy to come up with
a list of requirements. The editor should be able to:

• Open existing files
• Create new files

Figure 8.2

The edit control maintains the current document in a normal text string

This is

sample

text.

A multi-line CEdit control

 T h i s i s \n s a m p l e \n t e x t \n \0

Line 0 Line 1 Line 2

 0 1 2

140

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

• Save the current file to its original name or a new name
• Handle all the normal clipboard functions
• Find a string
From this list of features comes the design for the menu structure. The menu

items required to implement the desired features are listed below:
File

New
Open
Save
Save as
Exit

Edit
Undo
Cut
Copy
Paste
Delete

Search
Find
Find Next

Help
About

To handle all these menu options we will need to use several dialogs. The Open,
Save, and Save As options in the file menu can all use the canned Open/Save dialog.
Find and Find Next can use the standard modeless find dialog. The About dialog will
use a custom dialog built with the dialog editor.

8.4 Creating the Editor Application

This editor application consists of a menu bar and a

CEdit

 control that fills the
rest of the application window. The first steps to take in creating the text editor appli-
cation are to set up the

CEdit

 control in a window, make sure it is re-sizing and
accepting input correctly, and create the menus. The code in Listing 8.3 accomplishes
this. It combines Listing 8.2 with the menu-loading concepts from Chapter 6.

To create the menus for this application, use the menu editor described in Chap-
ter 6. Create the

File

,

Edit

,

Search,

 and

Help

 menus shown in the previous section
using the same techniques you learned in Section 6.4. Add appropriate mnemonics
and also create several accelerators as described in Section 6.5 and shown in Figure 8.3.
Name the resource script SCRIPT.RC. When you are done,

use a text editor

 to open
SCRIPT.RC as a normal text file and look at its contents. Listing 8.4 contains a re-
source script that describes the menu bar and its accelerators. If you like you can tune
your menu bar, using the resource editor, until it matches the description shown in
Listing 8.4.

8.4
C

re
a

ting
 the

 Ed
ito

r A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

141

Listing 8.3
Code that creates the CEdit control and the menu bar.

// ed1.cpp - a simple editor with
// non-functional menus and a resizing edit area

#include <afxwin.h>
#include <afxdlgs.h>

#define IDC_EDIT 500

// Define the application object class
class CEditApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Define the edit window class
class CEditWindow : public CFrameWnd
{
private:

CEdit m_edit;
public:

CEditWindow();
protected:

afx_msg void OnSize(UINT nType, int cx,
int cy);

DECLARE_MESSAGE_MAP()
};

// Main application object.
CEditApp editApp;

// constructor for the CEditWindow
CEditWindow::CEditWindow()
{

CRect rect;

LoadAccelTable("MainAccelTable");
Create(NULL, "Ed1", WS_OVERLAPPEDWINDOW,

rectDefault, NULL, "MainMenu");

// Initialize the CEditWindow's CEdit object
GetClientRect(&rect);
m_edit.Create(WS_BORDER | WS_HSCROLL |

WS_VISIBLE | WS_VSCROLL |
ES_AUTOHSCROLL | ES_AUTOVSCROLL |
ES_MULTILINE | ES_NOHIDESEL,
rect, this, IDC_EDIT);

}

// OnSize - handles the resizing of the edit window
void CEditWindow::OnSize(UINT nFlags, int cx,

142

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

int cy)
{

CRect rc;
GetClientRect(&rc);
m_edit.MoveWindow(rc);

}

// InitInstance - Initialize the CEditApp
// m_pMainWnd data member
BOOL CEditApp::InitInstance()
{

m_pMainWnd = new CEditWindow();
m_pMainWnd -> ShowWindow(m_nCmdShow);
m_pMainWnd -> UpdateWindow();
return(TRUE);

}

BEGIN_MESSAGE_MAP(CEditWindow, CFrameWnd)
ON_WM_SIZE()

END_MESSAGE_MAP()

Listing 8.4
Portions of the SCRIPT.RC file for the editor.

MainMenu MENU DISCARDABLE
BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "&New", IDM_FILE_NEW
 MENUITEM "&Open...\tCtrl+O", IDM_FILE_OPEN
 MENUITEM "&Save\tCtrl+S", IDM_FILE_SAVE
 MENUITEM "Save &As...", IDM_FILE_SAVEAS
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_FILE_EXIT
 END
 POPUP "&Edit"
 BEGIN
 MENUITEM "&Undo\tCtrl+Z", IDM_EDIT_UNDO
 MENUITEM SEPARATOR
 MENUITEM "Cu&t\tCtrl+X", IDM_EDIT_CUT
 MENUITEM "&Copy\tCtrl+C", IDM_EDIT_COPY
 MENUITEM "&Paste\tCtrl+V", IDM_EDIT_PASTE
 MENUITEM "&Delete\tDel", IDM_EDIT_DELETE
 END
 POPUP "&Search"
 BEGIN
 MENUITEM "&Find...\tCtrl+F", IDM_SEARCH_FIND
 MENUITEM "Find &Next\tCtrl+N", IDM_SEARCH_FINDNEXT
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About Ed...\tF1", IDM_HELP_ABOUTED
 END

8.4
C

re
a

ting
 the

 Ed
ito

r A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

143

END

MainAccelTable ACCELERATORS DISCARDABLE
BEGIN
 "C", IDM_EDIT_COPY, VIRTKEY, CONTROL, NOINVERT
 "F", IDM_SEARCH_FIND, VIRTKEY, CONTROL, NOINVERT
 "N", IDM_SEARCH_FINDNEXT, VIRTKEY, CONTROL, NOINVERT
 "O", IDM_FILE_OPEN, VIRTKEY, CONTROL, NOINVERT
 "S", IDM_FILE_SAVE, VIRTKEY, CONTROL, NOINVERT
 "V", IDM_EDIT_PASTE, VIRTKEY, CONTROL, NOINVERT
 VK_BACK, IDM_EDIT_UNDO, VIRTKEY, ALT, NOINVERT
 VK_DELETE, IDM_EDIT_DELETE, VIRTKEY, NOINVERT
 VK_DELETE, IDM_EDIT_CUT, VIRTKEY, SHIFT, NOINVERT
 VK_F1, IDM_HELP_ABOUTED, VIRTKEY, NOINVERT
 VK_INSERT, IDM_EDIT_COPY, VIRTKEY, CONTROL, NOINVERT
 VK_INSERT, IDM_EDIT_PASTE, VIRTKEY, SHIFT, NOINVERT
 "X", IDM_EDIT_CUT, VIRTKEY, CONTROL, NOINVERT
 "Z", IDM_EDIT_UNDO, VIRTKEY, CONTROL, NOINVERT
END

When you run the program in Listing 8.3, you will see an application like the
one shown in Figure 8.4. You will find that the editor itself accepts input, scrolls, de-
letes text, and so on. The window re-sizes and iconifies properly. The editor’s menu
system works but none of the options do anything. You have written a surprisingly
small amount of code to create this much functionality.

Figure 8.3
The accelerator table for the editor

144

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

8.5 Stubbing in the Menu Handlers

When you are creating your own applications it is beneficial to be able to show
a working prototype to potential users very early in the product’s life cycle. In the pre-
ceeding section we saw that you can implement the complete menu structure very
quickly using the menu resource editor. The next step is to create the message map for
the menu items and wire in all the different dialog boxes and stubs for the different
menu items. Once you have completed this step, users can try out the program—if a
menu item should generate a canned dialog then the dialog appears. Otherwise the
user sees a simple message box. As you implement the different features you remove
the message box stubs and work in the actual code. The program in Listing 8.5 con-
tains the stubbed version of the editor.

Listing 8.5
The stubbed editor containing code that presents all of the dialogs.

// ed2.cpp - a simple editor with dialogs
// and stubbed menus and a resizing edit area

#include <afxwin.h>
#include <afxdlgs.h>
#include "resource.h" // resource constants

#define IDC_EDIT 500

// Define filters for use with the File Dialog
const char fileDialogFilter[] =

"C++ Files (*.cpp)|*.cpp|Header Files (*.h)|*.h|\
Resource Files (*.rc)|*.rc||";
const char fileDialogExt[] = "cpp";

// Define the application object class
class CEditApp : public CWinApp
{
public:

Figure 8.4
The editor in use

8.5
Stub

b
ing

 in the
 M

e
nu H

a
nd

le
rs

This book is continuously updated. See http://www.iftech.com/mfc

145

virtual BOOL InitInstance();
};

// Define the edit window class
class CEditWindow : public CFrameWnd
{
private:

static UINT findMessage;
static UINT gotoLineMessage;
CEdit m_edit;

public:
CEditWindow();
void SaveChanges();

protected:
afx_msg void OnNew();
afx_msg void OnOpen();
afx_msg void OnSave();
afx_msg void OnSaveAs();
afx_msg void OnExit();
afx_msg void OnUndo();
afx_msg void OnCut();
afx_msg void OnCopy();
afx_msg void OnPaste();
afx_msg void OnDelete();
afx_msg void OnFind();
afx_msg void OnFindNext();
afx_msg LONG FindHelper(UINT wParam,

LONG lParam);
afx_msg void OnAbout();
afx_msg void OnSize(UINT nType, int cx,

int cy);

DECLARE_MESSAGE_MAP()
};

// Main application object.
CEditApp editApp;

//-------- Main Message Map -----------//

BEGIN_MESSAGE_MAP(CEditWindow, CFrameWnd)
ON_COMMAND(IDM_FILE_NEW, OnNew)
ON_COMMAND(IDM_FILE_OPEN, OnOpen)
ON_COMMAND(IDM_FILE_SAVE, OnSave)
ON_COMMAND(IDM_FILE_SAVEAS, OnSaveAs)
ON_COMMAND(IDM_FILE_EXIT, OnExit)
ON_COMMAND(IDM_EDIT_UNDO, OnUndo)
ON_COMMAND(IDM_EDIT_CUT, OnCut)
ON_COMMAND(IDM_EDIT_COPY, OnCopy)
ON_COMMAND(IDM_EDIT_PASTE, OnPaste)
ON_COMMAND(IDM_EDIT_DELETE, OnDelete)
ON_COMMAND(IDM_SEARCH_FIND, OnFind)
ON_REGISTERED_MESSAGE(findMessage, FindHelper)
ON_COMMAND(IDM_SEARCH_FINDNEXT, OnFindNext)
ON_COMMAND(IDM_HELP_ABOUTED, OnAbout)
ON_WM_SIZE()

146

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

END_MESSAGE_MAP()

// Initialize message variables
UINT CEditWindow::findMessage =

::RegisterWindowMessage(FINDMSGSTRING);
CFindReplaceDialog *findReplaceDialog = NULL;

// constructor for the CEditWindow
CEditWindow::CEditWindow()
{

CRect rect;

LoadAccelTable("MainAccelTable");
Create(NULL, "Ed2", WS_OVERLAPPEDWINDOW,

rectDefault, NULL, "MainMenu");

// Initialize the CEditWindow's CEdit object
GetClientRect(&rect);
m_edit.Create(WS_BORDER | WS_HSCROLL |

WS_VISIBLE | WS_VSCROLL |
ES_AUTOHSCROLL | ES_AUTOVSCROLL |
ES_MULTILINE | ES_NOHIDESEL,
rect, this, IDC_EDIT);

}

// OnSize - handles the resizing of the edit window
void CEditWindow::OnSize(UINT nFlags, int cx,

int cy)
{

CRect rc;

GetClientRect(&rc);
m_edit.MoveWindow(rc);

}

// InitInstance - Initialize the CEditApp
// m_pMainWnd data member
BOOL CEditApp::InitInstance()
{

m_pMainWnd = new CEditWindow();
m_pMainWnd -> ShowWindow(m_nCmdShow);
m_pMainWnd -> UpdateWindow();
return(TRUE);

}

// SaveChanges - allows user to save
// or discard changes
void CEditWindow::SaveChanges()
{

int response;

response = MessageBox(
"Save changes before closing?", "Ed",
MB_ICONQUESTION | MB_YESNOCANCEL);

if(response == IDYES)

8.5
Stub

b
ing

 in the
 M

e
nu H

a
nd

le
rs

This book is continuously updated. See http://www.iftech.com/mfc

147

MessageBox("Saving Changes...", "Ed",
MB_ICONINFORMATION);

else if(response == IDNO)
MessageBox("Discarding...", "Ed",

MB_ICONINFORMATION);
}

//-------- File Menu Options -----------//

void CEditWindow::OnNew()
{

SaveChanges();
}

void CEditWindow::OnOpen()
{

CFileDialog fileDialog(TRUE,
fileDialogExt, NULL,
OFN_FILEMUSTEXIST, fileDialogFilter);

if(fileDialog.DoModal() == IDOK)
 MessageBox(fileDialog.GetPathName(),

"Dialog Information",
MB_ICONINFORMATION);

}

void CEditWindow::OnSave()
{

MessageBox("File Save Selected",
"Message", MB_ICONINFORMATION);

}

void CEditWindow::OnSaveAs()
{

CFileDialog fileDialog(FALSE,
fileDialogExt, NULL,
OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,
fileDialogFilter);

if(fileDialog.DoModal() == IDOK)
 MessageBox(fileDialog.GetPathName(),

"Dialog Information",
MB_ICONINFORMATION);

}

void CEditWindow::OnExit()
{

DestroyWindow();
}

//-------- Edit Menu Options -----------//

void CEditWindow::OnUndo()
{

MessageBox("Edit Undo Selected",
"Message", MB_ICONINFORMATION);

148

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

}

void CEditWindow::OnCut()
{

MessageBox("Edit Cut Selected",
"Message", MB_ICONINFORMATION);

}

void CEditWindow::OnCopy()
{

MessageBox("Edit Copy Selected",
"Message", MB_ICONINFORMATION);

}

void CEditWindow::OnPaste()
{

MessageBox("Edit Paste Selected",
"Message", MB_ICONINFORMATION);

}

void CEditWindow::OnDelete()
{

MessageBox("Edit Delete Selected",
"Message", MB_ICONINFORMATION);

}

//-------- Search Menu Options -----------//

void CEditWindow::OnFind()
{

findReplaceDialog = new CFindReplaceDialog;
findReplaceDialog->Create(FALSE, "default");
GetMenu()->EnableMenuItem(IDM_SEARCH_FIND,

MF_BYCOMMAND | MF_GRAYED);
}

LONG CEditWindow::FindHelper(UINT wParam,
LONG lParam)

{
if(findReplaceDialog->IsTerminating())
{

findReplaceDialog = NULL;
GetMenu()->EnableMenuItem(IDM_SEARCH_FIND,

MF_BYCOMMAND | MF_ENABLED);
}
else if(findReplaceDialog->FindNext())

MessageBox(
findReplaceDialog->GetFindString(),
"Find String",
MB_ICONINFORMATION);

else if(findReplaceDialog->ReplaceCurrent())
MessageBox(

findReplaceDialog->GetReplaceString(),
"Replace String",
MB_ICONINFORMATION);

else if(findReplaceDialog->ReplaceAll())

8.5
Stub

b
ing

 in the
 M

e
nu H

a
nd

le
rs

This book is continuously updated. See http://www.iftech.com/mfc

149

MessageBox(
findReplaceDialog->GetReplaceString(),
"Replace All",
MB_ICONINFORMATION);

return 0;
}

void CEditWindow::OnFindNext()
{

MessageBox("Search FindNext Selected",
"Message", MB_ICONINFORMATION);

}

//-------- Help Menu Options -----------//

void CEditWindow::OnAbout()
{

CModalDialog aboutDialog("AboutDialog", this);
aboutDialog.DoModal();

}

In order to compile Listing 8.5, you will need to create an About dialog. Use the
dialog editor as described in Chapter 6. A sample About dialog in shown in Figure 8.5.

In Listing 8.5 every menu option is stubbed appropriately. The following list de-
scribes the stubbed behavior of each menu option.

• New – This option currently calls SaveChanges, which presents a Yes/No/
Cancel dialog asking the user if the changes made should be saved. Message
Boxes stub out the Yes and No responses generated by the user. In the final
version this function will be tweaked to check that changes have actually been
made to the editor.

• Open – This option calls the File Open dialog and then presents the chosen
file name to the user in a message box.

• Save – This option is stubbed with a message box.

Figure 8.5
The About dialog

150

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

• Save As – This option presents a File Save As dialog and then shows the user
the file name in a message box.

• Exit – This option terminates the application immediately. In the final ver-
sion it will need to check for changes using the same code that the New op-
tion does.

• Undo – This option is stubbed with a message box.
• Cut – This option is stubbed with a message box.
• Copy – This option is stubbed with a message box.
• Paste – This option is stubbed with a message box.
• Clear – This option is stubbed with a message box.
• Find – This option presents a modeless Find dialog. The application registers

the helper function’s message appropriately (see Section 7.6) so the dialog can
actually be used modelessly. All of its buttons are stubbed with message boxes.

• Find Next – This option is stubbed with a message box.
• About - This option loads a custom dialog named “AboutDialog” from a re-

source file named

about.dlg

 created by the dialog editor. See Chapter 6
for instructions on using the dialog editor.

With all these stubs in place a user can see the scope of the eventual application
and can also try out the look and feel of many of the options such as Open, Save As,
and Find. The small amount of code required to develop an early working prototype
is one of the many advantages of working with MFC and C++.

8.6 Implementing the Editor

Making the program actually behave like an editor is now simply a matter of re-
placing the stubs with the actual code. In the following sections we will walk through
the different pieces of code used to implement the options. If you add each of the
functions described below to the stubbed program shown in the previous section, you
will have a working text editor.

8.6.1 New

The

New

 option can be called in one of two situations: 1) The editor is display-
ing a blank screen or a file in which the user has made no changes, or 2) the file on the
screen contains changes that should be saved before clearing the edit control. The
menu handler for the

New

 option reflects the decision that must be made:

void CEditWindow::OnNew()
{

if(SaveChanges())
NewFile();

}

The

SaveChanges

 function checks to see if changes have been made and, if so,
queries the user about what to do with the modifications. The user should be able to
save the changes, discard them, or return to the editor. When

SaveChanges

 finishes
querying the user, it returns a Boolean that is TRUE if the system should proceed with
clearing the control, and FALSE if not.

8.6
Im

p
le

m
e

nting
 the

 Ed
ito

r

This book is continuously updated. See http://www.iftech.com/mfc

151

// Ask user to save or discard changes
BOOL CEditWindow::SaveChanges()
{

int response;
BOOL returnCode = FALSE;

if(m_edit.GetModify())
{

// display MessageBox--filePathName indicates
// which file we're asking about
response = MessageBox(

"Save changes before closing?",
filePathName,
MB_ICONQUESTION | MB_YESNOCANCEL);

switch(response)
{

case IDYES:
if(newFile)

returnCode = SaveFileAs();
else

returnCode = SaveFile();
break;

case IDNO:
returnCode = TRUE;
break;

case IDCANCEL:
returnCode = FALSE;
break;

}
}
else

returnCode = TRUE;// no changes made to file.

m_edit.SetFocus();
return(returnCode);

}

The

SaveChanges

 function uses a message box in Yes/No/Cancel mode to que-
ry the user. If the user wants to save changes, the normal code for the

Save

 and

Save
As

 options can be used to perform the save. The

newFile

 variable is a member of

CEditWindow

 and it keeps track of whether the current file was previously loaded
with

Open

 or created fresh with

New

.
The

NewFile

 function is responsible for clearing the edit control so it is blank
and ready to accept new data.

// perform initialization for a new file
void CEditWindow::NewFile()
{

HANDLE editHandle;
LPSTR editBuffer;
static untitledNum = 0;
char noName[20];

152

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

// make a simple name for new window
sprintf(noName, "Untitled.%03d",

++untitledNum);
SetWindowText(noName);
filePathName = noName;

editHandle = m_edit.GetHandle();
if(LocalReAlloc(editHandle, 1, LHND) == NULL)
{

MessageBox("Couldn't allocate memory!",
"Memory Error", MB_ICONEXCLAMATION);

return;
}

editBuffer = (LPSTR) LocalLock(editHandle);
editBuffer[0] = 0;
LocalUnlock(editHandle);

m_edit.SetHandle(editHandle);
m_edit.SetModify(FALSE);
m_edit.SetFocus();
newFile = TRUE;

}

It creates a dummy file name and places it in the title bar. It then retrieves the
handle from the edit control. This handle points to the current string, so the

NewFile

function clears the string by reallocating it to a length of 1 and handing it back to the
edit control. The control will make the buffer longer as the user enters new text.

The code at the bottom of the function resets the edit control.

SetModify

 sets
the edit control’s internal flag used by

GetModify

.

SetFocus

 sets the focus back to the
edit control. The

newFile

 variable remembers whether the current file was started
with the

New

 or

Open

 option.

8.6.2 Open

The

Open

 option in the

File

 menu uses the

SaveChanges

 function discussed in
Section 8.6.1 to let the user save any changes made to the current file. It then presents
a File Open dialog. If the user presses the OK button, it saves the extension of the cur-
rent file for the next presentation of the dialog and opens the file.

void CEditWindow::OnOpen()
{

if(SaveChanges())
{

CFileDialog fileDialog(TRUE,
fileDialogExt, lastExtension,
OFN_FILEMUSTEXIST | OFN_HIDEREADONLY,
fileDialogFilter);

if(fileDialog.DoModal() == IDOK)
{

// save the extension for use later.
lastExtension = "*." +

fileDialog.GetFileExt();
OpenFile(fileDialog.GetPathName());

}

8.6
Im

p
le

m
e

nting
 the

 Ed
ito

r

This book is continuously updated. See http://www.iftech.com/mfc

153

}
m_edit.SetFocus();

}

The

OpenFile

 function is responsible for actually opening the file. It uses the
MFC

CFile

 class to handle the file I/O (see the MFC documentation for more
information).

void CEditWindow::OpenFile(CString pathName)
{

UINT length;
HANDLE editHandle;
LPSTR editBuffer;
CFile file;

// try to open the file
if(!file.Open(pathName, CFile::modeRead))
{

CString msg("Could not open " +
pathName + ".");

MessageBox(msg,
"File Open Error",
MB_ICONEXCLAMATION);

return;
}

filePathName = pathName;
SetWindowText(pathName);

// get memory to put the file in
length = (UINT) file.GetLength();
editHandle = m_edit.GetHandle();
if(LocalReAlloc(editHandle,

length + 1, LHND) == NULL)
{

file.Close();
MessageBox("Couldn't allocate memory!",

"Memory Error", MB_ICONEXCLAMATION);
return;

}

// read file into the editBuffer
file.Read((editBuffer =

(LPSTR) LocalLock(editHandle)), length);

// terminate and unlock the edit buffer
editBuffer[length] = 0;
LocalUnlock(editHandle);

// do some initialization
m_edit.SetHandle(editHandle);
m_edit.SetModify(FALSE);
m_edit.SetFocus();
newFile = FALSE;
file.Close();

}

154

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

The

OpenFile

 function begins by trying to open the file. If it cannot, it displays
an error and returns. If it is successful, it saves the file name and changes the window
title. It then tries to allocate enough memory to hold the file. If successful, it reads the
file into memory and hands the address of the block back to the edit control.

8.6.3 Save

The

Save

 option uses the

newFile

 flag to decide whether the file was initially cre-
ated with

New

 or

Open.

void CEditWindow::OnSave()
{

if(newFile)
SaveFileAs();

else
SaveFile();

}

If the file was opened, the

SaveFile

 function simply writes the file back to disk
using the original file name saved from the open operation. The steps are a reversal of
the file-reading steps shown in Section 8.6.2.

// save the current file
BOOL CEditWindow::SaveFile()
{

HANDLE editHandle;
LPSTR editBuffer;
UINT length;
CFile file;

// try to open the file
if(!file.Open(filePathName,

CFile::modeCreate | CFile::modeWrite))
{

CString msg("Can't open " +
filePathName +
"\nCheck the filename.");

MessageBox(msg,
"File Save Error",
MB_ICONEXCLAMATION);

return FALSE;
}

length = m_edit.GetWindowTextLength();

// get and lock handle to edit text
editHandle = m_edit.GetHandle();
editBuffer = (LPSTR) LocalLock(editHandle);

// write edit text to file, close and unlock
file.Write(editBuffer, length);
file.Close();
LocalUnlock(editHandle);

// reset our flags
m_edit.SetModify(FALSE);

8.6
Im

p
le

m
e

nting
 the

 Ed
ito

r

This book is continuously updated. See http://www.iftech.com/mfc

155

m_edit.SetFocus();
newFile = FALSE;
return TRUE;

}

The

SaveFileAs

 function presents a normal File Save As dialog to the user so that
the user can enter a new file name.

// Manage the SaveAs Dialog
BOOL CEditWindow::SaveFileAs()
{

BOOL returnCode = FALSE;

CFileDialog fileDialog(FALSE,
fileDialogExt, filePathName,
OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,
fileDialogFilter);

if(fileDialog.DoModal() == IDOK)
{

// save old name and get new one
CString oldPathName(filePathName);
filePathName = fileDialog.GetPathName();

// restore old name if save failed--
// probably due to an invalid filename
if(!(returnCode = SaveFile()))

filePathName = oldPathName;

SetWindowText(filePathName);
}
else

returnCode = FALSE;

m_edit.SetFocus();
return(returnCode);

}

If the user presses the OK button, the new file name is saved and the

SaveFile

function is called to actually save the file. The title of the window is changed to the
new file name.

8.6.4 Save As

The

Save As

 option works almost exactly the same way as the

Save

 option does.
The only difference is that it does not have to make a decision between new and
opened files—it calls the

SaveFileAs

 function seen in Section 8.6.3 automatically.

void CEditWindow::OnSaveAs()
{

SaveFileAs();
}

8.6.5 Exit

The

Exit

 option calls the

SaveChanges

 function from Section 8.6.1 to check
whether changes should be saved. If everything is ready to go, it exits the application.

156

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

void CEditWindow::OnExit()
{

if(SaveChanges())
DestroyWindow();

}

8.6.6 Undo, Cut, Copy, Paste, Clear

One of the nicest things about the

CEdit

 control is that it handles clipboard op-
erations for you automatically. All the Edit menu options require just one line of code.
See the MFC documentation for details on these function calls.

void CEditWindow::OnUndo()
{

m_edit.Undo();
}

void CEditWindow::OnCut()
{

m_edit.Cut();
}

void CEditWindow::OnCopy()
{

m_edit.Copy();
}

void CEditWindow::OnPaste()
{

m_edit.Paste();
}

void CEditWindow::OnDelete()
{

m_edit.ReplaceSel("");
}

8.6.7 Find

Preparation for the modeless Find dialog starts with two global variables:

UINT CEditWindow::findMessage =
::RegisterWindowMessage(FINDMSGSTRING);

CFindReplaceDialog* findReplaceDialog = NULL;

The

findMessage

 variable holds the message used by the dialog to trigger the
message map. The menu manager function (see Section 8.6.11) uses the

findReplace-
Dialog

 pointer to determine if the menu option should be enabled, thereby
preventing multiple instances of the dialog box. When the user selects the

Find

 op-
tion, the code creates a new modeless find dialog. (See Section 7.6 for details.)

void CEditWindow::OnFind()
{

findReplaceDialog = new CFindReplaceDialog;
findReplaceDialog->Create(TRUE,

findString, "", FR_HIDEWHOLEWORD |
FR_HIDEMATCHCASE | FR_HIDEUPDOWN);

}

8.6
Im

p
le

m
e

nting
 the

 Ed
ito

r

This book is continuously updated. See http://www.iftech.com/mfc

157

Once the dialog is on the screen the user can press the

Find Next

 or

Cancel

 but-
tons. The result is passed through the message map to the find helper function shown
below.

// Helper for the find dialog
LONG CEditWindow::FindHelper(UINT wParam,

LONG lParam)
{

findString.Empty();
findString = findReplaceDialog->GetFindString();

if(findReplaceDialog->IsTerminating())
findReplaceDialog = NULL;

else if(findReplaceDialog->FindNext())
Search(findString);

return 0;
}

The function starts by retrieving the string entered by the user. It then decides
which button the user pressed. If a search is required, the search engine in the

Search

function is used.

// Scan through text looking for findString
void CEditWindow::Search(CString findString)
{

int cursorPos, startChar, foundChar;
int lineIndex, charIndex, lineLength;
CString line, rightLine;

// ignore case sensitivity
findString.MakeLower();
// start from current cursor position
lineIndex = m_edit.LineFromChar();
m_edit.GetSel(startChar, charIndex);

do
{

// get the length of current line
lineLength = m_edit.LineLength(charIndex);

// determine char index of that line
cursorPos = charIndex -

m_edit.LineIndex(lineIndex);

// put line into a CString.
// Last param is important.
m_edit.GetLine(lineIndex,

line.GetBuffer(lineLength),
lineLength);

line.ReleaseBuffer(lineLength);

// get chars from cursorPos to end of line
rightLine = line.Right(lineLength -

cursorPos);
rightLine.MakeLower();

// look for findString

158

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

foundChar = rightLine.Find(findString);

// if not found, goto next line
if(foundChar == -1)

charIndex = m_edit.LineIndex(++lineIndex);
} while((foundChar == -1) &&

(lineIndex < m_edit.GetLineCount()));

// if found, select the text
if(foundChar != -1)
{

startChar = charIndex + foundChar;
m_edit.SetSel(startChar,

startChar + findString.GetLength());

// make the edit window scroll to new line.
m_edit.LineScroll(m_edit.LineFromChar(

startChar) - m_edit.GetFirstVisibleLine());
m_edit.SetFocus();

}

else
{

// Wrap MessageBox in EnableWindow calls so
// that multiple message boxes
// can't happen
if(findReplaceDialog)

findReplaceDialog->EnableWindow(FALSE);
MessageBox("String not found.",

"Find String",
MB_ICONINFORMATION);

if(findReplaceDialog)
findReplaceDialog->EnableWindow(TRUE);

}
}

There are two ways to search through the text in an edit control. The quicker of
the two is to get the handle to the edit control’s block of memory and scan the block
character by character. Here we have used the line-by-line method instead to demon-
strate several of the line-handling functions in the edit control.

The function starts at the current cursor position and retrieves the data in the
edit control line by line. The current line is stored in an MFC

CString

, so functions
built in to this class can be used to look for a substring on the line. The code spends a
fair amount of time jumping between character indexing and line indexing.

If the text is found, it is selected. Otherwise the search finally reaches the end of
the data and a message box informs the user.

8.6.8 Find Next

The

Find Next

 option uses the search engine presented in the last section and
repeats the previous search.

void CEditWindow::OnFindNext()
{

Search(findString);

8.6
Im

p
le

m
e

nting
 the

 Ed
ito

r

This book is continuously updated. See http://www.iftech.com/mfc

159

}

8.6.9 About

The

About

 option loads the About box from a resource file and displays it on
the screen.

void CEditWindow::OnAbout()
{

CModalDialog aboutDialog("AboutDialog", this);
aboutDialog.DoModal();

}

8.6.10 Menu Management

One of the most complicated parts of this program is menu management–the
enabling and disabling of the different menu options. You will find in Part 3 that this
particular problem is very nicely solved using MFC’s

CCmdUI

 class.
The

CWnd::OnInitMenu

 function is called any time the user selects any menu
option before to the actual animation of the menu bar, so this is an appropriate central
location to control enabling and disabling:

void CEditWindow::OnInitMenu(CMenu *menu)
{

DWORD selected;
UINT format, menuState;

// update the File Save menu item.
if(m_edit.GetModify())

menuState = MF_ENABLED;
else

menuState = MF_GRAYED;
GetMenu()->EnableMenuItem(IDM_FILE_SAVE,

MF_BYCOMMAND | menuState);

// update the Edit Undo menu item.
if(m_edit.CanUndo())

menuState = MF_ENABLED;
else

menuState = MF_GRAYED;
GetMenu()->EnableMenuItem(IDM_EDIT_UNDO,

MF_BYCOMMAND | menuState);

// update the Edit Cut, Copy, & Delete menu items
selected = m_edit.GetSel();
if(HIWORD(selected) != LOWORD(selected))

menuState = MF_ENABLED;
else

menuState = MF_GRAYED;
GetMenu()->EnableMenuItem(IDM_EDIT_CUT,

MF_BYCOMMAND | menuState);
GetMenu()->EnableMenuItem(IDM_EDIT_COPY,

MF_BYCOMMAND | menuState);
GetMenu()->EnableMenuItem(IDM_EDIT_DELETE,

MF_BYCOMMAND | menuState);

160

This book is continuously updated. See http://www.iftech.com/mfc

8
Ed

it
C

o
nt

ro
ls

 a
nd

 E
d

ito
rs

// Update the Edit Paste menu item by
// looking at what's in the clipboard.
menuState = MF_GRAYED;
if(OpenClipboard())
{

format = EnumClipboardFormats(0);
while(format != 0)
{

if(format == CF_TEXT)
{

menuState = MF_ENABLED;
break;

}
format = EnumClipboardFormats(format);

}
CloseClipboard();

}
GetMenu()->EnableMenuItem(IDM_EDIT_PASTE,

MF_BYCOMMAND | menuState);

// update the Search Find menu item
if(findReplaceDialog)

menuState = MF_GRAYED;
else

menuState = MF_ENABLED;
GetMenu()->EnableMenuItem(IDM_SEARCH_FIND,

MF_BYCOMMAND | menuState);

// update the Search Find Next menu item
if(findString.GetLength())

menuState = MF_ENABLED;
else

menuState = MF_GRAYED;
GetMenu()->EnableMenuItem(IDM_SEARCH_FINDNEXT,

MF_BYCOMMAND | menuState);
}

The

Open, New, Save As

,

Exit,

and

About

 options are always enabled. For all
other menus the

OnInitMenu

 function checks the appropriate conditions option by
option and enables and disables each one. The following conditions are used to deter-
mine if an option should be enabled:

• Save – Enabled if the edit control contains modifications
• Undo – Enabled if the edit control reports that there is something to undo
• Cut, Copy, Delete – Enabled if something is selected
• Paste – Enabled if the clipboard contains data in the CD_TEXT format (text

data), if the user copies Paintbrush data onto the clipboard, Paste will disable
itself

• Search – Enabled if the Find dialog is not already on the screen
• Find Next – Enabled if there are data in the find string to search for
You will also need to add the following line to the bottom of the window’s

constructor:

m_bAutoMenuEnable = FALSE;

8.7
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

161

This line disables default behavior in MFC that causes the

EnableMenuItem

function to misbehave in code not generated by the AppWizard.

8.6.11 Exiting

There are three ways for the user to exit the editor: 1) Choose the

Exit

 option in
the File menu, 2) choose the

Close

 option in the system menu, and 3) log off or shut
down Windows. Option 1 is discussed in Section 8.6.5. The

CWnd::OnClose

 func-
tion handles option 2:

void CEditWindow::OnClose()
{

if(SaveChanges())
DestroyWindow();

}

This looks just like the Exit function. When the user shuts down Windows or
logs out, the

CWnd::OnQueryEndSession

 function is called. This gives the user a
chance to save changes before the system closes the application:

// See if it's Ok to exit Windows
BOOL CEditWindow::OnQueryEndSession()
{

return SaveChanges();
}

Again, this function uses the

SaveChanges

 function seen in Section 8.6.1.

8.7 Conclusion

One of the things about this chapter is that it makes everything look easy. It
probably took you an hour to read it, and everything seemed fairly straightforward.
What you are not seeing is the time spent tweaking things to make them work just
right, as well as the time that was wasted on bugs. By showing you a complete appli-
cation we hope you can save some time by being able to look up these details and bug
fixes in an existing piece of code.

There are a number of extensions you can add to this editor if you are so in-
clined. For example, you might try the following exercises:

• Add case-sensitive searching, backward searching, and whole-word searching.
• Add replace and replace all capabilities.
• Add a font dialog and change the font.
• Add printing–see Chapter 11.
However, you may want to wait until Chapter 16 to make the changes. As men-

tioned earlier, the AppWizard can make the creation of a simple editor like this one
much easier by using the

CEditView

 class.

163

9LISTS

Quite a bit of the information we deal with every day is organized in lists. There are
lists everywhere in any graphical user interface–lists of files, lists of categories, lists of
colors and fonts, lists of options, and so on. Windows is no exception. In this chapter
we will discuss the creation of lists using the two controls built into Windows for this
purpose: list boxes and combo boxes. A list box is used to display a list of items. A com-
bo box combines a list box with either a

CEdit

 control or a

CStatic

 control and is fre-
quently used to emulate a radio box in a more space-efficient format.

9.1 Creating a List Box

The

CListBox

 control is a fairly intricate user interface object. When you use it
in an application, you have a great deal of control over its appearance and behavior. It
has 13 different LBS styles in addition to the available WS styles, and it generates six
different messages in response to user events. It also has 33 member functions that you
can call to insert items into the list, to extract selected items from the list, and to con-
trol specific behaviors such as horizontal scrolling. All its functions and data members
are described in the MFC documentation.

Though complicated in its implementation, the basic idea behind a list box con-
trol is simple. First, you create the list box itself so it appears on screen. Then you fill
it with items. When the user selects an item, your code receives a message and it should
respond appropriately.

List boxes are typically used in one of two ways. The more common use is in a
dialog box. In this case you fill the list when the dialog is initialized, and the list retains
a fixed size while the dialog is visible. A second way to use list boxes is as the contents
of an entire window. In this case the list box re-sizes with the window.

The code in Listing 9.1 demonstrates the creation of a list box in an application
window. Figure 9.1 shows a screen dump for this code when it is running. The code
does not provide for any list selection handling—this topic is discussed on its own in
Section 9.3.

164

This book is continuously updated. See http://www.iftech.com/mfc

9
Li

st
s

Listing 9.1
Displaying a list box in a window.

// list1.cpp

#include <afxwin.h>
#include <strstrea.h>

const int LIST=100;

// Define an application object
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

// Define a window object
class CWindow : public CFrameWnd
{

CListBox* list;
public:

CWindow();
afx_msg void OnSize(UINT nFlags,

int cx, int cy);
DECLARE_MESSAGE_MAP()

};

// The window's constructor
CWindow::CWindow()
{

CRect rect;

// Create the window
Create(NULL, "List Demo", WS_OVERLAPPEDWINDOW,

CRect(0,0,250,100));
GetClientRect(&rect);

// Create the list box
list = new CListBox();
list->Create(

WS_CHILD|WS_VISIBLE|WS_BORDER|
WS_VSCROLL|WS_HSCROLL|LBS_NOINTEGRALHEIGHT,
rect,
this, LIST);

// Fill the list box with 100 items
char s[100];
ostrstream ostr(s,100);
int i;
for (i=0; i<100; i++)

9.1
C

re
a

ting
 a

 List Bo
x

This book is continuously updated. See http://www.iftech.com/mfc

165

{
ostr.seekp(ios::beg);
ostr << "This is item number " << i << ends;
list->AddString(s);

}
}

// The message map
// see section 9.3 for selection handling
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_SIZE()
END_MESSAGE_MAP()

// Handles window resizing events
void CWindow::OnSize(UINT nFlags, int cx, int cy)
{

CRect r;

GetClientRect(&r);
list->MoveWindow(r);

}

// The InitInstance function executes
// once when the application begins
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

The code in Listing 9.1 creates a CListBox in the window’s constructor. It uses
six different style attributes. The list box, like the CEdit control, can automatically
handle horizontal and vertical scroll bars if the scroll bar styles are specified at creation.
The code also sets the LBS_NOINTEGRALHEIGHT style. With this style set, the

Figure 9.1
A list box in a window

166

This book is continuously updated. See http://www.iftech.com/mfc

9
Li

st
s

list box displays partial lines as the window is re-sized. If this style is not used, the list
box will size itself so that only complete lines of the list are visible.

Following creation, the code fills the list box using the list box’s

AddString

member function. This function can add strings in one of two ways. If the list is sort-
ed, the string is added at its sorted position. Sorting is specified by choosing the
LBS_SORT or the LBS_STANDARD styles when creating the list. If the list is not
sorted, then

AddString

 adds the new string to the bottom of the list. A second way to
add strings to the list is to use the

InsertString

 function. This function places the new
string at the specified location in the list.

When you run Listing 9.1, note that you can re-size the window and the list box
will re-size itself to fit properly. The

OnSize

 function, which gets called each time the
user change’s the window’s size, implements this behavior. The

GetClientRect

 func-
tion gets the new size of the window so the list’s borders follow the window’s client
area exactly.

One thing you might notice when you run the code in Listing 9.1 is that even
though a horizontal scroll bar is specified, it does not appear to work correctly. If you
shrink the width of the window, as shown in Figure 9.2, the horizontal scroll bar does
not appear. You can fix this problem by using the

SetHorizontalExtent

 function,
which specifies the maximum scrolling range for the horizontal scroll bar. If you add
the following line to the code just after list creation, the horizontal scroll bar will ap-
pear as in Figure 9.3:

list->SetHorizontalExtent(150);

Both the horizontal and vertical scroll bars will disappear automatically when the
window is made large enough to accommodate the maximum extent in either direction.

Figure 9.2

A thin list box with the default
horizontal extent

Figure 9.3

A thin list box with a properly set
horizontal extent

9.2
A

lte
rna

te
 D

isp
la

y Fo
rm

a
ts

This book is continuously updated. See http://www.iftech.com/mfc

167

9.2 Alternate Display Formats

 A list box (but not a combo box) can display its data in two alternate formats:
multi-column and tabbed. The multi-column mode is useful when the list contains a
large number of short items. It allows the list to display many choices in a small area.
The tabbed mode lets the list properly display items that contain embedded tab char-
acters. This is especially useful when using a proportional font for the list. You change
the font in a list in the same way you change the font for a static label (as shown in
Chapter 3).

The code in Listing 9.2 is a replacement for the

CWindow::CWindow

 function
in Listing 9.1 and demonstrates the creation of a multi-column list. Figure 9.4 shows
a screen dump for this code.

Listing 9.2
Creation of a multi-column list.

// list2.cpp

// The window's constructor
CWindow::CWindow()
{

CRect rect;

// Create the window itself
Create(NULL, "List Demo", WS_OVERLAPPEDWINDOW,

CRect(0,0,250,100));
GetClientRect(&rect);

// Create the list
list = new CListBox();
list->Create(

WS_CHILD|WS_VISIBLE|WS_BORDER|
WS_VSCROLL|WS_HSCROLL|LBS_NOINTEGRALHEIGHT|
LBS_MULTICOLUMN,
rect,
this, LIST);

list->SetColumnWidth(60);

// Fill the list
char s[100];
ostrstream ostr(s,100);
int i;
for (i=0; i<100; i++)
{

ostr.seekp(ios::beg);
ostr << "item" << i << ends;
list->AddString(s);

}
}

168

This book is continuously updated. See http://www.iftech.com/mfc

9
Li

st
s

The code in Listing 9.2 differs from Listing 9.1 in two ways. The
LBS_MULTICOLUMN style is specified and the column width is set to 60 pixels
with a call to the

SetColumnWidth

 function. The default width is 32. When in
multi-column mode, the horizontal scroll bar is used instead of the vertical scroll bar
to page through the available items.

The LBS_USETABSTOPS style causes the list box to interpret tab characters
embedded in the data inserted in the list. This display mode is useful when the list dis-
plays several different pieces of information on a single line. For example, an address
list program (see Chapter 18) might display the name, address, and phone number for
each address record on a single line of the list. The tab characters are embedded in the
line when the line is created before insertion, and the list box interprets the tab char-
acters to form columns. The tab stops in the list are set by creating an array of integers
representing the positions of the stops, and then passing the array to the

CList-
Box::SetTabStops

 function. The code in Listing 9.3 demonstrates the process
(replace the window constructor in Listing 9.1 with this code), and Figure 9.5 shows
a screen dump for the code.

Listing 9.3
Code demonstrating the display of a tabbed list in a list box.

// list3.cpp

// The window's constructor
CWindow::CWindow()
{

CRect rect;

// Create the window
Create(NULL, "Button Demo", WS_OVERLAPPEDWINDOW,

CRect(0,0,250,100));
GetClientRect(&rect);

// Create the list box
list = new CListBox();
list->Create(

WS_CHILD|WS_VISIBLE|WS_BORDER|

Figure 9.4
Typical multi-column list display

9.2
A

lte
rna

te
 D

isp
la

y Fo
rm

a
ts

This book is continuously updated. See http://www.iftech.com/mfc

169

WS_VSCROLL|WS_HSCROLL|LBS_NOINTEGRALHEIGHT|
LBS_USETABSTOPS,
rect,
this, LIST);

// Set two tab stops at 30 and 100 dialog units
int ta[2] = {30, 100};
list->SetTabStops(2, ta);

// Fill the list with tabbed lines
char s[100];
ostrstream ostr(s,100);
int i;
for (i=0; i<100; i++)
{

ostr.seekp(ios::beg);
ostr << "name" << i << '\t';
ostr << "address" << i << '\t';
ostr << "phone" << i << ends;
list->AddString(s);

}
}

The code in Listing 9.3 specifies the LBS_USETABSTOPS when the list is cre-
ated. It initializes an array of integers with the desired tab stop positions, and the array
and its size are passed to SetTabStops. Tab stops are specified in dialog units rather
than pixels (see the CListBox::SetTabStops function in the MFC documentation for
a description). When the items for the list are created, normal tab characters are em-
bedded within the data. As shown in Figure 9.5, the tabs are interpreted and aligned
with the specified stops when the list is displayed.

Figure 9.5
Screen dump showing a tabbed list

170

This book is continuously updated. See http://www.iftech.com/mfc

9
Li

st
s

9.3 Getting User Selections

Once the list box is on the screen, the user can interact with it. The user clicks
on items to highlight them, or double-clicks on an item to select it and act upon it in
whatever way the application specifies. The list box also supports an extended selec-
tion mode which allows the user to shift-click or ctrl-click on multiple items in the
list. The application can then retrieve all items selected and act on them
simultaneously.

The code in Listing 9.4 demonstrates the creation of a list and the steps that you
must take to retrieve user events from the list. Figure 9.6 shows a screen dump of this
code during execution.

Listing 9.4
Demonstration of a list box in single select mode.

// list4.cpp

#include <afxwin.h>
#include <strstrea.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

CListBox* list;
CStatic* label;

public:
CWindow();
afx_msg void OnSize(UINT nFlags,

int cx, int cy);
afx_msg void HandleSelchange();
afx_msg void HandleDblclk();
DECLARE_MESSAGE_MAP()

};

const int LIST=100;
const int LABEL=101;

// The window's constructor
CWindow::CWindow()
{

CRect rect;

// Create the window

9.3
G

e
tting

 U
se

r Se
le

c
tio

ns

This book is continuously updated. See http://www.iftech.com/mfc

171

Create(NULL, "List Demo", WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

// Create the list box. Size it
// so that it leaves 24 pixels
// at the bottom of the window
GetClientRect(&rect);
rect.bottom -= 24;
list = new CListBox();
list->Create(

WS_CHILD|WS_VISIBLE|WS_BORDER|
WS_VSCROLL|WS_HSCROLL|LBS_NOINTEGRALHEIGHT|
LBS_NOTIFY,
rect, this, LIST);

// Create a label to display the
// selection in the bottom 24 pixels
GetClientRect(&rect);
rect.top = rect.bottom - 24;
label = new CStatic();
label->Create("xxx",

WS_CHILD|WS_BORDER|WS_VISIBLE,
rect,
this,LABEL);

// Fill the list
char s[100];
ostrstream ostr(s,100);
int i;
for (i=0; i<100; i++)
{

ostr.seekp(ios::beg);
ostr << "This is item number " << i << ends;
list->AddString(s);

}
}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_SIZE()
ON_LBN_SELCHANGE(LIST, HandleSelchange)
ON_LBN_DBLCLK(LIST, HandleDblclk)

END_MESSAGE_MAP()

// Handle resize events
void CWindow::OnSize(UINT nFlags, int cx, int cy)
{

CRect rect;

// Readjust the list
GetClientRect(&rect);
rect.bottom -= 24;
list->MoveWindow(rect);

// Readjust the label
GetClientRect(&rect);

172

This book is continuously updated. See http://www.iftech.com/mfc

9
Li

st
s

rect.top = rect.bottom - 24;
label->MoveWindow(rect);

}

// Handle selections
void CWindow::HandleSelchange()
{

int i = list->GetCurSel();
char s[100];
list->GetText(i,s);
SetDlgItemText(LABEL, s);

}

// Handle double clicked items
void CWindow::HandleDblclk()
{

int i = list->GetCurSel();
char s[100];
list->GetText(i,s);
SetDlgItemText(LABEL, s);
Beep(200,200);

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

In Listing 9.4, the CWindow constructor creates and fills a list box and also cre-
ates a static label that will display the selected item. Note the use of the LBS_NOTIFY
style, which specifies that the list box should generate messages when the user clicks or
double-clicks on an item. If you accidentally omit this style, the list box will generate
no event messages in response to user actions.

Figure 9.6
Screen dump of a list box in single select
mode

9.3
G

e
tting

 U
se

r Se
le

c
tio

ns

This book is continuously updated. See http://www.iftech.com/mfc

173

The message map in Listing 9.4 has been augmented to include
ON_LBN_SELCHANGE and ON_LBN_DBLCLK. A selection-change message is
generated each time the user highlights a new item by clicking on it or using the arrow
keys. A double-click message is generated when the user double-clicks on an item. The

HandleSelchange

 function is duplicated below:

void CWindow::HandleSelchange()
{

int i = list->GetCurSel();
char s[100];
list->GetText(i,s);
SetDlgItemText(LABEL, s);

}

This code gets the item number of the currently selected item by calling the list’s

GetCurSel

 member function. The index returned is a value between zero and the size
of the list minus one (list size can be retrieved with the

GetCount

 function). The in-
dex is then passed to

GetText

, which retrieves the text for the string at that location.
The string is placed into the static label at the bottom of the window to indicate that
the function is working correctly. The double-click handler works the same way, but
also produces a beep to indicate that a double-click was recognized. You will replace
the beep with an action that is appropriate for your application.

List boxes that accept multiple selections are similar in principle but involve
slightly more work. When the list box is created,

you should specify the
LBS_EXTENDEDSEL style to convert the list over to multiple selection mode

. The code
in Listing 9.5 is a replacement for the

HandleSelchange

 function in Listing 9.4, and
it demonstrates the procedure used to retrieve multiple items. Figure 9.7 shows a
screen dump of this code during execution.

Listing 9.5
Retrieving multiple selected items from a list box.

// list5.cpp

// Handle selections
void CWindow::HandleSelchange()
{

int i, *a;
i = list->GetSelCount();
a = new int[i];
list->GetSelItems(i,a);
char s[100];
int x;
ostrstream ostr(s,100);
for (x=0; x<i; x++)

ostr << a[x] << " ";
ostr << ends;
SetDlgItemText(LABEL, s);
delete a;

}

174

This book is continuously updated. See http://www.iftech.com/mfc

9
Li

st
s

The code in Listing 9.5 starts by retrieving a count of the number of items cur-
rently selected using the

GetSelCount

 function. It uses this count to allocate an
integer array capable of holding that many items. The program passes the array and
the count to the

GetSelItems

 function, which fills the array with the indexes of all se-
lected items in the list. These indexes could then be used with the list’s

GetText

function to retrieve the items one by one. Here the integers are instead used to create
a string displaying the contents of the array in the static label, demonstrating that the
list is working as expected.

9.4 Manipulating Items in a List

When you use list boxes as the contents of an application window (see Chapter
18 for an example), it is common to manipulate the contents of the list over time. For
example, a program that finds files by searching their contents for a string will update
the list slowly over time. Or the list might display mail that is accumulating in a mail-
box or data coming in through a communications port or network socket.

In situations like these, it is helpful to select items in a list box from within your
code. For example, if you add a new item to the list on the fly, selecting it brings it to
the user’s attention. For this purpose, the

SetCurSel

 function is used in a list box that
is in single-select mode, while the

SetSel

 and

SetItemRange

 functions perform this
task in a list box in extended-selection mode. In an extended-selection List Box, it is
also possible to select and retrieve the currently focused item using

SetCaretIndex

 and

GetCaretIndex

. Once an item is selected, however, there is no guarantee that it is vis-
ible to the user. You can use the

SetTopIndex

 function to scroll a specific item onto
the top of the list so the user is sure to see it.

The list box provides several functions you can use to manipulate the items in
the list. We have seen one:

AddString

 adds items to the list, either at their sorted po-
sition or at the end of the list, depending on whether LBS_SORT is set.

Figure 9.7

Screen dump of a list box in multiple
selection mode

9.5
C

o
m

b
o

 Bo
xe

s

This book is continuously updated. See http://www.iftech.com/mfc

175

Other functions used to manipulate the contents of the list are shown below:
InsertString Inserts a string at the specified location
Dir Adds file names from the current directory to the list; pa-

rameters control the files selected for addition
DeleteString Deletes the specified string
ResetContent Deletes all strings from the list
FindString Finds a string in the list and returns its index
SelectString Finds a string in the list and selects it
You can use these functions to customize the behavior of a list box in your ap-

plication. In the following section, you will also recognize the internal use of many of
these functions to implement the combo box.

9.5 Combo Boxes

A combo box combines a list box with either an edit control or a static label.
When combined with an edit control, characters typed by the user are used to scroll
through the data in the list until the first match is found. Typically, this feature is used
with a sorted list. When combined with a static label, the user can select items from
the list for display in the label. Different styles in the combo box allow the list to be
shown at all times or to be hidden most of the time and dropped down when requested
by the user. The list box used within a combo box is not quite as capable as the one
found in the

CListBox

 control. For example, the list box cannot handle tabs or mul-
tiple columns, although most of the other capabilities are available in the combo box.

Combo boxes are a convenience–it is almost as easy to create a list and edit con-
trol yourself and wire them together. In fact, you are forced to do just that if you want
to display tabbed information in the list. However, the combo box is very useful as a
small-area replacement for a radio box. For example, a radio box containing 20 items
would take up a great deal of space on the screen, but a combo box with a static label
can display the same information in a much smaller area–generally the space needed
for just one item. When it’s time to change the selection, the combo box drops down
its list temporarily and then hides it again.

 If you look though the styles, messages, and functions available in the combo
box, you will find that a combo box is nothing but a straight combination of an edit
area (or a static control) and a list box. Almost all the features available have been de-
scribed in the list box and edit control descriptions here and in Chapter 5. The code
shown in Listing 9.6 demonstrates the creation and filling of a combo box control.

Listing 9.6
Creating a combo box.

// combo.cpp

#include <afxwin.h>
#include <strstrea.h>

176

This book is continuously updated. See http://www.iftech.com/mfc

9
Li

st
s

// Define an application object
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

CComboBox* combo;
public:

CWindow();
afx_msg void OnSize(UINT nFlags,

int cx, int cy);
DECLARE_MESSAGE_MAP()

};

const int COMBO=100;

// The window's constructor
CWindow::CWindow()
{

CRect rect;

Create(NULL, "List Demo", WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

GetClientRect(&rect);
combo = new CComboBox();
combo->Create(

WS_CHILD|WS_VISIBLE|WS_BORDER|
CBS_AUTOHSCROLL|CBS_SIMPLE,
rect,
this, COMBO);

char s[100];
ostrstream ostr(s,100);
int i;
for (i=0; i<100; i++)
{

ostr.seekp(ios::beg);
ostr << "Item " << i << ends;
combo->AddString(s);

}
}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_SIZE()
END_MESSAGE_MAP()

// Handle resizing
void CWindow::OnSize(UINT nFlags, int cx, int cy)
{

CRect r;

9.6
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

177

GetClientRect(&r);
combo->MoveWindow(r);

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

There are three modes that can be used when creating a combo box. The first
mode is demonstrated in Listing 9.6, where the CBS_SIMPLE style has been speci-
fied. This style combines an edit control with a list box that is always visible. The
CBS_DROPDOWN style is similar, but the list is hidden and controlled by the user
with an arrow button displayed next to the edit area or by the programmer using the
ShowDropDown function. The CBS_DROPDOWNLIST style is similar to the
CBS_DROPDOWN style in its behavior, but the edit control is replaced with a static
label. The user changes the label by selecting items from the list when it’s visible.

The same functions used with the list box to handle selections are used with the
combo box. In particular, the GetCurSel function should be used to retrieve the user’s
current selection in the combo box.

9.6 Conclusion
Lists are extremely important in Windows. See Part 4 for ways to use sub-class-

ing to further customize the appearance of lists in your applications.

179

10THE CWINAPP CLASS

Every application that you create with MFC will contain one instance of the

CWinApp

 class. This class is central to the MFC class hierarchy. It embodies the main
event loop and dispatches events to other classes in MFC.

Because of its central position in MFC, the

CWinApp

 class contains a number
of member functions that you can use to customize your application’s behavior. The
class contains member variables and functions that hold information that is often use-
ful within your application. This chapter discuss a number of the more common
capabilities that you can use in the

CWinApp

 class.
In Part 3 of the book, when using code generated by the AppWizard, many default

features in the

CWinApp

 class become extremely important to the default behavior of
the application. In particular, the

AddDocTemplate

 function in the

CWinApp

 class
bonds document and view classes created by the AppWizard to the application. To un-
derstand everything that an AppWizard framework supports, it is important to have a
working knowledge of what the

CWinApp

class is able to do, and why.

10.1 Member Variables

Getting started with the

CWinApp

 class is often difficult because it contains a
great deal of esoteric and often hidden behavior. Let’s therefore start with something
simple: the member variables of the class. In MFC, there are a number of member
variables in the class, as listed below:

m_pszAppName The name of the application
m_hInstance The current instance handle
m_hPrevInstance The previous instance handle
m_lpCmdLine A copy of the command line used for invocation
m_nCmdShow Specifies how window should be shown initially
m_bHelpMode TRUE if application is in Help context mode (See

Chapter 19)

180

This book is continuously updated. See http://www.iftech.com/mfc

10
Th

e
 C

W
in

A
p

p
 c

la
ss

m_pActiveWnd If the application is an OLE server and is currently
in-place active, points to the main window of the
container

m_pszExeName The name of the EXE file
m_pszHelpFilePath Path to the application’s Help file
m_pszProfileName Name of the application’s INI file
m_pszRegistryKey The registry key of the application (set by

SetReg-
istryKey

).
In addition to these variables, the following functions are also frequently useful:
AfxGetApp Returns a pointer to the application’s CWinApp

object.
AfxGetInstanceHandle Returns the application’s instance handle
AfxGetResourceHandle Returns a the application’s resource handle
AfxGetAppName Returns the application’s name
In particular, the

AfxGetApp

 function makes it easy to get a pointer to your ap-
plication’s instance of the

CWinApp

 class at any point in the application’s code. Once
you have this pointer, you can easily access any of the member variables of

CWinApp

.
The code in Listing 10.1 demonstrates how to access several of these variables in a
message box. Figure 10.1 shows a typical run of Listing 10.1.

Listing 10.1
Dumping the application's variables

//vars.cpp

#include <afxwin.h>
#include <strstrea.h>

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp app;

// Declare the main window class
class CWindow : public CFrameWnd
{
public:

CWindow();
};

// The InitInstance function is called each
// time the application first executes.
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();

10.2
Ic

o
ns a

nd
 C

urso
rs

This book is continuously updated. See http://www.iftech.com/mfc

181

m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CWindow::CWindow()
{

// Create the window
Create(NULL,

"CWinApp tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

char s[2000];
ostrstream ostr(s, 2000);
// Access member variables
ostr << "Application name: "

 << app.m_pszAppName
 << endl
 << "Command line: "
 << app.m_lpCmdLine
 << endl
 << "EXE name: "
 << app.m_pszExeName
 << endl
 << "Help file path: "
 << app.m_pszHelpFilePath
 << endl;

if (AfxIsValidString(app.m_pszProfileName))
ostr << "INI file name: "

 << app.m_pszProfileName
 << endl;

else
ostr << "No INI file" << endl;

if (AfxIsValidString(app.m_pszRegistryKey))
ostr << "Registry key: "

 << app.m_pszRegistryKey
 << endl
 << ends;

else
ostr << "No Registry key" << endl << ends;

 MessageBox(s);
}

10.2 Icons and Cursors
The CWinApp class makes it easy to load both icons and cursors, whether they

come from standard system-defined lists or custom resource files. For example, the
LoadStandardIcon function can load any of the following system-defined icons:

IDI_APPLICATION Default application icon
IDI_HAND Stop Sign
IDI_QUESTION Question mark

182

This book is continuously updated. See http://www.iftech.com/mfc

10
Th

e
 C

W
in

A
p

p
 c

la
ss

IDI_EXCLAMATION Exclamation point
IDI_ASTERISK Asterisk
 Using

CWinApp

’s

LoadIcon

 function, you can also load custom icons you
have designed from a resource file. The

LoadIcon

 function accepts the ID of the icon
you have created. See Chapter 6 for information on icon resources.

Listing 10.2 demonstrates how to load and display standard icons in a

CStatic

control.

Listing 10.2
Code that alternates the CStatic control through two icons at one second intervals.

// icon2.cpp

#include <afxwin.h>

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

//Declare the window class
class CWindow : public CFrameWnd
{

CStatic* cs;
BOOL flip;
HICON exclamation, hand;

public:
CWindow();

Figure 10.1
Typical output of Listing 10.1

10.2
Ic

o
ns a

nd
 C

urso
rs

This book is continuously updated. See http://www.iftech.com/mfc

183

~CWindow();
afx_msg void OnTimer(UINT);
DECLARE_MESSAGE_MAP()

};

// Message handler for timer messages.
// This function alternates the icon.
void CWindow::OnTimer(UINT id)
{

Beep(200,200);
flip = !flip;
if (flip)

cs->SetIcon(exclamation);
else

cs->SetIcon(hand);
}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_TIMER()
END_MESSAGE_MAP()

// The InitInstance function is called once
// when the application first executes
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

const int TIMER=100;

CWindow::CWindow(): flip(FALSE)
{

// Create the window
Create(NULL,

"Icon Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Initilize the timer event
SetTimer(TIMER,1000,NULL);

// Create the label
cs = new CStatic();
cs->Create("folder",

WS_CHILD|WS_VISIBLE|SS_ICON,
CRect(20,20,0,0),
this);

// load the exclamation point icon
exclamation = App.LoadStandardIcon

(IDI_EXCLAMATION);

184

This book is continuously updated. See http://www.iftech.com/mfc

10
Th

e
 C

W
in

A
p

p
 c

la
ss

// Load the folder icon
hand = App.LoadStandardIcon

(IDI_HAND);;
}

// The window destructor
CWindow::~CWindow()
{

delete cs;
}

In listing 10.2, the variables exclamation and hand are handles that point to
loaded icon resources. Both are loaded from standard system resources using the Load-
StandardIcon function available from the CWinApp class. Inside of the OnTimer
function (this is the same timer mechanism demonstrated in Chapter 4), the program
alternately sets the static label’s icon to one of the two icons using the SetIcon function.

Using the technique shown in listing 10.2, you could very easily create a set of
five or ten sequenced icons that implement a simple animation. When a program is
busy executing a long calculation or database search, you can display the animation to
show progress.

Cursors are just as easy to load, using either LoadCursor to load a custom cursor
from a resource file or LoadStandardCursor to load a standard cursor. The following
cursors are defined system-wide:

IDC_ARROW Normal arrow
IDC_IBEAM Text-insertion I-Beam
IDC_WAIT Hourglass
IDC_CROSS Cross-hair
IDC_UPARROW Arrow pointing up
IDC_SIZE Window resizing
IDC_ICON File Dragging
IDC_SIZENWSE Diagonal two-headed arrow
IDC_SIZENESW Diagonal two-headed arrow
IDC_SIZEWE Horizontal two-headed arrow
IDC_SIZENS Vertical two-headed arrow

In general, changing the cursor is not trivial. See Section 11.5.3 for a complete
discussion of the problem. However, if you want to display an hourglass cursor the
framework provides two functions in the CCmdTarget class to handle that task. They
are called BeginWaitCursor and EndWaitCursor. These functions work fine provid-
ed that you call both within a single message-handling function. If you try to call
BeginWaitCursor in one message-handler function and then call EndWaitCursor in
another, it will not work. Again, see Section 11.5.3 for a discussion.

If you want to change the cursor that BeginWaitCursor displays, you can do
that by overriding CWinApp::DoWaitCursor. See the MFC documentation and
source code for further information on this function.

10.3
H

a
nd

ling
 Id

le
 Tim

e

This book is continuously updated. See http://www.iftech.com/mfc

185

10.3 Handling Idle Time

An application is defined as idle, at least as far as MFC is concerned, if there are
no user or system events to process in the event queue. As a programmer you will fre-
quently want to perform certain background tasks during this idle time. Prior to MFC
3.0, idle-time processing using the

CWinApp::OnIdle

 function was the only facility
available to handle background processing. With later versions of MFC, however, you
can also create background threads as described in Chapter 35. Therefore, you often
have a choice when deciding how to implement a background task.

The

OnIdle

 function in the

CWinApp

 class is fairly rudimentary. It is called
when the event queue is empty. You have the option to override this function and per-
form processing whenever the function is called. However, you have to keep in mind
two limitations:

1. The base functionality of the

CWinApp

 class, as well as several different classes
in MFC, depends on the

OnIdle

 function to handle certain background tasks.
Therefore, you must call down to

CWinApp::OnIdle

 before you try to per-
form your own processing.

2. Any processing you do in

OnIdle

 must have a very short duration, for example
less than 0.10 seconds. If you perform long processing operations in the

OnIdle

 function then your interface will stall because the application does not
process events until

OnIdle

 returns.
When you override

OnIdle

, you will receive an integer parameter called

lCount

.
The

lCount

 value starts at zero and increments each time

OnIdle

 is called. This in-
crementing continues until the next user or system message arrives in the message
queue when MFC stops calling

OnIdle

 and processes the message. Then the next time
MFC calls

OnIdle

 the

lCount

 value resets to zero and begins incrementing again. Be-
cause of this behavior, and your desire to limit your processing to very short time
intervals, you can use

lCount

 to segment the activities performed by your

OnIdle

function. For example, when

lCount

 is 2 you might perform one type of activity,
when it is 3 another, and so on. If you look at the MFC source code, you will find that
the base implementation uses the

lCount

 values of 0 and 1 to perform its processing.
You must also return a Boolean value from your overridden version of

OnIdle

.
If you return TRUE, then MFC will call your overidden version again immediately
after checking for new messages in the message queue. If you return FALSE, then
MFC will not call

OnIdle

 again until another message arrives in the message queue.
The

lCount

 parameter will be zero on the next call.
The MFC documentation recommends that you call the

CWinApp::OnIdle

function in your overridden implementation of

OnIdle

 until it returns FALSE. That
indicates that the framework is done with its background tasks. Then you can perform
your

OnIdle

 processing without interfering with its activities or overburdening the
system.

In general, it is better to perform background processing in a separate thread
rather than in

OnIdle

. The operating system will provide much smoother time slicing

186

This book is continuously updated. See http://www.iftech.com/mfc

10
Th

e
 C

W
in

A
p

p
 c

la
ss

and the background processing will have no impact on the user interface. See Chapter
35 for more information. In certain cases however, such as with icon animation, it is
often easier to handle the background processing in

OnIdle

, and in those cases you
should take advantage of it.

10.4 Application Functionality

Quite a bit of the functionality built into the

CWinApp

 class is there to facilitate
the

Document/View paradigm

 supported by MFC. The

CWinApp

class’s functionality
also makes the AppWizard’s job much easier by performing a number of standard
tasks automatically. See Part 3 for an in-depth discussion of both the document/view
paradigm and the AppWizard.

Chapter 16 discusses the use of the AppWizard and the

CEditView

 class to cre-
ate text editor applications. The

CEditView

 class is simply a combination of the

CView

 and

CEdit

 classes that lets the

CEdit

 class work within the document/view
paradigm. The

CEditView

 class also contains a message map that automatically rec-
ognizes certain standard menu IDs and implements them for you. For example, if you
create a menu bar that contains an item with the ID of ID_EDIT_CUT, and if you
use that menu bar in an application that contains an instance of the

CEditView

 class,
then the instance will automatically detect that ID and respond to it properly. See
Chapter 16 and the MFC documentation on

CEditView

 for more information.
To get a good understanding of the sort of standard behavior that the

CWinApp

class contains, we will create an extremely simple program that uses

CWinApp

,

CEditView

, several standard resources and the document/view paradigm. The entire
set of implications that this combination possesses will seem very large initially, but if
you read this section, work through Part 3 of the book, and then return to this section,
you will find that you have a very good understanding of the default behavior of the
MFC framework invoked by the AppWizard.

Listing 10.3 creates probably the simplest possible program making use of

doc-
ument templates

. See Chapter 14 for a discussion of document templates. See Chapter
12 and the MFC documentation for a discussion of the DYNCREATE macros. Use
the instructions in the following sections to compile and run this code.

Listing 10.3
The simplest possible program using a document template.

//docview.cpp
#include <afxwin.h>
#include <afxext.h>
#include "resource.h"

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
DECLARE_MESSAGE_MAP()

10.4
A

p
p

lic
a

tio
n Func

tio
na

lity

This book is continuously updated. See http://www.iftech.com/mfc

187

};

// Create an instance of the application class
CApp app;

// Declare the main window class
class CWindow : public CFrameWnd
{

DECLARE_DYNCREATE(CWindow)
};
IMPLEMENT_DYNCREATE(CWindow, CFrameWnd)

class CDoc : public CDocument
{

DECLARE_DYNCREATE(CDoc)
public:

virtual void Serialize(CArchive& ar)
{

((CEditView*)m_viewList.GetHead())->SerializeRaw(ar);
}

};
IMPLEMENT_DYNCREATE(CDoc, CDocument)

class CEdView : public CEditView
{

DECLARE_DYNCREATE(CEdView)
};
IMPLEMENT_DYNCREATE(CEdView, CEditView)

// The InitInstance function is called each
// time the application first executes.
BOOL CApp::InitInstance()
{

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(

IDR_STANDARD,
RUNTIME_CLASS(CDoc),
RUNTIME_CLASS(CWindow),
RUNTIME_CLASS(CEdView));

AddDocTemplate(pDocTemplate);

// command line parsing
if (m_lpCmdLine[0] == '\0')

OnFileNew();
else

OpenDocumentFile(m_lpCmdLine);

return TRUE;
}

BEGIN_MESSAGE_MAP(CApp, CWinApp)
ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)
ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)

END_MESSAGE_MAP()

188

This book is continuously updated. See http://www.iftech.com/mfc

10
Th

e
 C

W
in

A
p

p
 c

la
ss

10.4.1 Create the Project

Create a new MFC project as described in Appendix B.3. Call the project
“docview.”

10.4.2 Create the C++ File

Create a new text file for the C++ code in Listing 10.3. Save the code to a file
named DOCVIEW.CPP.

10.4.3 Add the C++ File to the Project

Add the DOCVIEW.CPP file to the project as described in Appendix B.3.

10.4.4 Create a New Resource Script

To create a new resource script for this application see Appendix B.5.2. Call the
file SCRIPT.RC.

10.4.5 Add the RC File to the Project

Add the SCRIPT.RC file to the project as shown in Appendix B.5.2.

10.4.6 Add a String Table

Following the directions in Chapter 6, add a string table to the resource script.
Create a string in the table with the ID of IDR_STANDARD. Give the string the fol-
lowing caption:

edit\n\nEdit\nEdit Files (*.tex)\n.TEX\nEdit.Document\nEdit Document

See the section on

CDocTemplate::GetDocString

 in the MFC documentation
for more information on this string and its components.

10.4.7 Add a Menu

Following the directions in Chapter 6, add a menu to the resource script. The
menu should have the ID of IDR_STANDARD (double click on the right side of the
new menu bar in the menu resource editor to change the ID). Create a

File

 menu and
give it the options

New

,

Open

 and

Exit

.

The IDs for these three options should be
ID_FILE_NEW, ID_FILE_OPEN and ID_APP_EXIT respectively

.

10.4.8 Add an Icon

Following the directions in Chapter 6, add an icon to the resource script.

The
ID for the icon should also be IDR_STANDARD

.

10.4.9 Compile and Run

Compile and run the program. You will find that the New and Open options
work properly, and that the program exits as it should, asking you if you want to save
changed information. For more information on creating an editor like this with the
AppWizard and extending its capabilities, see Chapter 16.

10.4
A

p
p

lic
a

tio
n Func

tio
na

lity

This book is continuously updated. See http://www.iftech.com/mfc

189

10.4.10 Understanding What Just Happened

Why does the code in listing 10.3 work? Why did an application that, at least
on the surface, contains no code implement a fairly complete text editor application?
The key to understanding the application in Listing 10.3 is the call to

AddDocTem-
plate

, along with the default behavior it invokes and the peripheral functions in

CWinApp

 that leverage the template.
The call to

AddDocTemplate

 creates a new

document template

 in

CWinApp

’s
list of templates. The template specifies four things:

• A set of resources for this template, specified by the resource ID of
IDR_STANDARD in this case

• A document class
• A window class
• A view class
The code in Listing 10.3 also uses two different

CWinApp

 functions after it cre-
ates the template:

OnFileNew

,

OpenDocumentFile

. In the message map it calls

OnFileNew

 and

OnFileOpen

.
A document template is a structure held internally in a document template list

in the

CWinApp

 class. The template bonds together a document class, a view class
and a set of resources. As described in detail in Part 3, the view handles the presenta-
tion of data to the user, while the document handles data manipulation. The resource
ID specifies a collection of resources needed by the document and view, generally in-
cluding a menu, its accelerator table, a document string and an icon. It is possible (see
Chapter 16) for a single MDI application to contain multiple document templates,
and this allows the application to display a variety of document types in its MDI shell.
For example, Visual C++ can display text files, resources, browser information and so
on in its MDI shell. You can easily create applications with this sort of behavior be-
cause of the document template facility.

Once the code in Listing 10.3 creates a document template and calls the

Ad-
dDocTemplate

 function, the instance of the

CWinApp

 class is able to do several
things. First, it can load the resources having an ID of IDR_STANDARD and use
them. Therefore, it can apply a menu bar to the window, give the window an icon,
and use the document string in the string table to determine file extensions, title bar
information and so on. It can also create instances of the document and view classes.
It can then bring the window on to the screen. All of this happens completely
automatically.

The code in Listing 10.3 then decides whether the user wants to open an initial
file or not. If not, the

OnFileNew

 option simply clears the document and view. If
there is a file to open, then the

OpenDocumentFile

 function opens the file and calls
the

Serialize

 function (see Chapter 12) in the document template’s document class.
The

Serialize

 function in Listing 10.3 tells the instance of

CEditView

 to load the data
directly from the text file and display it.

The user can then type into the edit view, or choose a menu option. If the user
chooses the

Open

 option in the

File

 menu, the message map in Listing 10.3 picks it

190

This book is continuously updated. See http://www.iftech.com/mfc

10
Th

e
 C

W
in

A
p

p
 c

la
ss

up and calls

CWinApp

’s

OnFileOpen

 function. This function creates a File Open di-
alog (see Chapter 7). Once the user chooses a file, the function calls

OnDocumentOpen

, which was described in the previous paragraph. If the user
chooses the

Exit

 option, the

CWinApp

 class contains an embedded message map that
detects ID_APP_EXIT, checks to see if the current file needs saving, saves it if request-
ed to do so by the user, and then exits. Look in the MFC source code for this message
map and the function it calls to see the default behavior (use the

Find in Files

 option
in the

Search

 menu of Visual C++ to search the files in the MFC source directory for
the ID_APP_EXIT string).

You can see that the document template added with

AddDocTemplate

 simply
supplies the application’s instance of

CWinApp

with some classes. The code in the

CWinApp

 class then implements a number of standard behaviors and uses those class-
es in known ways. For example, when you call

OnFileOpen

, the

CWinApp

 class
already contains the code that implements the open dialog. The code then calls the

Serialize

 function in the document class. That is known behavior. If you fit your code
into that known behavior—a process described in Part 3—then you can leverage the
existing implementation already contained in MFC to significantly reduce the
amount of code that you have to write.

The following functions in the

CWinApp

 class are all relevant when creating
applications:

DoMessageBox Standard message box for application
OnContextHelp Handles context sensitive help (see Chapter 19)
OnFileNew Handles new file menu option (call from message

map)
OnFileOpen Handles open file menu option (call from message

map)
OnFilePrintSetup Creates print setup dialog (call from message

map)
OnHelp Handles context sensitive help (see Chapter 19)
OnHelpIndex Activates help window (see Chapter 19)
OnHelpUsing Activates help on help (see Chapter 19)
OpenDocumentFile Opens a document file by calling its

Serialize

function
SaveAllModified Displays a save dialog
WinHelp Implements

WinHelp

 function
AddToRecentFileList Adds files to MRU file list. Called automatically

by

OnFileOpen

The AppWizard makes use of all of these functions. See the MFC documenta-
tion and Part 3 of this book for further information.

10.5 Initialization Features

The

CWinApp

 class provides several important functions that you call in the

InitInstance

 function to activate different built-in features.

10.5
Initia

liza
tio

n Fe
a

ture
s

This book is continuously updated. See http://www.iftech.com/mfc

191

The simplest of these functions is

Enable3dControls

. If you call this function
in the first line of the

InitInstance

 function in Listing 10.3, then the dialogs produced
will have 3D controls. This is especially useful when running under Windows NT. A
related function is

SetDialogBkColor

, which changes the background color and the
text color on controls in dialogs. It would be better to avoid this function and let the
user choose these colors globally in the Control Panel.

It is also possible to integrate your applications with the File Manager and its As-
sociate capability. You can do this by adding the following two lines of code following
the addition of the document template in

InitInstance

:

RegisterShellFileTypes();
EnableShellOpen();

The first line causes the application to use its document string in the string table
and register its file extension and name with the File Manager. The user can then as-
sociate files with your application using the

Associate

 option in the File Manager’s

File

 menu. The call to

EnableShellOpen

 allows the File Manager to launch the ap-
plication with file names that the user has chosen in the File Manager.

The

CWinApp

 class contains automatic handling of INI files (or direct registry
entries) through the following six functions:

LoadStdProfileSettings Loads the INI file and MRU strings
SetRegistryKey Forces the application to use the registry for INI

information
GetProfileInt Retrieves an integer value from the INI file
WriteProfileInt Sets an integer value in the INI file
GetProfileString Retrieves a string value from the INI file
WriteProfileString Sets an integer value in the INI file
The easiest way to experiment with these functions is to first place a call to

Load-
StdProfileSettings

 near the top of the

InitInstance

 function in Listing 10.3. Pass to
the function the value four, as shown here:

LoadStdProfileSettings(4);

The parameter specifies that the INI file maintain a four item MRU (Most Re-
cently Used) file list. Recompile and run Listing 10.3 after making this change. Use
the

Open

 menu option to open a file, and then close the application. If you look in
the root directory for the NT system files on your machine, you will find that there is
a new file named DOCVIEW.INI which contains the path to the file you opened. To
enable the display of the MRU file list in the

File

 menu of the application, all that you
have to do is add a menu option that has the ID of ID_FILE_MRU_FILE1. Give the
menu item any caption that you like, although “No Files” might be appropriate. If
there are files in the MRU list, then the that Caption will be ignored. Try adding this
menu item to the menu associated with Listing 10.3, and compile and rerun. You will
find that the MRU list in the

File

 menu is now fully functional. By changing the pa-
rameter passed to

LoadStdProfileSettings

, you can include up to 16 files in the MRU
list in the menu.

192

This book is continuously updated. See http://www.iftech.com/mfc

10
Th

e
 C

W
in

A
p

p
 c

la
ss

Note that the

OnFileOpen

 function in the

CWinApp

 class automatically adds
file names to the MRU list, but you can also add files to it with the

AddToRecent-
FileList

 function.
An INI file is normally divided into named sections, and each section contains

named entries. The entries have values associated with them of type integer or string.
You can create any sections and entries that you like in an INI file to store whatever
sort of configuration information is important to your application. Use the

WritePro-
fileInt

 and

WriteProfileString

 functions to create or change entries, and use the

GetProfileInt

 and

GetProfileString

 entries to retrieve values you have previously
stored. Note that at least one other part of MFC besides the MRU portion places val-
ues automatically in the INI file, that being the print preview portion of the hierarchy.
It stores the number of preview pages in the INI file.

On systems that support the registry, you should store your INI entries in the
registry rather than in an INI file. This is facilitated by the

SetRegistryKey

 function.
For a complete description of the registry and other important application features un-
der Windows NT and Win32, see the book

“Win32 System Services: The Heart of
Windows NT”

 by Marshall Brain, ISBN 0-13-097825-6.

10.6 Miscellaneous Features

Other functions available in the

CWinApp

 class that are sometimes useful are
listed below:

GetPrinterDeviceDefaults Returns a printer dialog structure from which you
can extract the printer’s DC. See Chapters 11, 15
and 18 for more information on printing.

InitApplication Use to perform one-time application initialization
InitInstance Use to perform per-instance application initializa-

tion
ExitInstance Use to perform any clean-up or closings to reverse

the actions of the

InitInstance

 function as appli-
cation terminates

PreTranslateMessage Use to catch messages before they are translated
and dispatched by the message loop (see Chapter
5 for an example)

ProcessMessageFilter Use to trap specified messages and process them
outside of the normal MFC message loop

ProcessWndProcException Use to handle unhandled exceptions (see Chapter
13)

See the MFC documentation for details.

10.7 Conclusion

The

CWinApp

 class is central to the operation of any MFC application. In this
chapter you have learned about the basics of its many capabilities. You may find that

10.7
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

193

tracing through many of the

CWinApp

 member functions in the MFC source will
help to give you a much more complete understanding of what this class can do.

195

11DRAWING

Although Windows provides a “graphical user interface,” few applications actually
make use of drawn graphics. There are two reasons for this. First, while the API en-
capsulates text editing and list manipulation in easy-to-use objects, there is no single
object that encapsulates a drawing editor or a “click-able picture.” Second, a tremen-
dous number of functions are available in the graphics library, and getting to know
them all can be a daunting task that many people have chosen to ignore.

Drawing turns out to be fairly straightforward, however. Once you understand
the basics, it is easy to learn all the different capabilities in the graphics library because
everything is related. For example, if you know how to draw a line, it is easy to draw
a rectangle, an ellipse, and a polygon because the concepts are the same. Drawing is
also an extremely important skill to master for an often overlooked reason: Any print-
ing that you plan to do from Windows must be done by drawing onto a printing
device. Learning how to draw is a prelude to learning how to print, a topic covered in
detail in Part 3.

The goal of this chapter is to introduce the GDI library so you can add drawn
graphics to your applications. We will discuss three major topics in this chapter:

1. Simple drawing concepts using lines, rectangles, circles, and so on.
2. Mouse interaction with drawn graphics.
3. Advanced drawing concepts including mapping and printing.

Once you complete this chapter you will see how easy it is to add graphics to
every program you create.

11.1 Introduction to the GDI Library

The GDI library in the Win32 API offers a huge assortment of functions. It acts
as a common and independent interface between applications and all the drawing de-
vices that may be attached to a Windows workstation. For example, whether you are
drawing to a 640 x 480 VGA screen, a 1280 x 1024 CAD monitor, or a 300 x 300

196

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

dpi laser printer, all the drawing commands work exactly the same way. The GDI li-
brary abstracts all these devices into a common application interface.

The GDI library can be broken up into groups of related functions. The list be-
low summarizes the library’s capabilities so you can get an idea of its breadth and
completeness:

• General drawing: lines, rectangles, ellipses, arcs, text
• Drawing tools: pens, brushes, fonts, colors
• Mapping transformations to handle device-independent coordinate systems
• Miscellaneous features: clipping, regions
• Bitmaps: stored rectangular groups of pixels
• Metafiles: stored collections of drawn shapes
The list above is arranged in order of increasing specialization. For example, the

first two groups of functions are the most general and will be used in every drawing
you create. The groups at the bottom are more specialized and are needed less often.

11.2 GDI Basics

If you’ve never worked with computer graphics, there are several general con-
cepts and vocabulary words that you need to know before you start. Several Windows-
specific concepts also require discussion.

Figure 11.1 shows a typical screen displaying several windows and points out
some of the vocabulary used to describe different elements on this screen. The most
obvious thing in Figure 11.1 is that both the screen and its windows have their own
coordinate systems, but they are almost totally unrelated. Each window manages its
own coordinate system. The upper left corner of every window is that window’s ori-
gin. The positive X direction extends to the right of the origin, while the positive Y
direction extends downward unless you modify the mapping mode as described in
Section 11.6.1.

Almost everything you do through the GDI library is done in window coordi-
nates. When you draw, you do so relative to the coordinate system of the current
window. There are only a few special situations where the screen’s coordinate system
is used.

All devices that break up their output into individual dots are called

raster devic-
es

. Almost all devices today are raster devices–screens, dot matrix printers, laser
printers, and so on. The alternative is a

stroked device

 that draws with smooth, contin-
uous strokes. The only stroked device commonly seen anymore is a plotter. The
common unit of measure across all raster devices is the

pixel

. A pixel is an individual
picture element, or dot, on the screen or printer. A screen is measured in pixels–for
example, a typical VGA screen measures 640 x 480 pixels, and a window on the screen
has a width and height expressed in pixels as well.

Pixels are not always a good way to think about drawing, however, because they
are device-dependent. For example, a normal monitor might spread 640 pixels across
ten inches of screen (64 pixels per inch), while most laser printers display 300 or 600
pixels per inch. A large figure drawn in pixel coordinates on screen would therefore

11.2
G

D
I Ba

sic
s

This book is continuously updated. See http://www.iftech.com/mfc

197

appear about one-fifth that size when rendered on a 300 dpi laser printer. Windows
allows you to change to device-independent coordinate systems, such as 1/100 of a
inch or 1/20 of a point. Windows then does the translation from that coordinate sys-
tem to a specific device for you. These

mappings

, as they’re called, are discussed in
Section 11.6.1.

Each window contains a drawing area called the

client area

. This area is distin-
guished from the non-client area: the parts of the window refreshed automatically by
Windows itself. Generally the non-client area consists of the title bar, the re-sizing
bars, and any scroll bars handled by the window. Anything you draw is

clipped

 at the
edge of the client area. If you draw a line 600 pixels long into a window that is 200 x
200 pixels, the portion that should be visible in the window is displayed and the rest
gets clipped off automatically.

All drawing systems require you to understand a concept called

exposure

 and

ex-
posure events

. When a part of a window is exposed, it is the responsibility of the
application to redraw it. For example, if your application’s window has been covered
by another window and that other window closes, part or all of your window is ex-
posed. Your application will receive an event telling it to handle the exposure. The
application receives exposure events when it first appears on the screen, when the user
re-sizes the window, when the user maximizes the window, or when any part of the
window becomes visible to the user because of another window’s movement or disap-
pearance. The system calls the

CWnd::OnPaint

 function automatically through the
message map on each exposure event, as discussed in Section 11.4.1.

Figure 11.1

Elements of a Windows screen

Screen origin (0,0)

Window origin (0,0)

Window origin (0,0)

window width

height
Client area

window

screen width

screen

height

+y

+x

198

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

11.3 Device Contexts

Before you draw on any Windows device, you must obtain what is called a

De-
vice Context

(DC). The DC serves two purposes:

1. It accesses the proper device driver for the device you wish to draw onto. This is
the “Device” portion of DC. For example, the DC that you obtain for a printer
has different capabilities than one you obtain for the screen. If a system has
multiple printers attached, each one may have a different device driver control-
ling it. The DC maps the device-independent GDI library calls to a specific
device. Once you obtain a DC for a device, you have access to a great deal of
information about the device using the

CDC::GetDeviceCaps

 function. In
fact, you can get far more information about a device through this function
than you will normally ever use. Two pieces of information, HORZRES and
VERTRES, are very useful. They contain the horizontal and vertical resolution
of the device in pixels (also translatable to other units). These values tell you
how big a sheet of paper the current printer settings support or the maximum
size of a window on the current screen.

2. A DC keeps track of the current drawing context. This is the “Context” portion
of DC. When you draw a line, for example, the system needs to know the line’s
starting and ending points, as well as how thick to make the line and what color
it should be. In order to draw text, the system needs to know the font, size, and
style, as well as the actual string and where to draw it. The DC stores attributes,
such as line color and width or text font.
One way to design a drawing system is to have the programmer pass all the at-

tributes for each shape on every call to the library. This tends to be wasteful in most
cases because it turns out there is a lot of identical information from call to call. Gen-
erally, a drawing containing 100 lines will use the same color, line width, and mapping
mode for each line. The DC remembers (caches, in a way) all the current settings.
When you need to change something, like the color of the pen, you change it in the
DC and then it applies to all subsequent shapes that you draw with that DC.

The DC contains a number of abstractions and each has default settings when
you create a new DC. The abstractions and their defaults are listed below:

• Pen: Any line (including the lines that frame a rectangle or circle) is drawn
using the current

pen

, which controls the line style, width, and color. The de-
faults are black, one pixel wide solid lines.

• Brush: Any filling, as in the filling of the interior of a rectangle or circle, is
done using the current

brush

. The brush controls the color and pattern used
for the fill. The default is solid white fill.

• Font: Any text is drawn using the current

font

. The font specifies the current
type face, size, style, etc., of the characters used. The default is the system
font.

11.3
D

e
vic

e
 C

o
nte

xts

This book is continuously updated. See http://www.iftech.com/mfc

199

• Mapping mode: The mapping mode controls the units used for drawing, for
example inches, points, or millimeters. The default mode is device-dependent
pixel coordinates.

The device context also keeps track of a number of loose pieces of information
including:

• Current pen position: The default is (0,0).
• Current background color: The default is white.
• Current text color: The default is black.
• Current drawing mode: The default is R2_COPYPEN.
• Current filling mode for polygons: The default is ALTERNATE.
• Current clipping region: The default is the current client area or sheet of paper.
When you want to draw, you request a certain type of DC, depending on your

situation and goals at the moment. For example, if you wish to draw into the current

Figure 11.2

MFC classes dealing with DCs

CObject

CDC

CGdiObject

CPen

CBrush

CFont

CBitmap

CPalette

CRgn

CClientDC

CWindowDC

CPaintDC

CMetaFileDC

200

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

window, you get a Client DC for the window so you can draw in the client area. If you
want to draw into a window in response to an ON_WM_PAINT message from an ex-
posure event, you obtain a Paint DC for the window. If you want to print, you get a
DC for the desired printer (see Section11.6.3). Or you can create a DC that allows you
to draw into a memory bitmap and then copy it to the screen to create animation. Each
of these different techniques will be discussed in the following sections.

One thing you need to know about DCs is that they are limited, especially in
older versions of Windows. There is no guarantee you will get one when you request
it, and you should release them as soon as you have finished using them. The Win32
API alleviates many of the problems associated with DCs, and MFC handles many of
the details for you in this regard.

MFC contains the classes shown in Figure 11.2 for working with DCs and draw-
ing. We will see examples of these classes in the following sections.

11.4 Simple Drawing

In this section we examine the techniques used to draw shapes in a window. You
will learn how to draw lines, rectangles, circles, arcs, polygons, text, and pixels.

11.4.1 The Basics

Let’s say you want to create an extremely simple drawing in Windows. For exam-
ple, imagine that you would like to open a window and draw a diagonal line across it.
There are several basic steps you must follow to create the line, as shown in Listing 11.1.

Listing 11.1
A drawing program that creates a diagonal line across a window

// line1.cpp

#include <afxwin.h>

// Define an application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// define the window class
class CWindow : public CFrameWnd
{
public:

CWindow();
afx_msg void OnPaint();
DECLARE_MESSAGE_MAP()

};

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

201

// The window's constructor
CWindow::CWindow()
{

Create(NULL, "Drawing Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
END_MESSAGE_MAP()

// handle exposure events
void CWindow::OnPaint()
{

CRect rect;
GetClientRect(rect);
CPaintDC dc(this);
dc.MoveTo(0,0);
dc.LineTo(rect.Width(),rect.Height());

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

Listing 11.1 contains the normal instance of CWinApp and CFrameWnd. The
unique code that handles drawing is in the OnPaint function:

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
END_MESSAGE_MAP()

// handle exposure events
void CWindow::OnPaint()
{

CRect rect;
GetClientRect(rect);
CPaintDC dc(this);
dc.MoveTo(0,0);
dc.LineTo(rect.Width(),rect.Height());

}

The system generates WM_PAINT messages whenever a part of the window be-
comes exposed. The event is generated when the window first appears on screen, when
it is re-sized larger, when it restores itself from an icon, or when another window cov-
ering it disappears. The message map calls the OnPaint function in response to these
events because of its ON_WM_PAINT entry. The OnPaint function shown here

202

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

starts by getting the client rectangle: it needs to know where the bottom right corner
of the window is in order to draw a diagonal line. It then creates a Paint DC for the
current window by creating an instance of the

CPaintDC

 class and passing it the cur-
rent window (

this

). Whenever you respond to a WM_PAINT event in the

OnPaint

function, you should use a Paint DC because it contains information about the ex-
posed regions of the drawing surface.

Once the function obtains the DC, it can draw. To draw a line, you move to the
line’s starting point and then draw to its ending point using the

MoveTo

 and

LineTo

functions, respectively.

MoveTo

 moves the pen to a point without drawing anything,
while

LineTo

 draws when it moves. Both functions accept the x and y coordinates of
the position to which they are moving. These two functions are member functions of
the general

CDC

 class, from which the

CPaintDC

 class derives its behavior. You
should look up both classes in the MFC documentation. You will find that the

CDC

class encapsulates everything to do with drawing. It has 100 or so functions represent-
ing all the different drawing capabilities offered by MFC. The four specialized DC
classes (

CPaintDC, CClientDC, CMetaFileDC,

and

 CWindowDC

) inherit their
behavior from the

CDC

class.
When you run the program in Listing 11.1, notice that it refreshes itself in all

appropriate cases. For example, if you re-size the window, it clears automatically and
the

OnPaint

 function redraws the diagonal to the new dimensions. If you minimize
the window and then restore it,

OnPaint

 gets called and redraws the line. Because the
diagonal line is drawn in

OnPaint

, it is always visible.
What if this code didn’t use the

OnPaint

 function? Let’s say we eliminate the
message map and

OnPaint

function entirely and create the window with the follow-
ing function:

// The window's constructor
CWindow::CWindow()
{

Create(NULL, "Drawing Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

CRect rect;
GetClientRect(rect);
CClientDC dc(this);
dc.MoveTo(0,0);
dc.LineTo(rect.Width(),rect.Height());

}

In this new constructor for the window, we create a Client DC and draw the di-
agonal line right after the window is created. If you try out this code, you’ll find it does
nothing: The window opens but it is empty. The problem is that although the window
has technically been created, the constructor has not completed when it draws the line.
As a result, the window is not on the screen yet. The line gets drawn onto a non-exis-
tent window. When the window finally does appear, it is blank. Because there is no

OnPaint

 function to handle exposure, the window remains blank when it is re-sized
or exposed. The use of the

OnPaint

 function and the Paint DC in Listing 11.1 solves

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

203

this problem by waiting until the window actually appears on screen and then re-
sponding to the first exposure event.

You use Client DCs, as opposed to Paint DCs, when there is a window already
sitting on the screen that needs something drawn in it. You use Client DCs to respond
to the application’s needs rather than to an exposure event. We will see an example of
this technique when integrating mouse functionality into drawing programs.

The

dc

 variable declared in the

OnPaint

 function in Listing 11.1 is a sensitive
resource. Inside the MFC hierarchy, this DC is reserved by a call to

BeginPaint

func-
tion in the 32-bit API and it must be released later with a call to

EndPaint

. The

BeginPaint

 call occurs in the

CPaintDC

 constructor and the

EndPaint

 call occurs in
the

CPaintDC

 destructor. Therefore, if you create the DC as a member of the win-
dow class, or as a global variable, it will cause many problems because the

EndPaint

half of the pair will never get called. Always declare a DC variable as a local variable
inside of

OnPaint

 or in another short-lived function.

11.4.2 Lines and Pens

When we drew the diagonal line in the last section, we used the Paint DC with-
out modifying it in any way. It contained all the standard default settings for line
width, color, font, and so on. The default line settings create lines that are one pixel
wide and black. You can modify the defaults for drawing a line by creating a new pen
with appropriate characteristics. The code in listing 11.2 demonstrates how to draw
lines using a different pen. Figure 11.3 shows the output of this code.

Listing 11.2
A set of lines drawn using an alternate pen.

// line2.cpp

#include <afxwin.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// define the window class
class CWindow : public CFrameWnd
{
public:

CWindow();
void OnPaint();
DECLARE_MESSAGE_MAP()

};

// The window's constructor

204

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

CWindow::CWindow()
{

Create(NULL, "Drawing Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
END_MESSAGE_MAP()

// Handle exposure events
void CWindow::OnPaint()
{

CRect rect;
int x;

GetClientRect(rect);
CPaintDC dc(this);

// Modify the pen
CPen pen(PS_SOLID, 2, RGB(0,0,255)), *oldPen;
oldPen = dc.SelectObject(&pen);

// draw a set of lines
for (x=0; x<rect.Width(); x+=10)
{

dc.MoveTo(0,0);
dc.LineTo(x,rect.Height());

}

// Return old pen
dc.SelectObject(oldPen);

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

In the code shown in Listing 11.2, the OnPaint function creates a Paint DC and
then creates a new pen as an instance of the CPen class. The constructor for the CPen
class accepts parameters that determine the new pen’s drawing characteristics, as
shown below (see also CPen::CPen in the MFC documentation):

CPen::CPen(int nPenStyle, int nWidth,
DWORD crColor);

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

205

nPenStyle Possible values: PS_SOLID, PS_DASH, PS_DOT,
PS_DASHDOT, PS_DASHDOTDOT, PS_NULL,
PS_INSIDEFRAME.

nWidth The width of the pen. Only valid for PEN_SOLID. The val-
ue 0 means “one pixel wide regardless of the mapping
mode.”

crColor RGB pen color.
The parameters passed in the example code indicate that a two pixel wide solid

blue pen should be used. The RGB function accepts intensities for the three RGB col-
ors in the range of 0 to 255 and then displays the closest match possible. The pen is
then hooked to the DC with the

SelectObject

 function. All subsequent drawing with
this DC will use this pen until it changes again.

11.4.3 Rectangles and Brushes

If you replace the

OnPaint

 function shown in Listing 11.2 with the version
shown in Listing 11.3, you create a filled rectangle as shown in Figure 11.4.

Listing 11.3
Code that creates a filled rectangle. Replace the OnPaint function in Listing 11.2
with this function.

// rect.cpp

// Handle exposures
void CWindow::OnPaint()
{

CRect rect;

GetClientRect(rect);
CPaintDC dc(this);

// Create a new pen
CPen pen(PS_SOLID, 2, RGB(0,0,255)), *oldPen;
oldPen = dc.SelectObject(&pen);

Figure 11.3
A set of lines drawn using an alternate
pen. The lines are blue and two pixels
wide on a color monitor

206

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

// Create a new brush
CBrush brush(HS_CROSS,RGB(255,0,0)), *oldBrush;
oldBrush = dc.SelectObject(&brush);

// Draw a rectangle with the new pen and brush
rect.InflateRect(-20, -20);
dc.Rectangle(rect);

// Return old pen and brush
dc.SelectObject(oldPen)
dc.SelectObject(oldBrush);

}

This new OnPaint function starts by creating a Paint DC, attaching a new pen
to it, and then creating and attaching a new brush. A brush is used to fill shapes such
as rectangles and ellipses, as shown below:

CBrush::CBrush(DWORD crColor)
CBrush::CBrush(int nIndex, DWORD crColor)
CBrush(CBitmap *pBitmap)

crColor RGB pen color.
nIndex possible values: HS_BDIAGONAL, HS_CROSS,

HS_DIAGCROSS, HS_FDIAGONAL,
HS_HORIZONTAL, HS_VERTICAL.

pBitmap A pointer to a bitmap.
The first form of the constructor creates a solid brush with the color specified.

The second form creates a hatched brush. This is the form used in Listing 11.3. The
third form of the constructor uses a bitmap loaded from a resource file to create the
brush’s pattern (see Chapter 6 for information on resources). Only the upper left 8 x
8 pixels of the bitmap are actually used.

Once you have created the pen and brush and attached them to the DC, you can
draw. Listing 11.3 calls the Rectangle function to draw the rectangle. This function

Figure 11.4
A filled rectangle

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

207

draws the border of the rectangle with the current pen and fills the interior of the rect-
angle with the current brush.

If you look at the

CDC

 class in the MFC documentation, you will find a num-
ber of other functions that deal with rectangles. For example,

FillRect

 accepts a

CRect

parameter and a

CBrush

 parameter and fills the rectangle using the specified brush.
This is a shortcut around attaching the brush to the DC. The

FrameRect

 function
takes the same two parameters and paints just the border of the rectangle with the
specified brush. This function is usually called after a call to

FillRect

 to clean up the
right and bottom edges of the rectangle. The

InvertRect

 function inverts the rectan-
gle’s contents. The

RoundRect

 function creates a rectangle with rounded corners.
You pass

RoundRect

 a

CRect

 parameter that specifies the size of the rectangle and a

CPoint

 parameter that specifies the width and height of an ellipse used to round off
the corners. Finally,

DrawFocusRect

 draws the specified rectangle in the same way
default rectangles are drawn around buttons. This function uses a special drawing
mode. If you draw the same focus rectangle a second time, it is removed. This allows
you to turn the focus rectangle on and off without disturbing the image underneath.

11.4.4 Circles, Ellipses, Arcs, and Chords

You create ellipses and circles just like rectangles. The rectangle passed as a pa-
rameter bounds the ellipse that is drawn. You can replace the call that creates the
rectangle in Listing 11.3 with the following code to demonstrate an ellipse. You will
see the window shown in Figure 11.5.

// ellipse.cpp

dc.Ellipse(rect);

The

CDC

 class also contains functions for drawing arcs, pie wedges, and chords,
as demonstrated in Listing 11.4. If you replace the

OnPaint

 function in Listing 11.2
with Listing 11.4, you will see a window similar to the one shown in Figure 11.6.

Listing 11.4
Code that draws an arc, a pie wedge, and a chord. Replace the OnPaint function
in Listing 11.2 with this function.

Figure 11.5
An ellipse

208

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

// arc.cpp

#include <math.h>

// converts angle a to a point on rect r
CPoint Angle(CRect r, double a)
{

const double pi=3.1415926535;
//convert from degrees to radians
a = a * pi / 180.0;
// find the center of the ellipse
CPoint c = r.TopLeft();
c.Offset(r.Width()/2, r.Height()/2);
// find the point
c.Offset((int)(cos(a)*r.Width()/2),

(int)(-sin(a)*r.Height())/2);
return c;

}

// Handle exposure
void CWindow::OnPaint()
{

CRect rect;

GetClientRect(rect);
CPaintDC dc(this);

// Modify the pen and brush
CPen pen(PS_SOLID, 2, RGB(0,0,255)), *oldpen;
CBrush brush(RGB(255,0,0)), *oldBrush;
oldpen = dc.SelectObject(&pen);
oldBrush = dc.SelectObject(&brush);
rect.InflateRect(-20, -20);

// Drawn an arc, pie-wedge, and chord
dc.Arc(rect, Angle(rect, 0.0),

Angle(rect, 90.0));
dc.Pie(rect, Angle(rect, 90.0),

Angle(rect, 180.0));
dc.Chord(rect, Angle(rect, 180.0),

Angle(rect, 270.0));

dc.SelectObject(oldPen);
dc.SelectObject(oldBrush);

}

The Arc function is typical of all three and is summarized below:
BOOL CDC::Arc(CRect lpRect, CPoint ptStart,

CPoint ptEnd)

lpRect The rectangle describing the ellipse
ptStart The starting point of the arc
ptEnd The ending point of the arc

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

209

There is also a second form of the

Arc

 function that accepts eight integer values
instead of the three classes (see the MFC documentation for details).

All three functions require the starting and ending point of the arc being drawn.
What you would like to pass is a pair of angles–say 10 degrees and 90 degrees–and
draw the arc between those angles. Unfortunately, Windows specifies that the starting
and ending points be passed as points on the ellipse. The function

Angle

 that appears
in Listing 11.4 helps to solve this problem. It accepts the rectangle specifying the com-
plete ellipse, as well as an angle, and calculates the corresponding point on the curve.
To use

 Angle

 in a program, you must include <math.h>.
The

Pie

 and

Chord

 functions accept the same parameters and draw a filled
wedge and a filled chord as shown in the figure.

11.4.5 Polygons

Windows supports the creation of closed, filled polygons that are specified using
arrays of points. The code in Listing 11.5 demonstrates the creation of the polygon
shown in Figure 11.7. Substitute this code for the

OnPaint

 function in Listing 11.2.

Listing 11.5
The creation of a polygon. Replace the OnPaint function in Listing 11.2 with this
function.

//polygon1.cpp

// Handle exposures
void CWindow::OnPaint()
{

CPaintDC dc(this);

// Change the pen and brush
CPen pen(PS_SOLID, 2, RGB(0,0,255)), *oldPen;
CBrush brush(RGB(255,0,0)), *oldBrush;
oldPen = dc.SelectObject(&pen);

Figure 11.6
A window displaying an arc, a pie wedge,
and a chord

210

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

oldBrush = dc.SelectObject(&brush);

// Create an array of points for the polygon
CPoint a[10];
a[0] = CPoint(20,50);
a[1] = CPoint(100,20);
a[2] = CPoint(200,150);
a[3] = CPoint(80,200);
dc.Polygon(a, 4);

// Return old pen and brush
dc.SelectObject(oldPen);
dc.SelectObject(oldBrush);

}

The code in Listing 11.5 creates an array of CPoint structures and fills it with
four points. The Polygon function draws from point to point in the order specified
and then closes the figure if the first and last points are not equal.

If the lines that make up the polygon happen to cross, then the function uses the
value set by the SetPolyFillMode function to determine how it should fill the poly-
gon. For example, the code shown in Listing 11.6 produced Figure 11.8 using the
ALTERNATE filling mode. If you modify the code to use the WINDING mode, you
get the polygon shown in Figure 11.9. The default mode is ALTERNATE.

Listing 11.6
A polygon with crossing lines.

// polygon2.cpp

// Handle exposure
void CWindow::OnPaint()
{

Figure 11.7
A polygon

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

211

CPaintDC dc(this);

// Change the pen and the brush
CPen pen(PS_SOLID, 2, RGB(0,0,255)), *oldPen;
CBrush brush(RGB(255,0,0)), *oldBrush;
oldPen = dc.SelectObject(&pen);
oldBrush = dc.SelectObject(&brush);

// Create the polygon
CPoint a[10];
a[0] = CPoint(20,50);
a[1] = CPoint(100,20);
a[2] = CPoint(100,150);
a[3] = CPoint(10,10);
a[4] = CPoint(200,75);
dc.SetPolyFillMode(ALTERNATE);
dc.Polygon(a, 5);

// Return old pen and brush
dc.SelectObject(oldPen);
dc.SelectObject(oldBrush);

}

Windows also has a function named Polyline that accepts the same parameters
as Polygon. The Polyline function draws line segments from point to point as spec-
ified in the array parameter. It does not close the last line back to the starting point as
Polygon does.

Windows also supports a PolyPolygon function that draws groups of polygons
simultaneously. It accepts an array of points, followed by an array of integers and an
integer. The array of integers contains the number of points in each of the polygons
specified in the array of points. For example, if a point array contains 4 points for the
first polygon, 6 for the second and 3 for the third, the array of points would contain
13 points. The array of integers would contain 3 integers (4, 6 and 3) to specify the

Figure 11.8
The ALTERNATE filling mode

Figure 11.9
The WINDING filling mode

212

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

number of points in each polygon. The last integer parameter would contain 3 to spec-
ify the number of integers in the integer array.

11.4.6 Text and Fonts

One thing that Windows does well is fonts. The TrueType font model allows
the system to create fonts of any size and orientation. These fonts look the same on
any device. You use fonts in your drawings the same way you use a pen or a brush–
you create the font and then select it for the current DC. Once selected, the new font
is applied to all subsequent text output.

The code in Listing 11.7 demonstrates two different ways to create text in a win-
dow and also shows how to modify the font as well as several other text attributes. You
can replace the

OnPaint

 function in Listing 11.2 with this code. The output appears
in Figure 11.10.

Listing 11.7
Demonstrations of several text output functions. Replace the OnPaint function in
Listing 11.2 with this function.

// text.cpp

char *s="This is a sample string that contains about 50 characters";

// Handle exposures
void CWindow::OnPaint()
{

CPaintDC dc(this);

// demonstrate DrawText
dc.DrawText(s, -1, CRect(10,10,100,100),

DT_CENTER | DT_EXPANDTABS | DT_WORDBREAK);
CRect r(10,10,100,0);
dc.DrawText(s, -1, r,

DT_CALCRECT | DT_EXPANDTABS | DT_WORDBREAK);

// demonstrate ExtTextOut
dc.SetTextAlign(TA_LEFT | TA_TOP);
dc.ExtTextOut(10,110,0,

NULL,s,strlen(s),NULL);

// demonstrate fonts and colors
CFont *font = new CFont;
CFont *oldFont;
font->CreateFont (36,0,0,0,700,0,0,0,

ANSI_CHARSET,OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS,
DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE,

"Arial");
oldFont = dc.SelectObject(font);
dc.SetTextColor(RGB(0,0,255));
dc.ExtTextOut(10,150,0,

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

213

NULL,s,strlen(s),NULL);

// demonstrate text extents
CSize size = dc.GetTextExtent(s, strlen(s));

// return old font
dc.SelectObject(oldFont);
delete font;

}

The first function demonstrated is DrawText, used in two separate modes. In
the first mode it formats text into a rectangle for display. In the second, it calculates
the height of the minimal bounding rectangle for the same text:

dc.DrawText(s, -1, CRect(10,10,100,100),
DT_CENTER | DT_EXPANDTABS | DT_WORDBREAK);

CRect r(10,10,100,0);
dc.DrawText(s, -1, r,

DT_CALCRECT | DT_CENTER |
DT_EXPANDTABS | DT_WORDBREAK);

The DrawText function accepts four parameters as shown below:
int CDC::DrawText(const char FAR* lpString,

int nCount, LPRECT lpRect, UINT nFormat)

lpString The string to draw
lpCount The number of characters in the string, or -1 if null termi-

nated
lpRect The bounding rectangle
nFormat Possible values: DT_BOTTOM, DT_CALCRECT,

DT_CENTER, DT_EXPANDTABS,

Figure 11.10
Different text output capabilities. The large text is drawn in blue when rendered on
a color monitor

214

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

DT_EXTERNALLEADING, DT_LEFT, DT_NOCLIP,
DT_NOPREFIX, DT_RIGHT, DT_SINGLELINE,
DT_TABSTOP, DT_TOP, DT_VCENTER,
DT_WORDBREAK

You may notice a great deal of similarity between this function and the text for-
matting capabilities of the

CStatic

 class discussed in Chapter 3. In the first call to

DrawText

 we pass in the string

s

, -1 (because it is null terminated), the bounding rect-
angle of the formatted text, and three formatting constants. The three constants
specify that the text should be horizontally centered, that tabs should be expanded,
and that the function should break the text at word boundaries. If the word wrap con-
stant is not specified, the entire string will remain as a single line and that line will be
centered in the rectangle, clipping off most of it. See the MFC documentation for
more information. In Figure 11.10, the uppermost piece of text is the output of this
function.

The second call to

DrawText

 is similar but includes the DT_CALCRECT con-
stant. This constant causes

DrawText

 to calculate either the length of the text if it is
a single line or the height of the text if it is multi-line (because of word wrapping or
embedded carriage returns). The width or height of

r

 is modified by the function
when it returns. If you run the above code and output the value of

r.Height()

 in a
message box, you will see it is set to a value near 80.

The second part of Listing 11.7 demonstrates the use of the

ExtTextOut

function:

dc.SetTextAlign(TA_LEFT | TA_TOP);
dc.ExtTextOut(10,110,0,

NULL,s,strlen(s),NULL);

The

ExtTextOut

 function has many of the same capabilities as

DrawText

. In
general it should be used for single-line output, and we will use it in this mode in
Chapter 18 to demonstrate how to print out pages of text from a program:

BOOL CDC::ExtTextOut(int x, inty, UINT nOptions,
LPRECT lpRect, const char FAR* lpString,
UINT nCount, LPINT lpDxWidths)

x, y Starting position
nOptions Possible values: ETO_CLIPPED, ETO_OPAQUE
lpRect Dimensions of the rectangle
lpString The string
lpCount Length of the string
lpDxWidth Separating distances on a per-character basis
In the example code we left the rectangle and separating distances NULL, so the

string is drawn as a single line at the location specified.
 The behavior of

ExtTextOut

 can be modified with the

SetTextAlign

 function
as shown here:

UINT CDC::SetTextAlign(UINT nFlags)

nFlags Possible values: One of TA_CENTER, TA_LEFT, and
TA_RIGHT, plus one of TA_BASELINE, TA_BOTTOM,

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

215

and TA_TOP, plus one of TA_UPDATECP and
TA_NOUPDATECP.

The constants specify how the code will align the text. For example, TA_LEFT
and TA_TOP indicate that the point passed in should be used as the top left corner
of the bounding rectangle for this text. TA_UPDATECP indicates that the current
position in the DC should be updated after the call.

The next piece of code in the example demonstrates the use of different fonts
and colors:

CFont *font = new CFont;
 font->CreateFont (36,0,0,0,700,0,0,0,
 ANSI_CHARSET,OUT_DEFAULT_PRECIS,
 CLIP_DEFAULT_PRECIS,
 DEFAULT_QUALITY,
 DEFAULT_PITCH|FF_DONTCARE,
 "Arial");

dc.SelectObject(font);
delete font;
dc.SetTextColor(RGB(0,0,255));
dc.ExtTextOut(10,150,0,

NULL,s,strlen(s),NULL);

The first two lines of code in this block were first presented in Chapter 3 to
change the font of a

CStatic

 label. Here, we create a font and select it into the DC
using the same technique we’ve seen for selecting brushes and pens. The code sets the
text color to blue and draws the text with the new font and color.

The

CFont

 class allows a huge range of flexibility when creating a font, and you
should try experimenting with this class to gain familiarity with it. The parameters are
described briefly below:

BOOL CreateFont(int nHeight, int nWidth,
int nEscapement, int nOrientation,
int nWeight, BYTE bItalic,
BYTE bUnderline, BYTE cStrikeOut, BYTE nCharSet,

 BYTE nOutPrecision, BYTE nClipPrecision,
BYTE nQuality, BYTE nPitchAndFamily,
LPCSTR lpFacename);

nHeight, nWidth Desired height and width of the new font
nEscapement Rotation angle in 10ths of a degree
nOrientation Baseline rotation angle in 10ths of a degree
nWeight Between 0 and 1000. 400=normal, 700=bold
bItalic, bUnderline Set true if this style is desired
cStrikeOut The strikeout font to use or 0
nCharSet Possible values: ANSI_CHARSET, OEM_CHARSET,

SYMBOL_CHARSET
nOutPrecision Desired output precision. Possible values:

OUT_CHARACTER_PRECIS,
OUT_DEFAULT_PRECIS, OUT_STRING_PRECIS,
OUT_STROKE_PRECIS

216

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

nClipPrecision Clipping precision. Possible values:
CLIP_CHARACTER_PRECIS,
CLIP_DEFAULT_PRECIS, OUT_STROKE_PRECIS

nQuality Output quality. Possible values: DEFAULT_QUALITY,
DRAFT_QUALITY, PROOF_QUALITY

nPitchAndFamily If the exact typeface specified in lpFacename is not available,
this parameter guides the choice of font. Possible values:
One of DEFAULT_PITCH, FIXED_PITCH, AND
VARIABLE_PITCH or-ed with one of
FF_DECORATIVE, FF_DONTCARE, FF_MODERN,
FF_ROMAN, FF_SCRIPT, FF_SWISS

lpFacename The name of a typeface. Windows ships with five True Type
fonts: “Arial,” “Courier New,” “Symbol,” “Times New Ro-
man,” and “Wingdings,” so these are safe bets.

The last line of code in Listing 11.9 calculates the size of a string:

CSize size = dc.GetTextExtent(s, strlen(s));

The

GetTextExtent

 function takes the string passed and the DC’s current font
and calculates the size of a rectangle necessary to hold that text as a single line.

We can use these different text functions to create a very nice digital clock. What
we would like to have is a clock that updates its font size to match the size of the win-
dow each time the user re-sizes the application. To do this, we use an

OnSize

 function
that spins through font sizes trying to find the best fit each time the user re-sizes the
window. Then, the

OnPaint

 function paints the clock’s face at that size. The imple-
mentation is shown in Listing 11.8. Figure 11.11 shows sample output for the clock.

Listing 11.8
A clock program demonstrating scaled fonts and text drawing.

// clock.cpp

#include <afxwin.h>
#include <time.h>

const int IDT_TIMER = 200;
const int refreshRate = 1000; // milliseconds

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

217

CFont *font;
CRect client;

public:
CWindow();
~CWindow();
afx_msg void OnSize(UINT, int, int);
afx_msg void OnPaint();
afx_msg void OnTimer(UINT);
void DrawFace(CDC& dc);
DECLARE_MESSAGE_MAP()

};

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_SIZE()
ON_WM_TIMER()
ON_WM_PAINT()

END_MESSAGE_MAP()

// create a font of size x points high
void MakeFont(CFont *font, int x)
{

font->DeleteObject();
font->CreateFont (x,0,0,0,700,0,0,0,

ANSI_CHARSET,OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS,
DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE,
"Arial");

}

// Handle resize events
void CWindow::OnSize(UINT nType, int cx, int cy)
{

CRect r;
int x=2;
CClientDC dc(this);
CFont *oldFont;

// Get the client rectangle for the window
GetClientRect(&client);
do
{

x += 10;
// Try creating a font at size x
MakeFont(font, x);
oldFont = dc.SelectObject(font);
r = client;
// Calc the size of the string with that font
dc.DrawText("12:00:00", -1, r,

DT_CALCRECT | DT_SINGLELINE |
DT_CENTER | DT_VCENTER);

dc.SelectObject(oldFont);
} while (client == (r | client));
// halt when the string overflows the rect
MakeFont(font, x-10);

218

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

}

// Redraw the clock face
void CWindow::DrawFace(CDC& dc)
{

char s[100];
CFont *oldFont;

oldFont = dc.SelectObject(font);
_strtime(s);
GetClientRect(&client);
dc.DrawText(s, -1, client,

DT_SINGLELINE | DT_CENTER | DT_VCENTER);
dc.SelectObject(oldFont);

}

// Handle timer events
void CWindow::OnTimer(UINT id)
{

CClientDC dc(this);
DrawFace(dc);

}

// Handle exposure events
void CWindow::OnPaint()
{

CPaintDC dc(this);
DrawFace(dc);

}

// init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The window's constructor
CWindow::CWindow()
{

Create(NULL,
"Clock",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

SetTimer(IDT_TIMER, refreshRate, NULL);
font = new CFont;

}

CWindow::~CWindow()
{

delete font;
}

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

219

The code in Listing 11.8 uses a timer to generate an event that refreshes the face
of the clock periodically. The face is updated every second, as determined by the

re-
freshRate

 constant. The program also uses an

OnSize

 function and the
ON_WM_SIZE message map entry to recognize re-size events so it can adjust the size
of the font to match the available window area. The font fills as much of the window
as possible without overflowing horizontally or vertically.

There are several different ways to handle the font re-sizing problem, but the ap-
proach chosen here iterates through different font sizes until it finds the largest font.
This font is then stored in a data member named

font

 so that any exposure event or
timer event can use the correct font to display the time without recalculating it. The

OnSize

 function contains the logic to find the correct font size:

void CWindow::OnSize(UINT nType, int cx, int cy)
{

CRect r;
int x=2;
CClientDC dc(this);
GetClientRect(&client);
do
{

x += 10;
MakeFont(font, x);
dc.SelectObject(font);
r = client;
dc.DrawText("12:00:00", -1, r,

DT_CALCRECT | DT_SINGLELINE |
DT_CENTER | DT_VCENTER);

} while (client == (r | client));
MakeFont(font, x-10);

}

This function starts by creating an instance of the

CClientDC

 class. In the past,
we always used the

CPaintDC

 class and drew only in the

OnPaint

 function following
an exposure event. In Listing 11.8, however, we need to be able to draw into an exist-
ing window whenever the timer goes off or when a re-size event arrives. The
appropriate DC for these situations is a Client DC, which allows drawing in the client
area of the window at any time.

After obtaining the Client DC, the

OnSize

 function obtains the window’s client
rectangle and enters a loop. The font size increases by ten (make it smaller or larger if
you like) each time through the loop. The newly generated font is attached to the DC,
and then

DrawText

 (in its DT_CALCRECT mode) determines the bounding rectan-
gle of the string “12:00:00” using that font. If you want to watch this happen, add an

Figure 11.11

The clock program

220

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

identical call to

DrawText

, excluding the DT_CALCRECT option, at the bottom of
the loop. You will see the code try each of the font sizes until the last one gets too big.

The loop needs to decide when the string’s bounding rectangle is bigger than the
client rectangle. You could accomplish this by comparing the widths and heights of
the two rectangles. Instead, the code shown here uses overloaded operators of the

CRect

 class (see Chapter 12) to take the union of the font rectangle and the client rect-
angle. The union returns a rectangle big enough to hold both. If the font fits within
the client rectangle, then the union will produce the client rectangle. Otherwise, it will
produce something bigger. As soon as it produces something bigger, the loop quits
and the code stores the properly sized font.

Notice that the

OnSize

 function does not actually draw the string in the win-
dow. All it does is choose the correct font and store it. It can do this because an
exposure event immediately follows any re-sizing event, so the

OnPaint

 function au-
tomatically handles the redraw right after the

OnSize

 function returns.
This is not necessarily the most efficient way to determine the optimal font size,

but it works and is extremely accurate. It is a good way to demonstrate the use of Cli-
ent DCs and scalable fonts.

11.4.7 Pixels

The CDC class contains several functions that allow you to manipulate pixels in
the window directly. For example, the

SetPixel

 function sets an individual pixel to a
specific color. We will use this function extensively in Section 11.5.4 to create a simple
drawing editor. The

BitBlt

 function lets you copy groups of pixels from one location
to another. You can use this function to create smooth animation as discussed in Sec-
tion 11.6.3.

The

ExtFloodFill

 function also manipulates individual bits based on the current
state of the drawing surface. In previous sections you saw how to create filled rectan-
gles, ellipses, and polygons. The

ExtFloodFill

 function allows you to fill any arbitrary
area. The code in Listing 11.9 demonstrates the use of this function, and Figure 11.12
shows typical output. Replace the

OnPaint

 function in Listing 11.2 with the code in
Listing 11.9.

Listing 11.9
The flood fill function. Replace the OnPaint function in Listing 11.2 with this function.

// flood.cpp

// Handle exposure
void CWindow::OnPaint()
{

CPaintDC dc(this);
int x;
for (x=0; x<20; x++)
{

dc.MoveTo(rand()%200, rand()%200);
dc.LineTo(rand()%200, rand()%200);

11.4
Sim

p
le

 D
ra

w
ing

This book is continuously updated. See http://www.iftech.com/mfc

221

}
CBrush brush(RGB(0,0,255)), *oldBrush;
oldBrush = dc.SelectObject(&brush);
dc.ExtFloodFill(100,100,RGB(0,0,0),

FLOODFILLBORDER);
dc.SelectObject(oldBrush);

}

Listing 11.9 simply draws 20 random lines and then flood fills starting at the ar-
bitrary point 100,100. A flood fill either paints pixel-by-pixel in all directions until it
hits a certain border color, or it paints in all directions as long as the pixels it finds are
a certain color, changing them as it goes. In this particular example, ExtFloodFill is set
up to flood fill in all directions until it hits a border with the color RGB(0,0,0), which
is black. It fills with the current brush. If there is even one non-black pixel anywhere in
the black border, the flooding will leak out and cover the entire frame if possible.

The other flooding mode is FLOODFILLSURFACE. In this mode, the func-
tion fills any pixel contiguous to the starting point and having the same color as the
third parameter. In the case shown in Figure 11.12, if you set the starting point onto
one of the lines and use FLOODFILLSURFACE with the color black, you can change
the color of all the lines simultaneously because they all touch.

The problem with flood filling is that it is extremely slow in comparison to
something like a rectangular fill. The computer has to examine every single pixel in-
dividually and this takes a great deal of time.

11.4.8 Other Useful Functions

There are many other simple, interesting functions built into the CDC class.
You can learn a great deal about them by browsing through the MFC documentation.
Several of these functions are discussed in this section because of their general utility.

In all the example code shown so far, the background color has been white. If
you need a different background color, change it using the SetBkColor function. This

Figure 11.12
The flood fill function at work

222

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

function accepts an RGB triplet for the new color. Similarly, you can handle erasing
by obtaining the current background color with

GetBkColor

 and using it in a filled
rectangle or other shape. Painting an area with the background color is the same as
erasing it.

In Chapter 10, you saw how to load an icon and display it in a

CStatic

 label. If
you want to paint an icon into the drawing area, you can load it the same way and
then use the

DrawIcon

 function.
If you want to change the spacing between characters, the

SetTextCharacterEx-
tra

 function allows you to place extra pixels between characters as they are drawn.
The

SetBrushOrigin

 function lets you change the starting offset of the brush
pattern. When using a patterned brush, an 8 x 8 bit array of pixels is repeated across
the filled area. This array is aligned with the origin of the window by default, but you
can move it as necessary.

The functions in the

CDC

 class have several consistent features. Almost all the

Set

 functions we have used in this chapter have a corresponding

Get

 function that can
be used to determine the current state of the variable. You can save this information
before changing a value so you can later return it to its original state.

11.5 Using the Mouse with Your Drawings

In the last section, you learned how to draw and fill all the different shapes avail-
able in the GDI library. Using these functions you can create a wide variety of graphs,
charts, figures, and maps.

There are many cases, however, where static figures are not enough. These are
the cases where you want the user to interact with your figures. For example, you
might want to display a bar chart and then let the user change the height of different
bars. Or you might want to paint a picture of a network configuration and let the user
click on different nodes to get more information. In a dental application you might
want to display a tooth chart and let the user click on a specific tooth to enter details
about a surgical procedure. In a game, the program may need to track mouse motion
as the user tries to negotiate a maze.

In all these cases you need the ability to obtain mouse information and then re-
late it to the drawing. In the following sections, we will look at the techniques used to
relate mouse information to your drawings.

11.5.1 Using Normal Controls with Drawings

One very easy way to add user interaction to a drawing is to overlay it with stan-
dard controls. For example, if you place buttons on top of a drawing, the buttons will
float on top of the drawn elements and act just like the buttons discussed in Chapter
4. The code shown in Listing 11.10 demonstrates the use of buttons with a drawing,
and Figure 11.13 shows the output of the program.

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

223

Listing 11.10
A simple drawing combined with normal buttons.

// btndraw.cpp

#include <afxwin.h>

// Define an application object
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

CButton *b1, *b2, *b3;
public:

CWindow();
virtual ~CWindow();
afx_msg void OnPaint();
DECLARE_MESSAGE_MAP()

};

// The window constructor
CWindow::CWindow()
{

Create(NULL, "Drawing Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

// Create three buttons
b1 = new CButton;
b1->Create("One", WS_CHILD | WS_VISIBLE,

CRect(30,30,70,70), this, 100);
b2 = new CButton;
b2->Create("Two", WS_CHILD | WS_VISIBLE,

CRect(130,30,170,70), this, 101);
b3 = new CButton;
b3->Create("Three", WS_CHILD | WS_VISIBLE,

CRect(70,120,130,160), this, 102);
}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
END_MESSAGE_MAP()

// Handle exposure events
void CWindow::OnPaint()
{

CRect rect;

224

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

GetClientRect(rect);
CPaintDC dc(this);
// draw lines between the three buttons
dc.MoveTo(50,50);
dc.LineTo(150,50);
dc.LineTo(100,140);
dc.LineTo(50,50);

}

// The window's destructor
CWindow::~CWindow()
{

delete b1;
delete b2;
delete b3;

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

You can see in Listing 11.10 that the code is very similar to the examples in
Chapter 4. The window’s constructor creates the three buttons, the OnPaint function
lays down the drawn elements–in this case three lines–on any exposure event, and the
buttons refresh themselves automatically on any exposure.

The advantage of this approach is its simplicity: The buttons handle the clicks
and route the events to you through the message map as usual. The disadvantage is
that by using buttons, you lose control of the drawing. For example, the buttons can-
not be scaled, and they may not fit in with the aesthetics of the figure you have created.

Figure 11.13
A simple drawing combined with normal
buttons

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

225

11.5.2 Getting Mouse Clicks and Double-Clicks

The

CWnd

 class contains 11 functions that you can use to retrieve mouse event
information through a normal message map. These functions are listed in the follow-
ing list.

OnLButtonDblClk

Called when the user double-clicks the left mouse
button

OnLButtonDown

Called when the user clicks the left button down

OnLButtonUp

Called when the user releases the left button.

OnMButtonDblClk

Called when the user double-clicks the middle
mouse button

OnMButtonDown

Called when the user clicks the middle button
down.

OnLButtonUp

Called when the user releases the middle button

OnMouseActivate

Called when the cursor is in an inactive window
and the user clicks a mouse button.

OnMouseMove

Called whenever the mouse moves

OnRButtonDblClk

Called when the user double-clicks the right mouse
button

OnRButtonDown

Called when the user presses the right button down

OnRButtonUp

Called when the user releases the right button.
The most common use of the mouse is to detect single- and double-clicks within

different elements of a drawing. For example, you might display a picture of a network
using small rectangles (or icons loaded from a resource file and drawn with

Draw-
Icon

) to represent the nodes in the network. When the user clicks on a node, the ap-
plication can pop up a dialog box containing information about the node. The code
in Listing 11.11 demonstrates how to achieve this functionality by recognizing single
and double-clicks within a rectangle.

Listing 11.11
Detecting mouse clicks within a specific rectangle.

// getclcks.cpp

#include <afxwin.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// define the window class
class CWindow : public CFrameWnd
{

226

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

BOOL clicked;
BOOL dblClicked;
CRect rect;

public:
CWindow();
virtual ~CWindow();
afx_msg void OnPaint();
afx_msg void OnLButtonUp(UINT, CPoint);
afx_msg void OnLButtonDblClk(UINT, CPoint);
DECLARE_MESSAGE_MAP()

};

// The window's constructor
CWindow::CWindow(): rect(10,10,100,100)
{

clicked=FALSE;
dblClicked=FALSE;
Create(NULL, "Drawing Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
ON_WM_LBUTTONUP()
ON_WM_LBUTTONDBLCLK()

END_MESSAGE_MAP()

// Handle single clicks
void CWindow::OnLButtonUp(UINT flag, CPoint pos)
{

if (rect.PtInRect(pos))
{

clicked=!clicked;
Invalidate(TRUE);

}
}

// Handle double clicks
void CWindow::OnLButtonDblClk(UINT flag,

CPoint pos)
{

if (rect.PtInRect(pos))
{

dblClicked=!dblClicked;
Invalidate(TRUE);

}
}

// Handle exposure
void CWindow::OnPaint()
{

CPaintDC dc(this);
if (clicked)
{

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

227

CPen pen(PS_SOLID, 2, RGB(0,0,255)), *oldPen;
oldPen = dc.SelectObject(&pen);

}
if (dblClicked)
{

CBrush brush(RGB(255,0,0)), *oldBrush;
oldBrush = dc.SelectObject(&brush);

}
dc.Rectangle(rect);
if (clicked)

dc.SelectObject(oldPen);
if (dblClicked)

dc.SelectObject(oldBrush);
}

// The window's destructor
CWindow::~CWindow()
{
}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

When you execute this code it displays a rectangle with a black border and a
white interior. If you click outside the rectangle nothing happens. If you single-click
within the rectangle, its border turns blue. If you double-click inside it, a brush paints
the rectangle’s interior red. Clicking or double-clicking once more will toggle two
Boolean variables so that the border and interior alternately clear and re-highlight
themselves.

The OnPaint function here is elementary. It simply paints the rectangle, exam-
ining the clicked and dblClicked members to decide whether to highlight the border
and interior. The clicked and dblClicked members are set by the OnLButtonUp and
OnLButtonDblClk functions. The latter is shown here:

void CWindow::OnLButtonDblClk(UINT flag,
CPoint pos)

{
if (rect.PtInRect(pos))
{

dblClicked=!dblClicked;
Invalidate(TRUE);

}
}

This function receives a flag that indicates if the Shift or Control keys were down
at the time of the click (see CWnd::OnLButtonDblClk in the MFC documenta-
tion), as well as the position of the mouse. The mouse position is used with the CRect

228

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

member function

PtInRect

 to decide if the click occurred within the rectangle. If it
did occur there, the click is accepted and it toggles the

dblClicked

 member. In a more
advanced program, the code would then act on the click as appropriate. For example,
if you want to pop up a dialog in response to the click then this would be the place to
do it.

In this particular piece of code, any click or double-click should redraw the rect-
angle. The code here simply invalidates the current window using

CWnd::Invalidate

.
This causes Windows to generate an exposure event that is routed to the existing

On-
Paint

 function, and the rectangle is redrawn automatically.
If you have many rectangles on screen and wish to detect clicks within all of

them, you will need to create a data structure that holds each rectangle’s coordinates.
The code can then iterate through the list, checking

PtInRect

 for each rectangle. See
Chapter 12 for information on storing objects in lists.

When you allow the user to click on something, it is often useful to give the user
visual feedback with some sort of highlighting. Normal Windows buttons highlight
when the user clicks the mouse button down, and then un-highlight when the user
releases the mouse button. In addition, normal buttons employ a safety feature: If the
user moves the mouse outside of the button before releasing, the button is not activat-
ed. To create this visual effect in a rectangle, you can detect the

OnLButtonDown

event to determine that the mouse button is down. Redraw the rectangle chosen in its
highlighted form. If the rectangle contains an icon, you can paint a second highlighted
version of the icon. If the rectangle is empty or contains text, you can invert it with

InvertRect

. Then, inside the

OnLButtonUp

 handler, un-highlight the rectangle or
icon by painting it again. Only if the cursor is still inside the specified rectangle on
release should you perform the action.

11.5.3 Simple Drawing Using the Mouse

To handle more complicated user interactions or to create any kind of drawing
program, you have to be able to track the motion of the mouse and respond to it. The
code in Listing 11.12 demonstrates an extremely simple drawing program that tracks
mouse motion using the

OnMouseMove

 function. Figure 11.14 shows typical output
from this program.

Listing 11.12
Code for a very simple drawing program that draws pixels.

// draw1.cpp

#include <afxwin.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

229

CApp App;

// define the window class
class CWindow : public CFrameWnd
{
public:

CWindow();
afx_msg void OnMouseMove(UINT,CPoint);
DECLARE_MESSAGE_MAP()

};

// The window's constructor
CWindow::CWindow()
{

Create(NULL, "Drawing Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

}

// The messahe map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_MOUSEMOVE()
END_MESSAGE_MAP()

// Handle mouse movement
void CWindow::OnMouseMove(UINT flag,

CPoint mousePos)
{

// If the left button is down set the pixel
if (flag == MK_LBUTTON)
{

CClientDC dc(this);
dc.SetPixel(mousePos,RGB(0,0,255));

}
}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

The code in Listing 11.12 sets up its application and window objects in the stan-
dard way. It then wires the ON_WM_MOUSEMOVE entry into the message map
so the OnMouseMove function is called each time the mouse moves within the
window:

void CWindow::OnMouseMove(UINT flag,
CPoint mousePos)

{
// If the left button is down set the pixel

230

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

if (flag == MK_LBUTTON)
{

CClientDC dc(this);
dc.SetPixel(mousePos,RGB(0,0,255));

}
}

This function checks to see if the left button is down using the flags parameter
(see the

CWnd::OnMouseMove

 function in the MFC documentation). If the left
button is not down, the function does nothing. If it is down, the function creates a
Client DC so it can draw in the client area and paints the pixel at the current mouse
position using

SetPixel

 (paint rectangles instead of pixels to create a more dramatic
drawing). This is another case where the use of a Client DC is appropriate. The given
pixel is drawn in response to a user event rather than an exposure event.

It is easy to add improvements to this simple program. Most drawing programs
change the cursor when the user is drawing, and we can modify this code so it changes
the cursor to a cross hairs cursor. Cursors are pre-defined resources that you must load
before they are used, so the first step is to declare a data member in the window class
and use it to hold the loaded cursor. For example, you might add the following data
member to the

CWindow

 class to hold the cross hairs cursor:

HCURSOR cross;

Then, inside the constructor for the window, you can call the

LoadCursor

 func-
tion (see Chapter 10) to load in the new cursor shape:

cross = AfxGetApp()->LoadStandardCursor(IDC_CROSS);

To change the cursor shape in your code, you call the

CWnd::SetCursor

 func-
tion. For example, you might change the cursor shape right before you set the pixel
inside of

OnMouseMove

. That sounds simple enough, but it doesn’t work. If you try
it in the above code, for example, every time you set the cursor to cross hairs, Windows
changes it right back to an arrow–the user sees a very annoying flicker on the screen.

This struggle occurs because your window, as currently constructed, has a “de-
fault cursor.” Every time the cursor moves in the client area, the window modifies the
cursor to that default automatically. Therefore, when you try to change it to some-
thing else, the default cursor immediately overrides it. The only way to prevent this

Figure 11.14

Sample output from the simple drawing
program

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

231

behavior is to eliminate the default cursor and manage it yourself. A new version of
the program is shown in Listing 11.13.

Listing 11.13
Code that correctly manages a cursor.

// draw2.cpp

#include <afxwin.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

HCURSOR cross;
HCURSOR arrow;

public:
CWindow();
afx_msg void OnMouseMove(UINT,CPoint);
DECLARE_MESSAGE_MAP()

};

// The window constructor
CWindow::CWindow()
{

// Load two cursors
cross = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
arrow = AfxGetApp()->LoadStandardCursor(IDC_ARROW);

// Register a custom window class
const char* wndClass = AfxRegisterWndClass(

CS_HREDRAW | CS_VREDRAW, NULL,
(HBRUSH)(COLOR_WINDOW+1), NULL);

// Create the window with the new class
Create(wndClass, "Drawing Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_MOUSEMOVE()
END_MESSAGE_MAP()

// Handle mouse movement

232

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

void CWindow::OnMouseMove(UINT flag,
CPoint mousePos)

{
// Draw a pixel if the left button is down
if (flag == MK_LBUTTON)
{

CClientDC dc(this);
::SetCursor(cross);
dc.SetPixel(mousePos,RGB(0,0,255));

}
else

::SetCursor(arrow);
}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

In Listing 11.13, the CWindow class has two new data members to hold the ar-
row and cross hairs cursors. They are initialized in the constructor. The constructor
also registers a new window class using a call to AfxRegisterWndClass:

const char* wndClass =
AfxRegisterWndClass(

CS_HREDRAW | CS_VREDRAW, NULL,
(HBRUSH)(COLOR_WINDOW+1), NULL);

A window class simply gives Windows several pieces of information that it needs
to know about the application window. In all previous examples we have used a de-
fault window class, but the only way to remove the default cursor is to declare a new
class that specifies NULL for the cursor. The new class name is then passed to the Cre-
ate function for the window.

The AfxRegisterWndClass function takes several parameters as defined below
(see the RegisterClass function and the WNDCLASS structure in the Windows API
documentation, as well as AfxRegisterWndClass in the MFC documentation, for
more information):

const char* AfxRegisterWndClass(UINT nClassStyle,
HCURSOR hCursor = 0, HBRUSH hbrBackground = 0,
HICON hIcon = 0);

nClassStyle The class style. Possible values (from the WND-
CLASS description in the 32-bit API):

CS_BYTEALIGNCLIENT Improves drawing performance
CS_BYTEALIGNWINDOWImproves moving and sizing performance.
CS_CLASSDC One DC is shared by all windows in the class.
CS_DBLCLKS Double clicks are accepted

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

233

CS_GLOBALCLASS Registers the class globally for all other applica-
tions

CS_HREDRAW Entire window is redrawn on horizontal re-sizing
CS_NOCLOSE Disables the close option in the system menu
CS_OWNDC Each window in a class gets its own DC
CS_PARENTDC Parent window’s DC is passed to children
CS_SAVEBITS Windows repaints exposed areas automatically

from a backing store instead of calling On-
Paint

CS_VREDRAW Entire window is redrawn on vertical re-sizing
hCursor Handle to the default cursor
hbrBackground Handle to the background color. The following

predefined colors are added and cast to
HBRUSH as shown below:

COLOR_ACTIVEBORDER
COLOR_ACTIVECAPTION
COLOR_APPWORKSPACE
COLOR_BACKGROUND
COLOR_BTNFACE
COLOR_BTNSHADOW
COLOR_BTNTEXT
COLOR_CAPTIONTEXT
COLOR_GRAYTEXT
COLOR_HIGHLIGHT
COLOR_HIGHLIGHTTEXT
COLOR_INACTIVEBORDER
COLOR_INACTIVECAPTION
COLOR_MENU
COLOR_MENUTEXT
COLOR_SCROLLBAR
COLOR_WINDOW
COLOR_WINDOWFRAME
COLOR_WINDOWTEXT
hIcon A handle to the icon, loaded from a resource file.
In the call to

AfxRegisterWndClass

, the class style is set so the window gets re-
drawn on any vertical or horizontal re-sizing, the cursor is set to NULL, the
background color is set to the normal window color, and the application icon is set to
NULL. (Load an icon as shown in Chapter 10 and use its pointer if you like.)

Note that when working with code generated by the AppWizard, you must use
a slightly modified technique to register a new window class for the application. In
that case, override

CFrameWnd:: PreCreateWindow

 and register the new window
class there.

234

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

Having done all this to eliminate the default cursor, you now have complete
control over the cursor’s appearance. In Listing 11.13, management occurs in the

On-
MouseMove

 function by setting the cursor every time the mouse moves. The cursor
is guaranteed to have the correct shape at all times. It is also possible to use the

CWnd::OnSetCursor

 function to help manage the cursor.
If you use the program in Listing 11.13 for any period of time, you will notice

a rather severe problem. Every time the window gets an exposure event, it clears out
the client area. The drawing lacks persistence because there is no

OnPaint

 function in
the code. To solve the problem, you need to create a data structure that remembers all
points as they are drawn and then repaints those points on any exposure. The final
version of the program is shown in Listing 11.14.

Listing 11.14
A drawing program that uses a data structure to store the drawn points.

// draw3.cpp

#include <afxwin.h>
#include <afxcoll.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

const int MAX = 5000;

// The database class
class PointArray
{

CPoint *points[MAX];
int count;

public:
PointArray(): count(0) {}
~PointArray()
{

for (int i=0; i<count; i++)
delete(points[i]);

}
void Add(CPoint *p)
{

if (count<MAX)
points[count++]=p;

}
CPoint *GetAt(int x) {return points[x];}
int GetSize() {return count;}

};

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

235

// Define the window class
class CWindow : public CFrameWnd
{

HCURSOR cross;
HCURSOR arrow;
PointArray array;

public:
CWindow();
afx_msg void OnPaint();
afx_msg void OnMouseMove(UINT,CPoint);
DECLARE_MESSAGE_MAP()

};

// The window’s constructor
CWindow::CWindow()
{

// Load two cursors
cross = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
arrow = AfxGetApp()->LoadStandardCursor(IDC_ARROW);

// define a new window class
const char* pszWndClass =

AfxRegisterWndClass(
CS_HREDRAW | CS_VREDRAW, NULL,
(HBRUSH)(COLOR_WINDOW+1),
NULL);

// Create a window with the new class
Create(pszWndClass, "Drawing Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
ON_WM_MOUSEMOVE()

END_MESSAGE_MAP()

// Handle mouse movement
void CWindow::OnMouseMove(UINT flag,

CPoint mousePos)
{

if (flag == MK_LBUTTON)
{

CClientDC dc(this);
::SetCursor(cross);
dc.SetPixel(mousePos,RGB(0,0,255));
// Add each point to the array
array.Add(new CPoint(mousePos));

}
else

::SetCursor(arrow);
}

// Handle exposure

236

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

void CWindow::OnPaint()
{

int x;
CPaintDC dc(this);
// Redraw all points in the array
for (x=0; x<array.GetSize(); x++)

dc.SetPixel(* array.GetAt(x),
RGB(0,0,255));

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

The code in Listing 11.14 uses an instance of the class called PointArray to hold
all the points as they are drawn. The array is declared as a member of the window class,
and the functions Add and GetAt add and retrieve points from the array. MFC also
provides its own data structure classes as discussed in Chapter 12, and that chapter
shows how to convert this program over to MFC’s CObArray class.

Each time the user draws a new point, the code adds it to the array in OnMouse-
Move. Whenever an exposure event triggers OnPaint, it can redraw all the points
using this array. When you run the new program you will find that re-sizing events
and minimization are now handled appropriately, and the window retains its contents
throughout execution. It would be a simple matter to write the array to disk on termi-
nation and reload at the start of execution to provide persistence across runs as well.
See Chapter 12.

You may wish to take the code shown in this section and experiment with it. For
example, it would be easy to paint ten randomly clustered pixels instead of one pixel
each time the mouse moves and in that way simulate the “spray can” tool found in
most paint programs. You could also connect points using a polyline to create a
smoother drawing. By adding a menu and some load and save options, you would be
well on your way to creating a simple paint program. See Chapter 15 for more infor-
mation on turning this simple drawing example into a complete application.

11.5.4 Rubber Banding

A technique called rubber banding gives the user visual feedback while creating
a shape. It is used in all modern drawing programs to create lines, boxes, circles, and
so on. The user anchors the starting point with a mouse click and then drags off to the
ending point. The shape stretches between the two points dynamically. The technique
is useful in many different types of programs. For example, if you want the user to be
able to stretch the bars on a bar graph, or to connect nodes in a drawing on a network,
rubber banding creates a very appealing user interface.

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

237

Listing 11.15 contains code that implements the rubber banding of lines. It
could be easily modified to rubber band rectangles and ellipses as well.

Listing 11.15
Code that demonstrates rubber banding.

// rubber.cpp

#include <afxwin.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

HCURSOR cross;
HCURSOR arrow;
CPoint start, old;
BOOL started;

public:
CWindow();
afx_msg void OnMouseMove(UINT,CPoint);
afx_msg void OnLButtonDown(UINT, CPoint);
afx_msg void OnLButtonUp(UINT, CPoint);
DECLARE_MESSAGE_MAP()

};

// The window constructor
CWindow::CWindow()
{

// Load two cursors
cross = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
arrow = AfxGetApp()->LoadStandardCursor(IDC_ARROW);
started=FALSE;

// Create a custom window class
const char* pszWndClass = AfxRegisterWndClass(

CS_HREDRAW | CS_VREDRAW, NULL,
(HBRUSH)(COLOR_WINDOW+1), NULL);

// Create the window
Create(pszWndClass, "Drawing Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

238

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

ON_WM_MOUSEMOVE()
ON_WM_LBUTTONDOWN()
ON_WM_LBUTTONUP()

END_MESSAGE_MAP()

// Start a new line when the user clicks
// the mouse button down
void CWindow::OnLButtonDown(UINT flag,

CPoint mousePos)
{

started = TRUE;
::SetCursor(cross);
// save the starting position of the line
start = old = mousePos;
CClientDC dc(this);
dc.SetROP2(R2_NOT);
dc.MoveTo(start);
dc.LineTo(old);

}

// Complete the line when the user releases
// the mouse button
void CWindow::OnLButtonUp(UINT flag,

CPoint mousePos)
{

if (started)
{

started = FALSE;
::SetCursor(arrow);
CClientDC dc(this);
dc.MoveTo(start);
dc.LineTo(old);

}
}

// Handle dragging
void CWindow::OnMouseMove(UINT flag,

CPoint mousePos)
{

// If the mouse button is down and there
// is a line in progress, rubber band
if ((flag == MK_LBUTTON) && started)
{

::SetCursor(cross);
CClientDC dc(this);
dc.SetROP2(R2_NOT);
// Undraw the old line
dc.MoveTo(start);
dc.LineTo(old);
// Draw the new line
dc.MoveTo(start);
dc.LineTo(mousePos);
old=mousePos;

}
else

::SetCursor(arrow);

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

239

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

Let’s start by examining the basic principles used in this code and then look at
the specific implementation. When a user draws a line, what they expect to see is a
single line that follows the cursor away from the starting point. In order to implement
this behavior, the application needs to draw a new line from the starting point to the
cursor each time the mouse moves. The application also has to erase the previous line,
as shown in Figure 11.15. If done quickly enough, all this erasing and redrawing is
perceived by the user as rubber banding.

The application cannot simply erase the old line each time the cursor moves. For
example, if the application paints over the old line with the background color, as the
line is rubber banded across existing parts of the drawing it destroys those parts of the
drawing. Instead, the application should invert the existing drawing surface under-
neath the line when it is first drawn. Then, to erase it, the application can re-invert the
line, restoring the drawing to its original state. The rubber-banded line leaves existing
figures undisturbed as it passes over them. On the final draw of the line, when the user
releases the mouse button after the drag, the application should draw the line one last
time in the normal drawing mode.

The code in Listing 11.16 that implements this activity borrows a number of
concepts from the previous section. It uses the same cursor-changing technology, for
example. The rubber banding process starts when the user first clicks the mouse but-
ton down to establish the starting point. This action is detected and handled by
OnLButtonDown:

Figure 11.15
Each time the mouse moves, the
rubber-banded line must be
erased and redrawn

Starting point

Old ending point

New ending point

Old line
(needs erasing)

New line (needs to be drawn)

240

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

void CWindow::OnLButtonDown(UINT flag,
CPoint mousePos)

{
started = TRUE;
::SetCursor(cross);
start = old = mousePos;
CClientDC dc(this);
dc.SetROP2(R2_NOT);
dc.MoveTo(start);
dc.LineTo(old);

}

The

OnLButtonDown

 function changes the cursor and then sets the data
members

start

 and

old

 to the current mouse position. It also changes the drawing
mode to R2_NOT. In all previous drawing examples we have used the default mode
R2_COPYPEN, which paints the current pen color directly onto the drawing surface
without regard for the existing pixels. There are many other drawing modes, however,
and each has a special use. The following table is taken from the MFC documentation
for the

CDC::SetROP2

 function.
R2_BLACK Pixel is always black
R2_WHITE Pixel is always white
R2_NOP Pixel remains unchanged
R2_NOT Pixel is the inverse of the display color
R2_COPYPEN Pixel is the pen color
R2_NOTCOPYPEN Pixel is the inverse of the pen color
R2_MERGEPENNOT Pixel is a combination of the pen color and the in-

verse of the display color
R2_MASKPENNOT Pixel is a combination of the colors common to

both the pen and the inverse of the display
R2_MERGENOTPEN Pixel is a combination of the display color and the

inverse of the pen color
R2_MASKNOTPEN Pixel is a combination of the colors common to

both the display and the inverse of the pen
R2_MERGEPEN Pixel is a combination of the pen color and the dis-

play color
R2_NOTMERGEPEN Pixel is the inverse of the R2_MERGEPEN color
R2_MASKPEN Pixel is a combination of the colors common to

both the pen and the display
R2_NOTMASKPEN Pixel is the inverse of the R2_MASKPEN color.
R2_XORPEN Pixel is a combination of the colors in the pen and

in the display, but not in both
R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color
In the case of this rubber-banding program, we want to use the R2_NOT mode

to invert the drawing surface. The

OnLButtonDown

 function “primes the pump.” It
inverts the initial line, even though it’s just a single pixel, so subsequent revisions of
the line in

OnMouseMove

 will work properly.

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

241

The

OnMouseMove

 function handles the drag phase of the rubber-banding
operation:

void CWindow::OnMouseMove(UINT flag,
CPoint mousePos)

{
if ((flag == MK_LBUTTON) && started)
{

::SetCursor(cross);
CClientDC dc(this);
dc.SetROP2(R2_NOT);
dc.MoveTo(start);
dc.LineTo(old);
dc.MoveTo(start);
dc.LineTo(mousePos);
old=mousePos;

}
else

::SetCursor(arrow);
}

This function simply un-draws the old line by drawing between

start

 and

old

 in
R2_NOT mode and then drawing in the new line. It stores the new point into

old

 so
it can un-draw that line the next time through.

The

OnLButtonUp

 function cleans up when the user finally releases the
button:

void CWindow::OnLButtonUp(UINT flag,
CPoint mousePos)

{
if (started)
{

started = FALSE;
SetCursor(arrow);
CClientDC dc(this);
dc.MoveTo(start);
dc.LineTo(old);

}
}

This function draws the line one last time in the default R2_COPYPEN mode
so the line appears solid on screen.

You might have noticed a Boolean variable named

started

 floating through this
code. It is there to keep track of whether a line was properly started with a mouse down
event. You can see it getting set to TRUE in

OnLButtonDown

, and then both

On-
MouseMove

 and

OnLButtonUp

 check it before they do anything.

OnLButtonUp

sets it back to FALSE upon the successful completion of the line.
The

started

 Boolean handles a problem that can arise during icon reconstruc-
tion. Try to restore any desktop icon in Windows and watch exactly what happens.
You will notice that the icon is replaced by its window on the

down stroke

 of the second
click. This creates a problem. Imagine the following: The rubber-banding code shown
in Listing 11.15 is running, the window for it fills the entire screen, and it is currently
minimized. Now you double -click on the icon. The window reappears on the down

242

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

click of the mouse, so the mouse button is down when the window opens and the win-
dow immediately begins to receive mouse motion events. On the final release of the
mouse button, the program gets a mouse up event. If the

started

 variable were not
there to prevent it, the program would try to draw something in response to those
events even though they have nothing to do with an actual line.

One thing you might notice while using the rubber banding code is that move-
ment of the mouse outside the application’s window causes the window to stop
processing events. Because the cursor is not inside the window, mouse events go else-
where. If you want the application to handle events outside the window during a drag,
you should use the

CWnd::SetCapture

 function inside the

OnLButtonDown

 func-
tion to begin capturing all mouse events. Then call

CWnd::ReleaseCapture

 function
in

OnLButtonUp

 to stop capturing events. See the MFC documentation for more
information.

11.5.5 Virtual Drawing Spaces

In all the previous examples we have assumed that the entire drawing can fit on
one screen. Most production drawing programs, however, allow you to draw onto a
drawing surface that is larger than the physical screen. For example, if you are trying
to draw a detailed map of New York City for a geographical or navigational informa-
tion system, the map is not going to fit on one screen. You need the ability to scroll
through the map using scroll bars and to scale the map in various ways.

A virtual drawing space allows you to implement this sort of functionality. In a
virtual drawing space, the window on the screen displays one small part of a much
larger virtual drawing, as shown in Figure 11.16. As the user clicks on the scroll bars,
the portion of the virtual drawing that is visible in the window changes.

The data for the virtual drawing is typically stored in a data structure or database
that may contain a wide variety of other information beside the drawing data. For ex-
ample, the database for a geographical information system would contain data
describing how to draw each building on the map, but might also contain text data
describing each building. The drawing data is stored using its own coordinate system,
and then this system is mapped to screen coordinates as the user makes drawing re-
quests with the scroll bars.

Listing 11.16 implements a simple virtual drawing space to show you the prin-
ciples involved. This program allows the user to draw in and scroll through a drawing
space that is HEIGHT pixels high–5,000 in this particular piece of code. It would be
a straightforward extrapolation to add horizontal scrolling as well.

Listing 11.16
Implementation of a simple virtual drawing surface

// vds.cpp

#include <afxwin.h>

// Define the application class

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

243

class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Structure for the vds database
typedef struct LineRec
{

CPoint lt;
CPoint rb;

} LineRec;

// Max lines in the database
const int MAX = 1000;
// Max height of the vds
const int HEIGHT = 5000;

// The vds database class
class LineArray
{

LineRec lines[MAX];
int count;

Figure 11.16

A Virtual Drawing Surface can be much large than the user's screen

vds origin at 0,0

vds maximum extent at 10000, 10000

User's screen in the vds

244

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

public:
LineArray(): count(0) {}
void Add(LineRec l)
{

if (count<MAX)
lines[count++]=l;

}
void Add(CPoint p1, CPoint p2)
{

if (count<MAX)
{

lines[count].lt=p1;
lines[count].rb=p2;
count++;

}
}
LineRec Get(int x) {return lines[x];}
int Size() {return count;}

};

// Define the window class
class CWindow : public CFrameWnd
{

HCURSOR cross;
HCURSOR arrow;
CPoint start, old;
BOOL started;
LineArray lines;
int originY;

public:
CWindow();
afx_msg void OnPaint();
afx_msg void OnMouseMove(UINT,CPoint);
afx_msg void OnLButtonDown(UINT, CPoint);
afx_msg void OnLButtonUp(UINT, CPoint);
afx_msg void OnVScroll(UINT, UINT, CScrollBar*);
DECLARE_MESSAGE_MAP()

};

// The window constructor
CWindow::CWindow()
{

originY=0;
cross = AfxGetApp()->LoadStandardCursor(IDC_CROSS);
arrow = AfxGetApp()->LoadStandardCursor(IDC_ARROW);
started=FALSE;
const char* pszWndClass = AfxRegisterWndClass(

CS_HREDRAW | CS_VREDRAW, NULL,
(HBRUSH)(COLOR_WINDOW+1),
::LoadIcon(AfxGetInstanceHandle(),

"xxx"));
Create(pszWndClass, "Drawing Tests",

WS_OVERLAPPEDWINDOW | WS_VSCROLL,
CRect(0,0,250,100));

SetScrollRange(SB_VERT, 0, HEIGHT);
}

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

245

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
ON_WM_VSCROLL()
ON_WM_MOUSEMOVE()
ON_WM_LBUTTONDOWN()
ON_WM_LBUTTONUP()

END_MESSAGE_MAP()

// Handle vertical scrolling
void CWindow::OnVScroll(UINT code, UINT nPos,

CScrollBar* sb)
{

int pos=0;
CRect rect;

GetClientRect(&rect);
pos = GetScrollPos(SB_VERT);
switch (code)
{
case SB_LINEUP:

pos -= 1;
break;

case SB_LINEDOWN:
pos += 1;
break;

case SB_PAGEUP:
pos -= 50;
break;

case SB_PAGEDOWN:
pos += 50;
break;

case SB_TOP:
pos = 0;
break;

case SB_BOTTOM:
pos = HEIGHT;
break;

case SB_THUMBPOSITION:
pos = nPos;
break;

default:
return;

}
if (pos < 0)

pos = 0;
if (pos > HEIGHT-rect.Height())

pos = HEIGHT-rect.Height();
SetScrollPos(SB_VERT, pos);
originY=pos;
Invalidate(TRUE);

}

// Start drawing a line
void CWindow::OnLButtonDown(UINT flag,

246

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

CPoint mousePos)
{

started = TRUE;
::SetCursor(cross);
start = old = mousePos;
CClientDC dc(this);
dc.SetROP2(R2_NOT);
dc.MoveTo(start);
dc.LineTo(old);

}

// Complete drawing a line
void CWindow::OnLButtonUp(UINT flag,

CPoint mousePos)
{

if (started)
{

started = FALSE;
::SetCursor(arrow);
CClientDC dc(this);
dc.MoveTo(start);
dc.LineTo(old);
start.Offset(0,originY);
old.Offset(0,originY);
// Store the line in the database
lines.Add(start, old);

}
}

// Handle rubber banding of the line
void CWindow::OnMouseMove(UINT flag,

CPoint mousePos)
{

if ((flag == MK_LBUTTON) && started)
{

::SetCursor(cross);
CClientDC dc(this);
dc.SetROP2(R2_NOT);
dc.MoveTo(start);
dc.LineTo(old);
dc.MoveTo(start);
dc.LineTo(mousePos);
old=mousePos;

}
else

::SetCursor(arrow);
}

// Handle exposures
void CWindow::OnPaint()
{

CPaintDC dc(this);
LineRec l;
int x;
for (x=0; x<lines.Size(); x++)

11.5
U

sing
 the

 M
o

use
 w

ith Yo
ur D

ra
w

ing
s

This book is continuously updated. See http://www.iftech.com/mfc

247

{
l=lines.Get(x);
l.lt.Offset(0,-originY);
l.rb.Offset(0,-originY);
dc.MoveTo(l.lt);
dc.LineTo(l.rb);

}
}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

The key to understanding this program is the fact that the virtual drawing space
uses its own coordinate system. All lines drawn by the user are stored in the LineArray
data structure using this private coordinate system. In this example code, the private
coordinate system starts at 0,0 and extends to a height of 5,000 pixels, but there is
nothing to prevent you from starting the private system at any origin and letting it ex-
tend almost infinitely. Figure 11.17 shows the relationship between the private
coordinate system and the window’s coordinate system.

Figure 11.17
The coordinate systems used in a virtual drawing area

vds origin 0,0

Window
height

vds height

originY = 2200
Window origin

is the normal 0,0

248

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

The window’s coordinate system has its origin at 0,0. Therefore, to adjust the
virtual drawing’s coordinate system, an

originY

 variable keeps track of the window’s
offset into the virtual drawing space. When the user draws a line on the screen, the
line’s coordinates are offset by

originY

 before the line is stored in the data structure.
In Listing 11.16 the offset is added right before the line is stored in the array in

On-
LButtonUp

. This step translates the line from screen coordinates to virtual
coordinates. Before the line is drawn on the screen again this offset value is subtracted
away. In this program the addition and subtraction of the offset values occurs in the

OnLButtonUp

,

OnVScroll

, and

OnPaint

 functions, but it would be just as easy to
embed it in the

LineArray

 class and thereby encapsulate the virtual drawing coordi-
nate system in the data structure.

Most of the code in Listing 11.16 is similar to the rubber-banding program
demonstrated in the previous section. To understand the coordinate system, get out a
piece of paper and walk through the following example. Say that the user starts this
program and, without touching the scroll bar, draws a line on the screen from the
point 10,10 to the point 200,200. This line is stored into the

LineArray

 data struc-
ture. Because the scroll bar has not been manipulated yet,

originY

 is zero and the line
is stored without any offset. Now say that the user moves the scroll bar 1,000 pixels
down in the window. The

OnVScroll

 function handles the scrolling and sets

originY

to 1,000. It invalidates the client area, triggering

OnPaint

:

void CWindow::OnPaint()
{

CPaintDC dc(this);
LineRec l;
int x;
for (x=0; x<lines.Size(); x++)
{

l=lines.Get(x);
l.lt.Offset(0,-originY);
l.rb.Offset(0,-originY);
dc.MoveTo(l.lt);
dc.LineTo(l.rb);

}
}

This function traverses the data structure and redraws every line in it. Before it
draws each line, however, it applies the

originY

 offset to translate the line back to
screen coordinates. When the offset of 1,000 is applied to our line, its coordinates are
changed from 10,10 and 200,200 to 10,-990 and 200,-800. This line is well outside
the window so it is clipped off. On the other hand, a line stored in the data structure
with a y coordinate of perhaps 1,010 will still be visible once the offset is subtracted.

In this example program the entire data structure is redrawn on any scrolling re-
quest. With a very large data structure--for example, a two gigabyte GIS database
representing a city--this simple approach is impractical. Normally you design the da-
tabase so you can constrain the range of drawing information returned from the
database to the area of the current screen. If you are designing a database from scratch

11.6
A

d
va

nc
e

d
 D

ra
w

ing
 C

o
nc

e
p

ts

This book is continuously updated. See http://www.iftech.com/mfc

249

and planning to display it in some sort of virtual drawing space, you should consider
adding this capability to the design to speed up scrolling.

Chapter 15 demonstrates a drawing program generated by the AppWizard that
implements virtual drawing areas using the

CScrollView

 class. This class handles the or-
igin manipulations automatically, and you will want to examine it for additional ideas.

11.6 Advanced Drawing Concepts

There are several different capabilities available in the GDI library that allow you
to handle special drawing situations. This chapter discusses a few of the more impor-
tant topics.

11.6.1 Mapping Modes

Let’s say you want to create a chart-drawing application. You plan to display the
generated charts on the screen, but you also plan to print them on the wide variety of
printers that can be attached to a Windows workstation.

If you draw the charts using normal pixel coordinates, as we’ve done in all pre-
vious examples, you will have a problem. When you display one of your charts on the
screen, it will look fine. But when you print it on a 150 DPI dot matrix printer, it will
be small compared to the screen image. If you print it on a 300 DPI laser printer, it
will be smaller still. If you print it on a 600 DPI laser printer, it will be tiny. You will
also have problems centering things at the different resolutions.

Windows provides a capability called

mapping

 that allows you to solve this prob-
lem very easily. By changing over to a different coordinate system–for example, 1/
100ths of an inch rather than pixels–Windows will handle the translations from that
coordinate system down to a specific device in a device-independent manner. When
you print a six-inch-wide bar chart, it will appear six inches wide no matter what type
of printer you use. It will also appear 6 inches wide on the user’s screen.

Switching to a Metric or English mapping mode is easy. There are five modes to
choose from and you call the

CDC::SetMapMode

 function to switch to one of them.
Once you switch to a new mode, integer coordinate values (logical units) passed to or
received from CDC functions are understood in the new coordinate system. For ex-
ample, in the MM_TEXT mode, a point at 100,100 is 100 pixels to the right and 100
pixels down. In the MM_LOENGLISH mode however, where logical units are un-
derstood to indicate 1/100th of an inch, the point 100,100 is one inch to the right
and one inch up from the origin. There are also two mapping modes that allow you
to create arbitrary mapping systems. The different modes are described below:

MM_TEXT The default mode. Device-dependent mapping di-
rectly from logical units to pixels. Origin is upper left
corner, positive X extends to the right, and positive Y
extends downward.

MM_LOENGLISH Logical units indicate 1/100th of an inch. Origin is
upper left corner, positive X extends to the right, and
positive Y is up.

250

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

MM_HIENGLISH The same as MM_LOENGLISH but logical units
map to 1/1000th of an inch.

MM_LOMETRIC Logical units indicate 1/10th of a millimeter. Origin
is upper left corner, positive X extends to the right,
and positive Y is up.

MM_HIMETRIC The same as MM_LOMETRIC but logical units
map to 1/100th of a millimeter.

MM_TWIPS Logical units indicate 1/20 of a point (1/1,440 of an
inch). Origin is upper left corner, positive X extends
to the right, and positive Y is up.

MM_ANISOTROPIC Logical units are scaled to an arbitrary coordinate
system that you define and that depends on the size
of the ultimate output device. You indicate the origin
and scaling factors with functionscalls.

MM_ISOTROPIC Same as MM_ANISOTROPIC, but the two axes are
scaled the same way, so one logical unit on the X axis
is the same as one logical unit on the Y axis.

Listing 11.17 demonstrates the use of the MM_LOENGLISH mapping mode.

Listing 11.17
The use of the MM_LOENGLISH mapping mode.

// mapping.cpp

#include <afxwin.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{
public:

CWindow();
afx_msg void OnPaint();
DECLARE_MESSAGE_MAP()

};

// The window's constructor
CWindow::CWindow()
{

Create(NULL, "Drawing Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,250,250));

11.6
A

d
va

nc
e

d
 D

ra
w

ing
 C

o
nc

e
p

ts

This book is continuously updated. See http://www.iftech.com/mfc

251

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
END_MESSAGE_MAP()

// Handle exposure events
void CWindow::OnPaint()
{

CPaintDC dc(this);
// Adjust the map mode for this DC
dc.SetMapMode(MM_LOENGLISH);
CPen pen(PS_SOLID, 2, RGB(0,0,255)), *oldPen;
CBrush brush(HS_CROSS,RGB(255,0,0)), *oldBrush;
oldPen = dc.SelectObject(&pen);
oldBrush = dc.SelectObject(&brush);
CRect rect(100, -100, 200, -200);
dc.Rectangle(rect);
dc.SelectObject(oldPen);
dc.SelectObject(oldBrush);

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

The only real difference between listings 11.17 and 11.3 is the use of the Set-
MapMode function to set the MM_LOENGLISH mapping mode in the OnPaint
function. Once the new mapping mode is activated, any CDC function that accepts
or returns coordinates will do so in the new coordinate system. Therefore, the call to
CDC::Rectangle shown here produces a rectangle that starts one inch over and one
inch down and is one inch wide and high.

The MM_LOENGLISH mapping mode modifies the origin, as shown in Fig-
ure 11.18.

As you can see in Figure 11.18, the use of a normal Cartesian coordinate system
means that all Y coordinates must be negative if they are to appear in the window. This
explains why the Y coordinates in Listing 11.17 are both negative.

As mentioned earlier, the switch to a new mapping mode with CDC::SetMap-
Mode causes all CDC functions to accept and return coordinates in the chosen
coordinate system. After the switch to MM_LOENGLISH, for example, all coordi-
nates are understood to be in 1/100ths of an inch. The functions in the CWnd class
are not affected by the new mode, however. Functions such as CWnd::GetClientRect
and OnMouseMove still return pixel coordinates. You can change these pixel coordi-
nates to the mapping mode coordinate system and back again with the

252

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

CDC::DPtoLP

 and

CDC::LPtoDP

 functions (see the MFC documentation for de-
tails and Chapter 15 for an example).

Windows also provides two mapping modes that let you create your own coor-
dinate systems. You tell Windows the maximum extent of the drawing surface and the
way you want to map the drawing surface into the current device, and Windows does
the rest. Listing 11.18 demonstrates the creation of a 1,000 x 1,000 anisotropic draw-
ing area. The X and Y axis can have different units in an anisotropic mode, while they
will be the same units in an isotropic mode.

Listing 11.18
An anisotropic drawing system.

// aniso.cpp

#include <afxwin.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{
public:

CWindow();
void OnPaint();

Figure 11.18
A measured coordinate system such as MM_LOENGLISH uses a normal Cartesian
coordinate system

+Y

-Y

-X +X

origin

window

11.6
A

d
va

nc
e

d
 D

ra
w

ing
 C

o
nc

e
p

ts

This book is continuously updated. See http://www.iftech.com/mfc

253

DECLARE_MESSAGE_MAP()
};

// The window's constructor
CWindow::CWindow()
{

Create(NULL, "Drawing Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
END_MESSAGE_MAP()

// Handle exposures
void CWindow::OnPaint()
{

CRect rect;
int x;

GetClientRect(rect);
CPaintDC dc(this);
// Create the anisotropic coord system
dc.SetMapMode(MM_ANISOTROPIC);
dc.SetWindowExt(1000, 1000);
dc.SetViewportExt(rect.Width(), -rect.Height());
dc.SetViewportOrg(0, rect.Height());

// Draw a set of lines in the new system
CPen pen(PS_SOLID, 1, RGB(0,0,255)), *oldpen;
oldpen = dc.SelectObject(&pen);
for (x=0; x<1000; x+=10)
{

dc.MoveTo(0,0);
dc.LineTo(x,1000);

}
dc.TextOut(500,500,CString("Hello"));

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

The particular configuration shown in Listing 11.18 sets up the window so that,
as far as the code is concerned, it is always 1,000 x 1,000 logical units wide and high,
regardless of how big it is in terms of pixels on the screen. The origin is in the lower
right corner, and positive X and Y coordinates extend to the right and up, respectively.

254

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

Using a mapping system like this, you know that you can draw in the area be-
tween 0,0 and 1000, 1000. No matter how the window shape changes, the figure will
be translated from its original 1,000 x 1,000 size into the space available in the win-
dow. Note that even the font scales as you re-size the window. This arrangement is
especially useful for drawing figures, charts, and graphs. It is generally much easier to
draw to a fixed coordinate system and let the machine do the scaling than to have to
adjust to changing window sizes, page sizes and so on.

11.6.2 Animation

Computer animation can be implemented in several different ways. For exam-
ple, the rubber-banding program seen in Section 11.5.3 contains a simple form or
animation—the rubber banded line is erased and drawn so quickly that it appears to
be a smoothly animated object. For small figures moving on a static background, this
erase–redraw technique is appropriate. For example, a digital aquarium could move
fish over a static background using the erase–redraw technique. Games using small
moving objects often work this way as well.

There are many situations where the erase–redraw technique cannot be used.
For example, in a flight simulator the program must redraw the entire screen on every
frame because the pilot’s perspective changes at each time increment. In this situation
you cannot erase the old screen and begin painting the new perspective line-by-line or
polygon-by-polygon. The screen shot for a flight simulator demonstrated in Figure
11.19 helps to understand the problem.

This simple frame consists of 15 lines and six polygons. An advanced flight sim-
ulator will paint hundreds or thousands of polygons for each frame. If they are drawn
directly onto the screen they cause flicker. The user’s eyes see each frame developing
but never see any completed frames.

The easiest way to solve this problem is to draw each frame into an off-screen
area and then copy the completed frames to the screen. The user sees a complete frame
while the new frame is drawn. This technique creates very convincing animation, even
if the frame rate is only three or four frames per second.

Windows allows you to create what is called a Memory DC when an off-screen
drawing area is needed. Once created and initialized, a Memory DC is just like a Cli-

Figure 11.19

A frame from a simple flight simulator
program

11.6
A

d
va

nc
e

d
 D

ra
w

ing
 C

o
nc

e
p

ts

This book is continuously updated. See http://www.iftech.com/mfc

255

ent DC. You draw into it using the same CDC commands seen throughout the rest
of the chapter. Once the frame is finished, you copy it to the on-screen Client DC us-
ing the

CDC::BitBlt

 function. The word “bitblt” is an abbreviation for “bit block
transfer.” This function copies bits (words, really) between memory and the display
adapter quickly enough to be used at fairly high frame rates without flicker. It can also
copy bits from one Memory DC to another.

The code in Listing 11.19 demonstrates how to create a Memory DC, how to
draw into it, and how to copy it to the user’s window on the screen.

Listing 11.19
Using the BitBlt function with an off-screen memory area.

// memdc.cpp

#include <afxwin.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

CDC memDC;
CBitmap *oldMemDCBitmap, *newMemDCBitmap;

public:
CWindow();
~CWindow();
afx_msg void OnPaint();
DECLARE_MESSAGE_MAP()

};

// The constructor for the window
CWindow::CWindow()
{

Create(NULL, "Drawing Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,450,450));

// Create the memory DC
CClientDC dc(this);
memDC.CreateCompatibleDC(&dc);
newMemDCBitmap = new CBitmap;
CRect rect;
GetClientRect(&rect);
newMemDCBitmap->CreateCompatibleBitmap(&dc,

rect.Width(), rect.Height());
oldMemDCBitmap =

256

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

memDC.SelectObject(newMemDCBitmap);
// Clear the memory DC
memDC.PatBlt(0,0,450,450,

WHITENESS);
}

CWindow::~CWindow()
{

memDC.SelectObject(oldMemDCBitmap);
delete newMemDCBitmap;

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
END_MESSAGE_MAP()

// Handle exposure events
void CWindow::OnPaint()
{

CRect rect(0,0,400,400);
int x;

CPaintDC dc(this);
// Paint into the memory DC
for (x=0; x<60; x++)
{

rect.InflateRect(-3,-3);
memDC.Rectangle(rect);

}
// Transfer the memory DC to the screen
dc.BitBlt(0,0,400,400,

&memDC,0,0,SRCCOPY);
}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

The window’s constructor creates the Memory DC. The first line gets the Client
DC for the window. This DC is needed because the Memory DC has to be compati-
ble with the window’s DC. The memory DC itself is created in the next line with the
CreateCompatibleDC function. This function creates a DC with the same charac-
teristics—aspect ratio, pixels per inch, colors per pixel, etc.—as the window on the
screen.

Next the code creates the area of memory that will hold the “pixels” for this off-
screen area by creating a bitmap and attaching it to the Memory DC. The Create-

11.6
A

d
va

nc
e

d
 D

ra
w

ing
 C

o
nc

e
p

ts

This book is continuously updated. See http://www.iftech.com/mfc

257

CompatibleBitmap

 function does this, taking in a DC to match the new bitmap to
those characteristics, as well as a width and height for the new bitmap. One thing to
keep in mind when creating a bitmap in memory is that bitmaps are resource inten-
sive. For example, a 1,000 x 1,000 pixel bitmap compatible with an eight-bit-per-pixel
color display requires almost a megabyte of memory. You generally cannot create 200
of them at once.

The bitmap is associated with the Memory DC using the

SelectObject

 func-
tion. The bitmap is then cleared to white with the

PatBlt

 function, which copies white
pixels into the bitmap at the full memory transfer rate. Another way to clear the bit-
map is to draw a filled rectangle to the Memory DC. Once the Memory DC’s bitmap
is clear, you can draw into it just like any other DC.

The

OnPaint

 function demonstrates how to draw into the Memory DC and
then copy it to the screen. The

for

 loop draws nested rectangles to the Memory DC
and then bitblts the final frame to the screen. A typical animation program would
probably use a timer to control the frame rate. Inside the

OnTimer

 function the pro-
gram would draw a new frame in the Memory DC and then copy it to the Client DC
for the window.

An animated application typically uses a fixed-size window for output. If you al-
low the user to re-size the window, you need to do one of two things: Either you can
create the original bitmap attached to the Memory DC big enough to handle the larg-
est window size possible, or you can create a new bitmap each time the window is re-
sized. The following code fragment shows how to properly swap the new bitmap into
the Memory DC to avoid memory leaks:

 CBitmap *temp;
CClientDC dc(this);
CRect rect;

GetClientRect(&rect);
newMemDCBitmap->CreateCompatibleBitmap(&dc,

rect.Width(), rect.Height());
temp = memDC.SelectObject(newMemDCBitmap);
delete temp;

Given the amount of memory that bitmaps can consume, you cannot afford to
leak any away.

11.6.3 Simple Printing

 As far as your code is concerned, a printer is very similar to the client area of a
window. To print something, you simply create a Print DC instead of a Client DC.
Once you have created and properly initialized a Print DC, you can draw to it using
all the standard CDC functions that we’ve used throughout the chapter. The code in
Listing 11.20 demonstrates the printing process.

Listing 11.20
Simple printing

// print.cpp

258

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

#include <afxwin.h>
#include <afxdlgs.h>
#include <strstrea.h>

#define IDM_BUTTON 100

// Declare the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CApp App;

// Declare the window class
class CWindow : public CFrameWnd
{

CButton *button;
public:

CWindow();
~CWindow();
afx_msg void HandleButton();
BOOL HandlePrint();
DECLARE_MESSAGE_MAP()

};

// Get a print DC and draw on it.
BOOL CWindow::HandlePrint()
{

BOOL error = FALSE;
CDC* dc = NULL;
int pageWidth, pageHeight;

// Let the user select the printer
CPrintDialog printDialog(FALSE);
if (printDialog.DoModal() == IDCANCEL)

return FALSE;

// Create a print DC
dc = new CDC;
if (printDialog.GetPrinterDC() != NULL)

dc->Attach(printDialog.GetPrinterDC());
else

return TRUE;

// Get the page size for the printer
pageWidth = dc->GetDeviceCaps(HORZRES);
pageHeight = dc->GetDeviceCaps(VERTRES);

// Set mapping modeand convert size of
// page to logical coordinates
dc->SetMapMode(MM_LOENGLISH);
CSize s(pageWidth, pageHeight);

11.6
A

d
va

nc
e

d
 D

ra
w

ing
 C

o
nc

e
p

ts

This book is continuously updated. See http://www.iftech.com/mfc

259

dc->DPtoLP(&s);
pageWidth = s.cx;
pageHeight = s.cy;

// Start the doc and print
if (dc->StartDoc("") >= 0 &&

dc->StartPage() >= 0)
{

// Do the drawing
// Place your drawing code here.
dc->Rectangle(0,0,pageWidth,-pageHeight);
dc->MoveTo(0,0);
dc->LineTo(pageWidth, -pageHeight);

CFont *font = new CFont;
CFont *oldFont;
font->CreateFont (36,0,0,0,700,0,0,0,

ANSI_CHARSET,OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS,
DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE,
"Arial");

oldFont = dc->SelectObject(font);
dc->ExtTextOut(300,-50,0,NULL,"Hello",

strlen("Hello"),NULL);

if (dc->EndPage() >= 0)
dc->EndDoc();

else
error = TRUE;

dc->SelectObject(oldFont);
delete font;

}
else

error = TRUE;

if (error)
dc->AbortDoc();

delete dc;
return !error;

}

// Handler for the "Push me" button
void CWindow::HandleButton()
{

if (HandlePrint())
MessageBox("Printed successfully",

"Print status");
else

MessageBox(
" User Canceled or Problems Printing",
"Print Status");

}

// The message map

260

This book is continuously updated. See http://www.iftech.com/mfc

11
D

ra
w

in
g

BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)
ON_COMMAND(IDM_BUTTON, HandleButton)

END_MESSAGE_MAP()

// The InitInstance is called once
// when the application begins execution
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The window constructor
CWindow::CWindow()
{

CRect r;

// Create the window
Create(NULL,

"Printing Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button to activate the dialog
button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r,
this,
IDM_BUTTON);

}

// The window's destructor
CWindow::~CWindow()
{

delete button;
}

When you execute Listing 11.20 it will present a window containing a button.
When you click the button, a Print dialog will appear (see Chapter 7 for details). You
can select a printer or use the default. When you click the OK button in the Print di-
alog, the program will generate one page of output consisting of a rectangle, a diagonal
line, and the word “Hello” in a 36-point Arial font.

Inside the code in Listing 11.20, the HandleButton function is called when the
user presses the button. This function calls HandlePrint, which performs the actual
printing. HandlePrint starts by creating the Print dialog. This step is important—the

11.7
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

261

Print dialog does the work of acquiring the Printer DC for the printer chosen by the
user. To obtain a Printer DC that you can use in your code, you create an instance of
the

CDC

 class, get the Printer DC from the Print dialog, and attach the latter to the
former. Once the attachment is complete any drawing operation performed on

dc

 will
use the printer as its output device. The code then queries the page size of the printer
through the DC using the

GetDeviceCaps

 function (look up this function in the
MFC documentation—there is quite a bit of data available for the printer), sets the
mapping mode, and translates the page size to the logical coordinate system estab-
lished by the mapping mode.

Printers support the idea of a

document

 broken up into individual

pages

. Before you
can draw onto the printer you must start a document and then start a page. Anything
you draw will appear on the current page. When you are done with a page, you call

EndPage

 and

StartPage

 again to produce multiple pages within the same document.
The code in Listing 13.1 produces a single page of output, but if you would like to ex-
periment you can add the following lines just below the creation of the diagonal line:

dc->EndPage();
dc->StartPage();

Now the rectangle and line will appear on one page and the text will appear on
another.

Once it is done drawing, the program ends the page and the document and the

HandlePrint

 function terminates. It returns an error status to its caller so a message
box can inform the user of the outcome.

Printing and print preview are greatly simplified by creating your applications
with the AppWizard. See Chapters 15 and 18 for examples of printing within an App-
Wizard framework.

11.7 Conclusion

This chapter covers a lot of ground, but, in a way, only scratches the surface. The
GDI library is so large that it is impossible to cover all its possible uses. What you have
gained from this chapter, however, is an introduction that provides a solid foundation.
You should be able to use the MFC and API documentation to gather the other bits
of knowledge you need to complete your own particular projects.

You will see many of the concepts presented in this chapter later in this book.
For example, Chapter 12 shows how to adapt the drawing program to use the built-
in MFC data structures. Chapter 15 shows how to create drawing programs within an
AppWizard–generated framework.

263

12UTILITY CLASSES

One of MFC’s goals is to make your life as a programmer more enjoyable by providing
you with commonly needed functionality in easy-to-use classes. In this spirit, MFC
contains a set of “utility” classes that encapsulate frequently needed concepts. For ex-
ample, there are MFC classes for both files and strings that help to simplify and orga-
nize your use of these two concepts. There are also a number of data structure classes
that make it extremely easy to store information in common formats. MFC provides
classes for arrays, lists, and mappings. Using these tools, you can easily create any com-
mon data structure.

MFC provides the following general utility classes:
CFile Binary file class
CMemFile In-Memory file class
CStdioFile Text file class
CArchive Binary Stream class
CString String class
CTime Time class
CTimeSpan Relative time class
CPoint Point class
CRect Rectangle class
CSize Size class

MFC also provides the following data structure classes:
CDWordArray Array of DWORD
CObArray Array of (CObject *)
CPtrArray Array of (void *)
CStringArray Array of CString
CWordArray Array of WORD
CUIntArray Array of UINT
CObList Linked list of CObject
CPtrList Linked list of (void *)
CStringList Linked list of CString
CMapPtrToWord Maps (void *) to WORD
CMapPtrToPtr Maps (void *) to (void *)

264

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

CMapStringToOb Maps CString to (CObject *)
CMapStringToPtr Maps CString to (void *)
CMapStringToString Maps CString to CString
CMapWordToOb Maps WORD to (CObject *)
CMapWordToPtr Maps WORDs to (void *)

MFC has its own exception-handling mechanism. The following classes, along
with the

try

 and

catch

 operators, support it:
CException Base class
CArchiveException Archive exceptions
DBException Database exception
CFileException File exception
CMemoryException Memory exceptions
CNotSupportedException Unsupported capability exception
CResourceException Resource exception
COleException OLE exception
CUserException User exceptions

Finally, MFC supports several different debugging classes and macros that can
be extremely useful during the debugging phase of an application development cycle:

CDumpContext Dumping class
CMemoryState Memory utilization class
CRuntimeClass Run time class

The next chapter discusses the exception and debugging classes. This chapter
deals with the general utility classes and the data structures.

12.1 Utility Classes

MFC encapsulates frequently used concepts such strings, files, and time into
classes that make these concepts much easier to use. The following sections describe
each of the available classes.

12.1.1 CFile, CMemFile, and CStdioFile classes

You use the

CFile

 class to work with binary files. The

CStdioFile

 class inherits
from the

CFile

 class and extends it to provide easy access to text files. The

CMemFile

class also inherits from

CFile

 and provides for the creation of binary files in memory
rather than on disk. Files in memory are sometimes a useful abstraction that can sim-
plify or speed up some types of data transfers.

Because both

CStdioFile

 and

CMemFile

 inherit from it,

CFile

 is a good place
to start learning about files in MFC. You will typically use a

CFile

 object to access bi-
nary data on disk. For example, if you want to read through a file byte-by-byte,
perhaps to create some sort of a hex-dump program, you would use an instance of the

CFile

 class to do that. If you want to rapidly copy a file, filtering for certain byte pat-
terns as you go, you would use

CFile

. You will also use

CFile

 when you want to read
and write files containing fixed-size structures.

12.1
U

tility C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

265

When you look in the MFC documentation, you will find that the

CFile

 class
has more than 20 member functions. These functions map into the following
categories:

• Construction (creating, opening, closing)
• Reading and writing
• Seeking
• Locking
• Information
• Operations

Listing 12.1 demonstrates how to open a file using the

CFile

 class and how to
write, seek, and read from that file.

Listing 12.1
Using the CFile class

// file1.cpp

#include <afxwin.h>
#include <afxdlgs.h>

const int IDC_BUTTON = 100;
// Define filters for use with the File Dialog
const char fileDialogFilter[] =

"Data files (*.dat)|*.dat|All files (*.*)|*.*||";
const char fileDialogExt[] = "dat";

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

CButton *button;
public:

CWindow();
afx_msg void HandleButton();
DECLARE_MESSAGE_MAP()

};

typedef struct _address
{

char name[20], city[20], state[3];
} address;

// The message handler function
void CWindow::HandleButton()

266

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

{
CFileDialog fileDialog(TRUE,

fileDialogExt, NULL,
0, fileDialogFilter);

if(fileDialog.DoModal() == IDOK)
{

CFile f;
CFileException exception;
BOOL status;

// Open the file for writing
status = f.Open(fileDialog.GetPathName(),

CFile::modeCreate | CFile::modeWrite |
 CFile::shareExclusive,

&exception);
// Return on error
if (!status)
{

char s[100];
sprintf(s, "Error opening file for writing. Code:%d",

exception.m_cause);
MessageBox(s, "Error", MB_OK);
return;

}
else
{

address a;

// Write three records to the file
try
{

strcpy(a.name, "John Smith");
strcpy(a.city, "Zebulon");
strcpy(a.state, "NC");
f.Write(&a, sizeof(address));
strcpy(a.name, "Bob Jones");
strcpy(a.city, "Raleigh");
strcpy(a.state, "NC");
f.Write(&a, sizeof(address));
strcpy(a.name, "Bill Clancy");
strcpy(a.city, "Wake Forest");
strcpy(a.state, "NC");
f.Write(&a, sizeof(address));

}
// Announce any problems
catch (CFileException exception)
{

MessageBox("Error writing file",
"Error", MB_OK);

}
f.Close();

}
// Reopen file for reading
status = f.Open(fileDialog.GetPathName(),

CFile::modeRead, &exception);

12.1
U

tility C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

267

if (!status)
{

char s[100];
sprintf(s, "Error opening file for reading. Code:%d",

exception.m_cause);
MessageBox(s, "Error", MB_OK);
return;

}
else
{

address a;

// Read and display one record
try
{

// print file length
char s[100];
sprintf(s, "File size = %d", f.GetLength());
MessageBox(s, "Length", MB_OK);
// Seek and read
f.Seek(sizeof(address)*2, CFile::begin);
f.Read(&a, sizeof(address));
MessageBox(a.name, "Data", MB_OK);

}
catch (CFileException exception)
{

MessageBox("Error writing file",
"Error", MB_OK);

}
f.Close();

}
}

}

// The window's constructor
CWindow::CWindow()
{

// Create a window with the new class
Create(NULL, "Drawing Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

// Get the size of the client rectangle
CRect r;
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button
button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r,
this,
IDC_BUTTON);

}

268

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_COMMAND(IDC_BUTTON, HandleButton)
END_MESSAGE_MAP()

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

The HandleButton function in Listing 12.1 contains demonstration code for
the CFile class. The code starts by declaring and then opening an instance of the CFile
class. It uses a CFileDialog dialog (see Chapter 7) to get a file name from the user:

CFileDialog fileDialog(TRUE,
fileDialogExt, NULL,
0, fileDialogFilter);

if(fileDialog.DoModal() == IDOK)
{

CFile f;
CFileException exception;
BOOL status;

// Open the file for writing
status = f.Open(fileDialog.GetPathName(),

CFile::modeCreate | CFile::modeWrite |
 CFile::shareExclusive,

&exception);
// Return on error
if (!status)
{

char s[100];
sprintf(s, "Error opening file for writing. Code:%d",

exception.m_cause);
MessageBox(s, "Error", MB_OK);
return;

}
else
{

...

When the user clicks the button, a file dialog appears and the user can select a
file name. The program then declares instances of the CFile and CFileException (see
Chapter 13) classes and attempts to open that file name. If the file opens, then the sta-
tus value returned by the Open function will be TRUE. Otherwise it is FALSE, and
in that case the program produces an error message in a message box. The exception
contains an error code that identifies the source of the problem (see the m_cause entry

12.1
U

tility C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

269

in the MFC documentation for a complete list of possibilities). See Chapter 13 for a
complete discussion on exceptions and exception handling.

With the file open, Listing 12.1 writes three records to the file using

CFile

’s

Write

 function. This function accepts a pointer to a block of memory and the number
of bytes to transfer. The block of memory is written at the current file position.

After writing the three records, the program closes the file, reopens it for reading,
and display’s the file’s length using the

GetLength

 function. It then uses the

Seek

 and

Read

 functions to get the third record in the file and display its name:

// Print file length
char s[100];
sprintf(s, "File size = %d", f.GetLength());
MessageBox(s, "Length", MB_OK);
// Seek and read
f.Seek(sizeof(address)*2, CFile::begin);
f.Read(&a, sizeof(address));
MessageBox(a.name, "Data", MB_OK);

You can see that the process here mimics the seek-read process you are familiar
with from the standard I/O library in C. The fact that this functionality is encapsulat-
ed in a class, however, makes it easier to use and also provides easy error-trapping
mechanisms.

The

GetStatus

 and

SetStatus

 functions in

CFile

 make it easy to get and set a
file’s status information. Both functions use the

CFileStatus

 structure whose mem-
bers are shown below:

CTime m_ctime Creation time
CTime m_mtime Last write time
CTime m_atime Last read time
LONG m_size File size
BYTE m_attribute Attribute byte
char m_szFullName[_MAX_PATH]The absolute path and file name
On FAT file systems, only the last write time is valid, but on NTFS and HPFS

disks all three times contain valid information. The attribute byte contains bits that
reflect the current status bits for the file, as shown below:

 Normal 0x00
 Read Only 0x01
 Hidden 0x02
 System 0x04
 Volume 0x08
 Directory 0x10
 Archive 0x20
The

CFile

 class also provides for file locking using the

LockRange

 and

Unlock-
Range

 member functions. You can lock any block of bytes by indicating the starting
location and the length of the block. Typically you would lock one or more structures
in a file of structures. When you lock a range of bytes it gives your program exclusive
access to them. If you attempt to lock bytes anywhere within an already locked range,
MFC throws an exception (see Chapter 13). Because locking prevents access by other

270

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

processes, you should unlock a range of bytes as quickly as possible to prevent conten-
tion among competing processes sharing the same file.

 Other useful functions in the

CFile

 class include:
Duplicate Creates a duplicate of the

CFile

 instance (not the file)
Flush Flushes any pending writes to disk
ReadHuge, WriteHuge Reads and writes blocks over 64K
GetPosition Returns the current file position in bytes
SetLength Sets the length of the file (useful for truncating)
Rename Renames the file
Remove Deletes the file
As you can see, the

CFile

 class simply encapsulates everything associated with
binary files in a way that makes binary files much more accessible. Rather than using
functions scattered across several APIs, you use the single class.

The

CStdioFile

 class inherits its behavior from the

CFile

 class and makes it eas-
ier to work with text files. The

CStdioFile

 class provides two new functions to read
and write text information:

ReadString

 and

WriteString

. Because of the inherited be-
havior, you can get status information and also rename and delete text files using the
appropriate functions in the

CFile

 class.
The

ReadString

 member function duplicates the action of the

fgets

 function. A
typical invocation appears in the example shown in Listing 12.2.

Listing 12.2
A replacement HandleButton function for Listing 12.1 that demonstrates the use of
the CStdioFile class

//file2.cpp

// The message handler function
void CWindow::HandleButton()
{

CFileDialog fileDialog(TRUE,
fileDialogExt, NULL,
0, fileDialogFilter);

if(fileDialog.DoModal() == IDOK)
{

CStdioFile f;
CFileException exception;
BOOL status;

// Reopen file for reading
status = f.Open(fileDialog.GetPathName(),

CFile::modeRead, &exception);
if (!status)
{

char s[100];
sprintf(s, "Error opening file for reading. Code:%d",

exception.m_cause);
MessageBox(s, "Error", MB_OK);
return;

12.1
U

tility C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

271

}
else
{

char s[1000];
int mbStatus;

// Read and display lines of text
do
{

try
{

f.ReadString(s, 1000);
s[strlen(s)] = '\0'; // Kill CR character
mbStatus = MessageBox(s, "Data", MB_OKCANCEL);

}
catch (CFileException exception)
{

MessageBox("Error reading file",
"Error", MB_OK);

mbStatus = IDCANCEL;
}

}
while (mbStatus == IDOK);
f.Close();

}
}

}

To execute Listing 12.2, replace the HandleButton function in Listing 12.1
Listing 12.2 starts by opening an instance of the CStdioFile class in a manner

identical to that of Listing 12.1. It then enters a loop that reads each line from the file
and displays it in a message box dialog:

f.ReadString(s, 1000);
s[strlen(s)] = '\0'; // Kill CR character
mbStatus = MessageBox(s, "Data", MB_OKCANCEL);

Like fgets, the ReadString function reads a '\n' character into the string if it is
able to read a complete line from the file. Also like fgets, the ReadString function re-
turns a zero on end-of-file. In Listing 12.2, the code does not use the end-of-file
indicator but instead lets the application throw an exception at the end of the file. The
user can also exit the loop by pressing the Cancel button on the message box.

The WriteString function similarly duplicates the action of the fputs function.
It writes a string to the file up to a '\0' character. If the string contains '\n' characters,
these are written appropriately. See Listing 12.9 for an example.

The CMemFile class is identical to the CFile class except that the Duplicate,
LockRange, and UnlockRange functions are not supported and, therefore, return
not-supported exceptions (see Chapter 13). When you read or write from the file, the
data is stored in memory rather than on disk and the operation is faster. You may find

272

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

that memory files are a fast and convenient way to create temporary files that do not
consume available disk space and do not need to be deleted when no longer needed.

12.1.2 The CString Class

The

CString

 class encapsulates all the functionality of the normal C string li-
brary in a single, easy-to-use class that contains more than 30 member functions. The

CString

 class has a number of important advantages over a normal C string:
• The

CString

 class contains extra capabilities not found in the string library,
such as

left

,

right

, and

mid

.
• The

CString

 class automatically grows string arrays longer when necessary.
• The

CString

 class overrides operators like =, ==, +, and += so string opera-
tions are much cleaner.

• You can use instances of the

CString

 class in any function or operation that
requires a normal C string.

Because of these important advantages, you will get into the habit of using

CString

s whenever you need a string. The code in Listing 12.3 demonstrates some
typical uses of the

CString

 class.

Listing 12.3
Typical simple uses of the Cstring class

// declare an instance. The string will be null.
CString s;
// initialize the string
s = "hello";
// concatenate a character and a string to it
s += ‘ ‘;
s += "world";
// get the length of the string
int i = s.GetLength();
// find a substring in the string
int j = s.Find("world");

In this simple example, the programmer has declared the string s, assigned to it,
concatenated two other strings to it, and then used the Find function to find a sub-
string in s. As you can see, the Cstring class contains equivalents for strcpy, strcat,
and strstr that do the same things but are significantly easier to use.

The CString class contains five different types of constructors, as demonstrated
below:

CString s1;
CString s2("Hello");
CString s3('A', 100);
CString s4("Hello World", 5);
CString s5 = "Hello";

The first example creates s1 as an empty string. The second example creates s2
containing the characters “Hello”. The third example creates s3 containing a string of

12.1
U

tility C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

273

100 As. The fourth example creates

s4

 containing the first 5 characters of the string
“Hello World”. The fifth example creates the string

s5

 using the copy constructor.
Note that you do not have to specify a length when creating an instance of

CString

. The class dynamically allocates a block of memory from the heap to satisfy
its space requirements. If you concatenate other strings to an existing

CString

, the
class automatically reallocates space to satisfy the requirements of the concatenated
string. The

CString

 class has no maximum string size and always uses exactly as much
memory as it needs. Note, however, that if you save an instance of

CString

 to a file,
what you will get in the file is simply a useless pointer rather than a string. The string
itself is stored in a buffer on the heap. That is why Listing 12.1 used normal character
arrays for the members of the structure saved to the file.

The

CString

 class contains a number of overloaded operators that make the class
easy to use: =, +, +=, ==, !=, <, <=, >, >=, and []. The class also contains <</>> for use
with the

CArchive

 class. The [] operator in particular is extremely nice because it lets
you think of a

CSting

 as a completely normal array of characters. The

GetAt

 and

SetAt

 member functions give you additional indexed access paths into the string.
The

GetLength

 function performs the same task as the

strlen

 function, return-
ing the number of characters in the string. However, it is much quicker than

strlen

 is
on large strings because the

CString

 class contains a data member that knows the
length of the string. Therefore,

GetLength

 simply returns that data member rather
than counting each character in the string. The

IsEmpty

 function returns TRUE if
the string contains zero characters. The

Empty

 function sets the length of the string
to zero.

The

CString

 class offers a number of utility functions listed below:
Compare Identical to

strcmp

CompareNoCase Case-insensitive compare
Collate Language-dependent compare like

strcoll

Find Finds a target string in a source string, starting at the begin-
ning

FindOneOf Given a set of characters, finds the first instance of one of
them in a set

MakeUpper Converts string to uppercase
MakeLower Converts string to lowercase
MakeReverse Reverses string
Mid Returns a substring from the middle of an existing string
Left Returns the leftmost N characters from a string
ReverseFind Finds a target string in a source string, starting at the end

string
Right Returns the rightmost N characters from a string
SpanIncluding Given a set of characters, returns the characters in a string

from that set
SpanExcluding Given a set of characters, returns the characters in a string

not from that set

274

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

As you can see, the class provides much more extensive coverage of common
string functions than the normal C string library, and the provided functions are easier
to use and often more efficient. In addition, if you want to add extra functionality you
can easily inherit the

CString

 class and add new functions.
The

GetBuffer

 function is unique and important. It allows you to use

CString

objects in places where you specifically need to manipulate the contents of the string
memory directly. This capability is generally useful in situations where immediate ac-
cess to the contents of the string makes operations on the string faster, but is
specifically useful when you want to use a

CString

 object with a function that returns
a string.

For example, say that you want to use a

CString

 object named

s

 with the

Get-
DlgItemText

 function that you saw in Chapters 4 and 5. As you recall, the

GetDlgItemText

 function accepts a parameter in which it returns the contents of a
control’s text. You cannot simply pass the variable

s

 to the function, because

s

 is not
a pointer to a character. The

GetBuffer

 function returns a pointer to a character so
you can use it as shown here:

GetDlgItemText(IDC_STRING, s.GetBuffer(len), len);
s.ReleaseBuffer();

The call to

GetBuffer

 returns a normal pointer to character expected by

Get-
DlgItemText

, and because that pointer is not a

const

 pointer you can manipulate the
string directly. What

GetBuffer

 is returning is the pointer to the memory block that
the

CString

 class is maintaining on the heap. When you call the

ReleaseBuffer

 func-
tion, the

CString

 class checks the size of the manipulated buffer and updates its
internal length.

See also the

GetBufferSetLength

 function and the MFC documentation for
further information.

12.1.3 The CTime and CTimeSpan Classes

The

CTime

 class encapsulates the time functions and structures found in the
normal C time library. The class makes many of these functions much easier to use.
Additionally, the class provides functions that convert to and from the various stan-
dard formats in the C time library, allowing you to easily interface to older C functions
and libraries that require these structures. If you have used the time library, these con-
version functions will be obvious, but if you have not you may find it useful to read
about the time library functions in the documentation.

A typical use of the

CTime

 class is shown below:

// gettime.cpp

// The message handler function
void CWindow::HandleButton()
{

CTime t;
t = CTime::GetCurrentTime();
CString s = t.Format("Current time and date: %c");
MessageBox(s, "Time", MB_OK);

}

12.1
U

tility C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

275

This code demonstrates an extremely common way to use the

CTime

 class. You
can try it out by using this

HandleButton

 function in Listing 12.1. The code creates
an instance of the

CTime

 class named

t

. It then fills

t

 with the current time using the
static member function

GetCurrentTime

. Then it uses the

Format

 function to create
a string representation of

t

 and displays it in a message box. You might substitute this
code into the clock code in Chapter 11.

The

CTime

 constructor has four forms:

CTime t1;
CTime t2(t);
CTime t3(dosdate, dostime);
CTime t4(1999, 1, 1, 3, 30, 0);

 The first example sets

t1

 to the time 0. You should plan to fill

t1

 in with a valid
value shortly afterward, because 0 is an invalid value. This default constructor is pro-
vided so that you can create arrays of

CTime

. The second value creates

t2

 and
initializes it to the value of

t

. Accepted types for

t

 are

CTime

 and

time_t

. Both FILE-
TIME and SYSTEMTIME structures are also accepted. In the third form, values
returned by

_dos_getftime

 initialize

t3

. In the fourth example, six integer constants
set the time to 3:30 on January 1, 1990.

The

CTime

 class overloads the following operators: =, +, -, +=, -=, ==, !=, <=,<
, >=, > and <</>> (for the

CArchive

 class). The addition and subtraction operators use
the

CTimeSpan

 class described below.
The

CTime

 class offers three conversion functions:
GetTime Returns a

time_t

 value
GetGmTime Returns a pointer to a

tm

 structure in GMT (UTC) format
GetLocalTm Returns a pointer to a

tm

 structure in local time format
The

CTime

 class also offers a pair of functions that convert the time held in an
instance of the class to a string:

Format

 and

FormatGmt

. These functions duplicate
the

strftime

 function in the C time library for local and GMT (UTC) format. You
provide either of these functions with a format string similar to a

printf

 format string
and they return the specified string representation of the time. The following format-
ting constants are understood:

%a Name of day (abbreviated)
%A Name of day
%b Name of month (abbreviated)
%B Name of month
%c Normal representation of date and time
%d Decimal day of month
%H Hour (military)
%I Hour (civilian)
%j Numeric day of the year (1-366)
%m Month (numeric)
%M Minute
%p AM/PM
%S Second

276

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

%U Numeric week of the year (0-51), Sunday=first day of week
%W Numeric week of the year (0-51), Monday=first day of week
%w Numeric day of the week (Sun=0)
%x Normal representation of date
%X Normal representation of time
%y Year from start of century (0-99)
%Y Year
%z, %Z Time zone
%% Percent character
In the example at the beginning of this section, the “%c” constant was used for

simplicity, but you can produce strings as intricate as you like using the above
constants.

Finally, the

CTime

 function provides six functions that extract integer values
from the time held by an instance of the

CTime

 class:
GetYear 1970-2038
GetMonth 1-12
GetDay 1-31
GetHour 0-23
GetMinute 0-59
GetSecond 0-59
GetDayOfWeek Sunday=1, Monday=2, ...
The

CTimeSpan

 class supplements the

CTime

 class to provide a convenient
way to store differences between two times. A typical use appears below:

CTime t1(1999, 1, 1, 0, 0, 0);
CTime t2;
t2 = CTime::GetCurrentTime();
CTimeSpan ts = t1 - t2;
CString sd = ts.Format("Difference = %D %H %M %S");
MessageBox(sd, "Time", MB_OK);

This example calculates and displays the time difference between the current
time and the first second of the year 1999.

The

CTimeSpan

 class has three different constructors:

CTimeSpan t1;
CTimeSpan t2(t);
CTimeSpan t3(0, 5, 20, 30);

The first example creates

t1

 and initializes it to zero. The second example creates

t2

 and initializes it to either a

time_t

 value or a previously created

CTimeSpan

 value.
The third example creates

 t3

 and initializes it to 0 days, 5 hours, 20 minutes, and 30
seconds.

A typical way to initialize an instance of the

CTimeSpan

 class is shown in the
sample code above:

CTimeSpan ts = t1 - t2;

Here, two instances of the

CTime

 class are subtracted and placed in an instance
of the

CTimeSpan

 class.

12.1
U

tility C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

277

The

CTimeSpan

 class overloads the following operators: =, +=, -=, +, -, ==, !=,
<, <=, >, >=, and <</>> (for the

CArchive

 class). These operators make it easy to add,
subtract, and compare time differences.

Seven different functions let you easily extract integer representations of the time
difference held in an instance of the

CTimeSpan

 class:
GetDays Number of elapsed days
GetHours Number of hours (-23 through 23).
GetTotalHours Number of elapsed hours
GetMinutes Number of minutes (-59 through 59)
GetTotalMinutes Number of elapsed minutes
GetSeconds Number of seconds (-59 through 59)
GetTotalSeconds Number of elapsed seconds
The

format

 function makes it easy to print strings showing the value held by in-
stances of the class. The following formatting constants are understood:

%D Days
%H Hours
%M Minutes
%S Seconds
%% Percent character

12.1.4 The CRect, CPoint, and CSize Classes

The Windows API, when used in C, supports three common structures named
RECT, POINT, and SIZE. These three structures are used in hundreds of different
C functions in the API. MFC, therefore, frequently has need for structures of these
types. The

CRect

,

CPoint,

 and

CSize

 classes provide simple and useful encapsula-
tions that preserve the three structures but add a number of functions that make it
easier for you to manipulate the structures.

Each of the three classes has a single-member variable of the type RECT,
POINT, and SIZE, respectively. This means that you can pass, for example, an in-
stance of

CRect

 to any function expecting a RECT parameter.
The following lists briefly describe the functions and operators available in the

three classes. Most of the functions have obvious actions. See the MFC documenta-
tion for further information.

CRect

typedef struct
{
 int left;
 int top;
 int right;
 int bottom;
} RECT;

CRect Constructor
Width Returns the width of the rectangle
Height Returns the height of the rectangle
Size Returns the size

278

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

TopLeft Returns the top-left point
BottomRight Returns the bottom-right point
IsRectEmpty Returns TRUE if width or height is zero
IsRectNull Returns TRUE if all four values are zero
PtInRect Returns TRUE if the point is inside the rectangle
SetRect Sets the rectangle
SetRectEmpty NULLs the rectangle
CopyRect, = Assignment
EqualRect, ==, != Equality and inequality
InflateRect Modifies the width and height
OffsetRect, +, - Moves the rectangle's coordinates
SubtractRect, -, -= Subtraction
IntersectRect, &=, & Returns the rectangle of intersection
UnionRectSets, |=, | Returns a rectangle surrounding the two rectangles
LPCRECT Converts a CRect to an LPCRECT
LPRECT Converts a CRect to an LPRECT

CPoint

typedef struct
{
 int x;
 int y;
} POINT;

CPoint Constructor
Offset Modifies X and Y
== Equality
!= Inequality
+=, + Addition
-=, - Subtraction

CSize

typedef struct
{
 int cx;
 int cy;
} SIZE;

CSize Constructor
== Equality
!= Inequality
+=, + Addition
-=, - Subtraction

12.2 Simple Array Classes

One of the most common and frequently used data structures is the normal C
array. Arrays are popular because they have several important advantages. First and
foremost, they are extremely easy to use. They are also efficient: You can get to any

12.2
Sim

p
le

 A
rra

y C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

279

element in an array in a constant amount of time, and this makes them useful for
searching and sorting.

C arrays have several problems, however. One of the more bothersome is the fact
that they have a fixed size. In C arrays also have unprotected boundaries, and this can
lead to a number of difficult-to-track bugs.

MFC provides classes for six different types of arrays. All these arrays share the
same basic functionality. There are several important features that distinguish MFC
arrays from normal C arrays:

• MFC arrays can grow and shrink. The class allocates or reallocates memory
as needed

• MFC arrays perform boundary checks during the debugging phase
• MFC arrays add important and useful capabilities such as insertion into and

deletion from the middle of an array
MFC arrays come in two different flavors, one using templates and the other

not. The code in Listing 12.4 demonstrates how to create and use an array of unsigned
integers using a non-template array class called

CUIntArray

.

Listing 12.4
A simple array of unsigned integers

// array.cpp

#include <afxwin.h>
#include <afxcoll.h>

#define IDC_BUTTON 100

// Declare the application class
class CButtonApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CButtonApp ButtonApp;

// Declare the main window class
class CButtonWindow : public CFrameWnd
{

CButton *button;
CUIntArray array;
int x;

public:
CButtonWindow();
afx_msg void HandleButton();

DECLARE_MESSAGE_MAP()
};

// The message handler function

280

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

void CButtonWindow::HandleButton()
{

SetDlgItemInt(100, array.GetAt(x), FALSE);
x++;

}

// The message map
BEGIN_MESSAGE_MAP(CButtonWindow, CFrameWnd)

ON_COMMAND(IDC_BUTTON, HandleButton)
END_MESSAGE_MAP()

// The InitInstance function is called once
// when the application first executes
BOOL CButtonApp::InitInstance()
{

m_pMainWnd = new CButtonWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CButtonWindow::CButtonWindow()
{

CRect r;

// Create the window itself
Create(NULL,

"CButton Tests",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Get the size of the client rectangle
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button
button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r,
this,
IDB_BUTTON);

int i;
for (i=0; i<100; i+=2)

array.Add(i);
}

Listing 12.4 creates the array at the bottom of the window’s constructor and fills
it with 50 integers:

int i;
for (i=0; i<100; i+=2)

array.Add(i);

12.2
Sim

p
le

 A
rra

y C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

281

The variable

array

 is a data member of the window’s class. The code adds ele-
ments to the array using the

Add

 member function. When the window appears on the
screen, it contains a button. Each time you click the button it displays an element of
the array. This action demonstrates retrieval.

The

CUintArray

 class is one of five simple arrays that MFC supports. The oth-
ers are

CByteArray

,

CDWordArray

,

CWordArray

, and

CPtrArray

. MFC also
supports an array of

CString

s called

CStringArray

, as well as an array of objects de-
rived from

CObject

. Each of these arrays has the same member functions.
The

Add

 function seen previously adds an element to the end of the array. If all
the memory currently allocated for the array is full, the array increases its size to ac-
commodate the new entry by allocating a new block on the heap and copying the array
to that new block. The only limit on array size is set by available virtual memory space.

By default, the array grows by one element each time you add a new entry to the
array. That is, each time you call the

Add

 function, MFC allocates a new block of
memory from the heap that is one element bigger than the current array, and then
copies the current contents of the array to the new block. Obviously, this is painfully
slow. You can modify the growth behavior, and the initial size of the array, using the

SetSize

 function. This function accepts the initial size of the array and the growth size
as parameters.

You should use this function only once.

 For example, say that you know
you will be adding thousands of elements to a UINT array. You might use the follow-
ing call:

CUintArray array;
array.SetSize(0, 10000);

This call tells the array to start with 0 elements and to grow the array by 10,000
elements each time it runs out of space. You may want to experiment with the growth
size in different applications to find the best trade-off between performance and wast-
ed space.

If you know that the array will need exactly 15,000 elements, you can set that
size with the

SetSize

 function. For example:

CUintArray array;
array.SetSize(15000, 100);

This call indicates an initial size of 15,000 elements and a growth size of 100 el-
ements. After doing this, use the

SetAt

 or

SetAtGrow

 functions to modify existing
elements of the array. Both functions accept an index, which is zero-based just like a
C array, as well as the value to place at that location. The

SetAt

 function will only add
new values to existing elements of the array, while

SetAtGrow

 will grow the array if
necessary to accommodate the new entry.

Note that when you use the

SetSize

 function the last element of the array as per-
ceived by the

Add

 function is set to the size indicated. In the above example where

SetSize

 sets the initial size to 15,000, the next add operation would occur at index
15,000. Use

SetAt

 to change values at indexes between 0 and 14,999.
The

GetAt

 function returns an element of the array. It will assert an error if you
are in debug mode (see Chapter 13) and attempt to reference an element outside the
bounds of the array. Note that the

[]

 operator is equivalent to

SetAt

 and

GetAt

.

282

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

The following functions give you further control over the array:
GetSize Returns the number of elements in the array
GetUpperBound Returns GetSize-1
FreeExtra Deletes any extra memory allocated but not used
RemoveAll Deletes all elements from the array
InsertAt Inserts values at the index indicated, bubbling all elements

below down to make room
RemoveAt Removes values at the index indicated, bubbling all elements

below up to close the gap
operator [] Sets or gets the element at the specified index.
As you can see, the MFC array implementation is extremely easy to use, but is

also quite flexible and robust. You should use it in place of any normal C array.
The template-based form of the array class is called

CArray

. It has the same
functions as the pre-defined array classes described above. The template version has
the advantage that you can create an array of any type rather than being restricted to
specific types. It has the disadvantage that, in most cases, you need to override helper
functions in

CArray

. See the MFC documentation (particularly the topic “Collec-
tions” in books on-line) for more information on

CArray

 and other template classes.

12.3 The CObject class and CObject Arrays

You may have noticed that all the array types listed in the previous section, with
the exception of the

CString

 and

CObArray

arrays, hold ordinal types: UINT,
BYTE, DWORD, WORD, and pointers all fall into this category. If you want to cre-
ate an array of some other type, MFC also provides the template-based

CArray

.
Additionally, it is possible for you to derive new classes from the MFC base class

COb-
ject

 and store those objects in an array named

CObArray

. This special array type lets
you create your own arrays that can automatically

serialize

 themselves to disk, giving
you an extremely easy way to read and write data to files.

If you look at the full MFC class hierarchy, you will find that the

CObject

 class
is extremely important. It is the base class for the vast majority of other classes in the
hierarchy. You can see this by searching for “Hierarchy Charts” in the MFC documen-
tation and examining the different hierarchy charts available. Ninety percent of the
classes in MFC have

CObject

 as their base.

CObject

’s position in the hierarchy gives it a great deal of control over the be-
havior of MFC classes. It contains several important characteristics that are broadly
shared by all MFC objects:

• Support for runtime class information
• Support for diagnostic information (see Section 12.3)
• Support for serialization
• Support for dynamic creation
By creating your own classes from

CObject

, you can take advantage of these
same benefits.

MFC provides six macros that turn on

CObject

’s advanced capabilities:

12.3
The

 C
O

b
je

c
t c

la
ss a

nd
 C

O
b

je
c

t A
rra

ys

This book is continuously updated. See http://www.iftech.com/mfc

283

DECLARE_DYNAMIC
IMPLEMENT_DYNAMIC
DECLARE_DYNCREATE
IMPLEMENT_DYNCREATE
DECLARE_SERIAL
IMPLEMENT_SERIAL
The DYNAMIC macros support runtime class information. Runtime class in-

formation allows you (or other parts of the MFC class hierarchy) to query an object
derived from

CObject

 for its class type. For example, if you call the

IsKindOf

 func-
tion on an instance of a

CObject

-derived class, the instance will verify if it is derived
from a particular class.

The DYNCREATE macros support dynamic creation. Dynamic creation allows
the class hierarchy to create instances dynamically at runtime, for example when it is
reading serialized object information from disk.

The SERIAL macros support serialization and additionally include the DY-
NAMIC and DYNCREATE capabilities automatically. By using the SERIAL macros
you enable all of capabilities of the

CObject

 class.
As an example of how you might use the

CObArray

 and

CObject

 classes in your
own applications, let’s revisit DRAW3.CPP from Chapter 11. In that program we cre-
ated a simple array class that stored the points draw by the user. The array allows the
program to properly refresh its client area during

OnPaint

 events.
Let’s say that we want to extend DRAW3.CPP so it also has the added feature

of

persistence

. That is, whenever the user quits the drawing program we want it to save
the current picture to disk automatically and then reload that image again the next
time the user restarts the application. This is extremely easy to do using the

CObArray

class.
To take advantage of the

CObArray

 class, you must derive your data class from

CObject

. Listing 12.5 demonstrates how to do this.

Listing 12.5
The CObPoint class

class CObPoint : public CObject
{
DECLARE_SERIAL(CObPoint)
protected:

LONG x, y;
public:

CObPoint() {x=0; y=0;}
CObPoint(const CObPoint &p) {x=p.x; y=p.y;}
CObPoint operator=(const CObPoint& p)

{x=p.x; y=p.y; return *this;}
CObPoint(int ix, int iy) {x=ix; y=iy;}
CObPoint(CPoint &p) {x=p.x; y=p.y;}
virtual void Serialize(CArchive &archive)
{

CObject::Serialize(archive);

284

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

if (archive.IsStoring())
archive << x << y;

else
archive >> x >> y;

}
// The (int) casts in the line below are
// needed only in Windows 3.1. Remove in
// WIN32 environments
CPoint GetPoint() const {return CPoint(x,y);}

};

IMPLEMENT_SERIAL(CObPoint, CObject, 0)

The class declared in Listing 12.5 is a complete implementation of a new class
derived from CObject. It contains the proper default constructor, copy constructor
and assignment operator. Technically, the copy constructor and assignment operator
are not necessary here because this class does not have members that are pointers. They
are included to demonstrate their potential need. See Appendix A for more informa-
tion. The class contains two converting constructors and a new function GetPoint
that extracts information from the class. The class also overrides the Serialize member
function of CObject to properly serialize instances of this class. Because it overrides
Serialize, the class contains the DECLARE_SERIAL macro, and you must also use
the IMPLEMENT_SERIAL macro after the compiler finishes compiling the imple-
mentation for the class, as shown.

The Serialize function gives MFC a way to automatically provide persistence.
Each new class that you create from CObject should override Serialize so it can save
itself to an archive. An archive is an efficient binary stream (as opposed to a text
stream) stored in a file. In CObPoint::Serialize you see the class first call the base
class’s Serialize function and then examine the IsStoring function to decide on the
current data direction. It saves to or loads from the archive depending on the direction
using the << or >> operators. All classes in MFC, as well as all standard types (int, char,
etc.), have overloaded << and >> operators compatible with the CArchive class.

Why go to all this trouble? For example, if you need to create an array of address
records, why not create it using your own array rather than inherit an address class
from CObject and then place the objects in a CObArray? Here are three good reasons
to base your address class off CObject:

1. You automatically gain important debugging features built into the CObject
class. See Chapter 13.

2. You make integration into the CDocument class much easier. This class is
extremely important in Part 3.

3. You get access to serialization, which is an efficient and easy way to store data
on disk.
To create your own classes based from CObject, simply follow the example that

appears in Listing 12.5. Create your members and then add functions like those

12.3
The

 C
O

b
je

c
t c

la
ss a

nd
 C

O
b

je
c

t A
rra

ys

This book is continuously updated. See http://www.iftech.com/mfc

285

shown to provide access and serialization for the class. See Chapter 13 for information
on how to add debugging support to

CObject

-derived classes.
Listing 12.6 shows how to integrate the

CObPoint

 class seen in Listing 12.5
into the drawing program from Chapter 11.

Listing 12.6
Using the CObPoint class in a drawing program to provide automatic persistence.

// drawob.cpp

#include <afxwin.h>
#include <afxcoll.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

class CObPoint : public CObject
{
DECLARE_SERIAL(CObPoint)
protected:

LONG x, y;
public:

CObPoint() {x=0; y=0;}
CObPoint(const CObPoint &p) {x=p.x; y=p.y;}
CObPoint operator=(const CObPoint& p)

{x=p.x; y=p.y; return *this;}
CObPoint(int ix, int iy) {x=ix; y=iy;}
CObPoint(CPoint &p) {x=p.x; y=p.y;}
virtual void Serialize(CArchive &archive)
{

CObject::Serialize(archive);
if (archive.IsStoring())

archive << x << y;
else

archive >> x >> y;
}
// The (int) casts in the line below are
// needed only in Windows 3.1. Remove in
// WIN32 environments
CPoint GetPoint() const {return CPoint((int)x, (int)y);}

};

IMPLEMENT_SERIAL(CObPoint, CObject, 0)

// Define the window class
class CWindow : public CFrameWnd
{

CObArray *array;
public:

286

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

CWindow();
~CWindow();
afx_msg void OnPaint();
afx_msg void OnMouseMove(UINT,CPoint);
afx_msg void OnDestroy();
DECLARE_MESSAGE_MAP()

};

// The window's constructor
CWindow::CWindow()
{

// Create the window
Create(NULL, "Drawing Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,250));

// Read persistent data
CFile file;
if (file.Open("data", CFile::modeRead))
{

CArchive archive(&file, CArchive::load);
archive >> array;
archive.Close();
file.Close();

}
else

array = new CObArray();
}

// Window's destructor
CWindow::~CWindow()
{

// delete all elements in the array
int i;
for (i=0; i<array->GetSize(); i++)

delete array->GetAt(i);
array->RemoveAll();
delete array;

}

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_WM_PAINT()
ON_WM_MOUSEMOVE()
ON_WM_DESTROY()

END_MESSAGE_MAP()

// Handle mouse movement
void CWindow::OnMouseMove(UINT flag,

CPoint mousePos)
{

if (flag == MK_LBUTTON)
{

CClientDC dc(this);
dc.SetPixel(mousePos,RGB(0,0,255));
// Add each point to the array

12.3
The

 C
O

b
je

c
t c

la
ss a

nd
 C

O
b

je
c

t A
rra

ys

This book is continuously updated. See http://www.iftech.com/mfc

287

array->Add(new CObPoint(mousePos));
}

}

// Handle exposure
void CWindow::OnPaint()
{

int x;
CPaintDC dc(this);
// Redraw all points in the array
for (x=0; x<array->GetSize(); x++)

dc.SetPixel(((CObPoint *)(array->GetAt(x)))->GetPoint(),
RGB(0,0,255));

}

// Handle destruction by saving object array
void CWindow::OnDestroy()
{

// Save persistent data
CFile file;
if (file.Open("data", CFile::modeCreate | CFile::modeWrite))
{

CArchive archive(&file, CArchive::store);
archive << array;
archive.Close();
file.Close();

}
}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

Run Listing 12.6, draw something, and then close the application. The OnDe-
stroy function will save the data from your drawing to a file arbitrarily named “data.”
When you rerun the application, the constructor for CWindow will read the data
back in automatically and you can continue working on the drawing.

This program uses a CObArray array to hold the data. The array is a member
of the CWindow class and is initialized in the constructor for the window. Each time
the user does any drawing, the OnMouseMove function allocates a new instance of
CObPoint and uses the Add function to add the instance to the array:

array->Add(new CObPoint(mousePos));

See the previous section for more information on the Add function. Whenever
the program receives an exposure event, the OnPaint function uses a for loop, the
GetSize function, the GetAt function, and the GetPoint function of CObPoint to
retrieve and redraw the points in the drawing:

288

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

for (x=0; x<array->GetSize(); x++)
dc.SetPixel(((CObPoint *)(array->GetAt(x)))->GetPoint(),

RGB(0,0,255));

As the window destroys itself on a close, the

OnDestroy

 function serializes the
array to disk:

// Handle destruction by saving object array
void CWindow::OnDestroy()
{

// Save persistent data
CFile file;
if (file.Open("data", CFile::modeCreate | CFile::modeWrite))
{

CArchive archive(&file, CArchive::store);
archive << array;
archive.Close();
file.Close();

}
}

The destructor can then free all elements in the array and delete the array itself:

// Window's destructor
CWindow::~CWindow()
{

// delete all elements in the array
int i;
for (i=0; i<array->GetSize(); i++)

delete array->GetAt(i);
array->RemoveAll();
delete array;

}

The

OnDestroy

 function opens a file for writing (see Section 12.1 for more in-
formation on

CFile

), attaches that file to an instance of the

CArchive

 class, and then
dumps the array to the archive. The << operator automatically calls

CObArray

’s

Se-
rialize

 member function, which in turn automatically calls the

Serialize

 member
function for each element it holds. Note that the archive is created here in the “store”
direction, and the file is writable.

Loading the file in the window’s constructor simply reverses the process:

CFile file;
if (file.Open("data", CFile::modeRead))
{

CArchive archive(&file, CArchive::load);
archive >> array;
archive.Close();
file.Close();

}

Here the code opens a readable file and gives the archive a “load” direction. One
line of code then brings all the data from the file into the array. Note that nowhere in
this code do you have to allocate memory for the array. There is no call to

new

 for the

array

 member variable, although there is a call to

delete

 in the destructor. When the
program opens the file and reads in the archive, the archive automatically and dynam-
ically allocates the array and all the points within the array. It can do this because the
array and the points are both based off the

CObject

 class, which has dynamic creation

12.3
The

 C
O

b
je

c
t c

la
ss a

nd
 C

O
b

je
c

t A
rra

ys

This book is continuously updated. See http://www.iftech.com/mfc

289

abilities. You are responsible for deleting the dynamically created objects in the
destructor.

Pay special attention to the invocation of the IMPLEMENT_SERIAL macro:

IMPLEMENT_SERIAL(CObPoint, CObject, 0)

The

CObPoint

 class declares itself as serializable at the top of the class with the
DECLARE_SERIAL macro. The IMPLEMENT_SERIAL macro, which should only
be invoked

once

 in an application for any given class, tells MFC two things:

1. The name of

CObPoint

’s base class,

CObject

2. A “version number,” or

schema

that lets MFC handle different versions of the
data properly.
The version number is an interesting feature and shows how far MFC goes to

make your life easier. For example, this implementation sets the version number to ze-
ro. If you were to change the data members of the class in a later program, you could
change the version number in IMPLEMENT_SERIAL to one. Then if the user tries
to load an old data file, MFC can throw an archive exception (See Chapter 13) to in-
dicate the problem.

Because you can call IMPLEMENT_SERIAL only once for a given class in an
application, you typically implement your own

CObject

-derived classes using sepa-
rate header and implementation files. Listings 12.7 and 12.8 demonstrate the process
for the

CObPoint

 class. Any program needing to use the

CObPoint

 class can simply
include the header file and link in the object file for

cobpoint.cpp

.

Listing 12.7
The file cobpoint.h

// cobpoint.h

#ifndef _INC_COBPOINT
#define _INC_COBPOINT

class CObPoint : public CObject
{
DECLARE_SERIAL(CObPoint)
protected:

LONG x, y;
public:

CObPoint();
CObPoint(const CObPoint &p);
CObPoint operator=(const CObPoint& p);
CObPoint(int ix, int iy);
CObPoint(CPoint &p);
virtual void Serialize(CArchive &archive);
CPoint GetPoint() const;

};

290

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s #endif // _INC_COBPOINT

Listing 12.8
The file cobpoint.cpp

// cobpoint.cpp

#include <afxwin.h>
#include "cobpoint.h"

CObPoint::CObPoint()
{

x=y=0;
}

CObPoint::CObPoint(const CObPoint &p)
{

x=p.x;
y=p.y;

}

CObPoint CObPoint::operator=(const CObPoint& p)
{

x=p.x;
y=p.y;
return *this;

}

CObPoint::CObPoint(int ix, int iy)
{

x=ix;
y=iy;

}

CObPoint::CObPoint(CPoint &p)
{

x=p.x;
y=p.y;

}

void CObPoint::Serialize(CArchive &archive)
{

CObject::Serialize(archive);
if (archive.IsStoring())

archive << x << y;
else

archive >> x >> y;
}

// The (int) casts in the function below are
// needed only in Windows 3.1. Remove in
// WIN32 environments
CPoint CObPoint::GetPoint() const

12.4
List C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

291

{
return CPoint((int)x, (int)y);

}

IMPLEMENT_SERIAL(CObPoint, CObject, 0)

Note that Listing 12.8 contains the single call to IMPLEMENT_SERIAL need-
ed by the CObPoint class.

Note also that the destructor for the CObArray class does not dispose of the ob-
jects it contains. As seen in the window’s destructor in Listing 12.8, you must
individually delete each element in the array and then delete the array itself. If you
want the array to dispose of its objects automatically, you should derive a new class
from CObArray and create your own destructor in the new class that deletes each ob-
ject held by the array. Note that you must use DECLARE_SERIAL and
IMPLEMENT_SERIAL for this new array class if it needs to be able to serialize itself.

12.4 List Classes
MFC’s list classes give you another way to store collections of objects. MFC sup-

ports three different kinds of lists:
• CStringList — a linked list of CString
• CObList — a linked list of CObject
• CPtrList — a linked list of (void *) pointers
MFC also supports a template-based list class called CList. See the MFC docu-

mentation for further information.
The MFC lists are implemented as doubly linked lists consisting of individually

allocated blocks of memory. There is no limit to the size of a list except for the amount
of free virtual memory space in the machine. Because it is a linked list, insertions are
fast at the head or the tail or at a known position in the middle of the list. Searching
is slow because it has to be sequential.

All MFC lists have the same member functions, listed below:
Constructor The list constructor
AddHead Adds elements or other lists to the head of the list
AddTail Adds elements or other lists to the tail of the list
Find Returns the POSITION of a pointer value
FindIndex Returns the POSITION of an index
GetAt Returns a pointer or reference to a POSITION
GetCount Returns a count of the elements in the list
GetHead Returns a pointer or reference to the front element of the list
GetHeadPosition Returns the POSITION of the front element of the list
GetNext Returns a pointer or reference to the next element of the list
GetPrev Returns a pointer or reference to the next element of the list
GetTail Returns a pointer or reference to the last element of the list
GetTailPosition Returns the POSITION of the last element of the list

292

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

InsertAfter Given a POSITION, inserts an element behind it
InsertBefore Give a POSITION, inserts an element in front of it
IsEmpty Returns TRUE if the list is empty
RemoveAll Empties the list
RemoveAt Given a POSITION, deletes the element at that position
RemoveHead Deletes the list’s first element
RemoveTail Deletes the list’s last element
SetAt Given a POSITION, replaces the object at that position
Many of these functions rely on values of type POSITION. You can best under-

stand this type and how to use it by looking at an example, as shown in Listing 12.9.

Listing 12.9
Adding elements to a sorted list of CString.

//List.cpp

const char *words[] = {"cat", "dog", "aardvark"
"boy", "frog", "goat", "horse", "eel",
"fish", "ant", "llama"};

const int numWords = sizeof(words)/sizeof(char *);
CStringList *list;

void CWindow::SortedAdd(const CString &word)
{

POSITION p;

// handle the empty-list case
if (list->IsEmpty())

list->AddTail(word);
// otherwise, find the proper position
// and add the word
else
{

BOOL done=FALSE;

p = list->GetHeadPosition();
while (p != NULL && !done)
{

if (word > list->GetAt(p))
list->GetNext(p);

else
{

list->InsertBefore(p, word);
done = TRUE;

}
}
if (!done)

list->AddTail(word);
}

}

void CWindow::WriteToFile(char *filename)

12.4
List C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

293

{
CStdioFile f;
CFileException e;
BOOL status;

status = f.Open(filename,
CFile::modeCreate | CFile::modeWrite | CFile::typeText, &e);

if (!status)
{

char s[100];
sprintf(s,"Cause = %d", e.m_cause);
MessageBox(s, "File error", MB_OK);

}
else
{

POSITION p;

p = list->GetHeadPosition();
while (p != NULL)

f.WriteString(list->GetNext(p) + "\n");
f.Close();

}
}

// The message handler function
void CWindow::HandleButton()
{

list = new CStringList;
int x;

// unsorted insertions
for (x=0; x<numWords; x++)

 list->AddTail(words[x]);
// dump the list to a file
WriteToFile("string1.dat");

// sorted insertions
list->RemoveAll();
for (x=0; x<numWords; x++)
{

// SortedAdd is not in CStringList.
// It is defined in this listing.
SortedAdd(words[x]);

}
// dump the list to a file
WriteToFile("string2.dat");

delete list;
}

Listing 12.9 creates a list of CStrings and adds words to the list one at a time.
You can replace the HandleButton function in Listing 12.1 to run this code.

294

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

Listing 12.9 adds words to the list twice. The first time it adds all words to the
end of the list. The second time it maintains the list in sorted order. In both cases it
writes the list to a text file after filling it so you can examine the list.

Adding words to the beginning or end of the list is easy. Listing 12.9 repeatedly
adds elements to the end of the list using the following

for

 loop:

for (x=0; x<numWords; x++)
 list->AddTail(words[x]);

The

AddTail

 function adds each word to the end of the list. Once the

for

 loop
finishes, the program calls the

WriteToFile

 function to create a text file containing
the contents of the list. The

WriteToFile

 function uses a loop to traverse the list, writ-
ing out each element as it goes (Note that serialization [see Section 12.3] would be
much easier from a coding standpoint, but serialized files contain binary data rather
than text and are not human-readable):

POSITION p;

p = list->GetHeadPosition();
while (p != NULL)

f.WriteString(list->GetNext(p) + "\n");
f.Close();

Before entering the loop, the program calls

GetHeadPosition

. This function re-
turns a value of type POSITION. A POSITION is a temporary pointer into the
linked list. You can use the

GetAt

 or the

GetNext

 function to gain access to the object
at the POSITION pointer.

The

GetAt

 function returns to you either a reference or a pointer to the element
held at the position. If the list is constant,

GetAt

 returns a pointer to the element held
at that position in the list. You can use

GetAt

 only on the RHS of an assignment. If the
list is not constant, you can use

GetAt

 on either the LHS or RHS and you can use it to
modify elements in the list.

GetNext

 has the same behavior, but additionally moves the
POSITION pointer to the next element in the list in addition to returning a pointer
or reference to the current element.

GetPrev

 does the same thing as

GetNext

, but
moves the POSITION pointer to the previous element.

The sorted insertion function adds a word to the list at its proper sorted position.
It has to handle three different cases to do this. If the list is empty, the

GetAt

 function
asserts on the error (see Chapter13), so the code must handle the first insertion sepa-
rately. When the list is non-empty, the code traverses to find the correct insertion
point. Once found, it inserts the value. If the value belongs at the very end of the list,
the code handles that situation separately as well to avoid runtime errors:

// handle the empty-list case
if (list->IsEmpty())

list->AddTail(word);
// otherwise, find the proper position
// and add the word
else
{

BOOL done=FALSE;

p = list->GetHeadPosition();

12.5
M

a
p

p
ing

 C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

295

while (p != NULL && !done)
{

if (word > list->GetAt(p))
list->GetNext(p);

else
{

list->InsertBefore(p, word);
done = TRUE;

}
}
if (!done)

list->AddTail(word);
}

If you want to modify an element of the list, you can use the

GetAt

,

GetNext

,
or

GetPrevious

 functions to do it. The code below walks through a list of

CString

and modifies every value in it:

POSITION p;
char c = 'a';

p = list->GetHeadPosition();
while (p != NULL)

list->GetNext(p) = CString(c++, 10);
WriteToFile("string3.dat");

The line inside the

while

 loop is a little unusual. Because the

GetNext

 function
returns a reference here, the assignment copies the new

CString

 over the existing

CString

 in the list. Each element in the list is replaced with a ten-character string such
as “aaaaaaaaaa”, “bbbbbbbbbb”, etc.

You use

CPtrList

 and

CObList

 in a manner identical to that demonstrated
above for

CString

. Keep in mind, however, that neither

CPtrList

 nor

CObList

 clean
up their elements during destruction. If you need for that to happen, derive a new class
and create your own destructor there.

12.5 Mapping Classes

The MFC mapping classes let you easily translate values from one type to anoth-
er. For example, you might have a set of strings associated with a set of

CObject

s.
Perhaps the

CObject

s are data records and the strings represent their part numbers.
You can easily form a mapping that contains all the associations and then look up ob-
jects by their part numbers very quickly. The mapping classes use a hashing algorithm
to look things up quickly.

Figure 12.1 shows the different translations possible with the MFC-supplied
mappings, and it is easy to derive other mappings of your own to create any mapping
you desire.

A list of the mapping class names is shown below:
CMapPtrToWord Maps (void *) to WORD
CMapPtrToPtr Maps (void *) to (void *)
CMapStringToOb Maps CString to (CObject *)
CMapStringToPtr Maps CString to (void *)

296

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

CMapStringToString Maps CString to CString
CMapWordToOb Maps WORD to (CObject *)
CMapWordToPtr Maps WORDs to (void *)
There is also a template-based mapping class called

CMap

. See the MFC docu-
mentation for further information.

To use a mapping class, you must first load it with your associations. For exam-
ple, you might want to perform one-to-one word translations from nouns in one
language to nouns in another, perhaps English to French. You would use the

CMap-
StringToString

 class and load it with associated word pairs. Using the

SetAt

 function,
you load the specific association for the English word “paper” with the french word
“papier.” You then associate the English word “window” with the French word “fen-
etre”, and so on. To retrieve an association from the mapping, you would use the

Lookup

 function and pass it an English word. It returns the correct French word or
NULL if the English word does not exist in the mapping.

 The code in Listing 12.10 shows another use for a mapping class. Here the map-
ping associates file exception error codes from the

CFileException

 class (see Chapter
13) with English error strings. You would use this mapping to allow an error dialog to
produce an English error message on file exceptions. The program uses the

CMap-
WordToPtr

 class to implement the mapping.

Listing 12.10
A mapping class that translates numeric values from an exception's m_cause field
to associated strings.

// mapping.cpp

char *errors[] =
{
"No error occurred",
"An unspecified error occurred",
"The file could not be located",
"All or part of the path is invalid",

Figure 12.1
The different mappings available in MFC

Ptr

Word

CObject

CString

12.5
M

a
p

p
ing

 C
la

sse
s

This book is continuously updated. See http://www.iftech.com/mfc

297

"The permitted number of open files was exceeded",
"The file could not be accessed",
"There was an attempt to use an invalid file handle",
"The current working directory cannot be removed",
"There are no more directory entries",
"There was an error trying to set the file pointer",
"There was a hardware error",
"SHARE.EXE was not loaded, or a shared region was locked",
"There was an attempt to lock a region that was already locked",
"The disk is full",
"The end of file was reached",
};
int numErrors = sizeof(errors)/sizeof(char *);

class ErrorTranslate : public CMapWordToPtr
{
public:

ErrorTranslate()
{

int i;
for (i=0; i<numErrors; i++)

SetAt(i, errors[i]);
}
char *GetEnglish(int errorNum)
{

void *p;
Lookup(errorNum, p);
return (char *) p;

}
};

// The message handler function
void CWindow::HandleButton()
{

CFile f;
CFileException e;
BOOL status;
ErrorTranslate err;

status = f.Open("asdasdasdasd", CFile::modeRead, &e);
if (!status)

MessageBox(err.GetEnglish(e.m_cause), "Error", MB_OK);
else

f.Close();
}

 In Listing 12.10, the HandleButton function (which you can use to replace the
HandleButton function in Listing 12.1) forces a file exception by trying to open a
non-existent file. Upon detecting the error, HandleButton calls the GetEnglish func-
tion in the ErrorTranslate class. This class is declared locally here but could also
appear globally. The constructor for the ErrorTranslate class loads associations into
the mapping with the SetAt function. The GetEnglish function then uses the Look-

298

This book is continuously updated. See http://www.iftech.com/mfc

12
U

til
ity

 C
la

ss
e

s

up

 function to look up a string by error number. See Chapter 13 for more information
on

m_cause

 and file exceptions.
Mapping classes have several other useful functions:
GetCount Returns the number of associations in the map
GetNextAssoc When iterating through the mapping, gets the next associa-

tion
GetStartPosition When iterating through the mapping, gets the first associa-

tion
IsEmpty Returns TRUE if the mapping contains no associations
Lookup Looks up an association
operator [] Substitute for

SetAt

RemoveAll Deletes all associations in a mapping
RemoveKey Given a value, removes its association from the mapping
SetAt Adds an association to the map, replacing a duplicate if nec-

essary
You will find that these functions, combined with the several elementary func-

tions demonstrated in Listing 12.10, give you complete access to the mappings you
create.

12.6 Conclusion

It would be possible to write an entire book that exhaustively discusses the dif-
ferent utility and collection classes in MFC. These classes make up about one-half of
the hierarchy. Rather than do that, we have chosen to give you a good introduction to
the different classes available and leave it at that. The on-line documentation provided
in the MFC documentation will help you fill in the details as you need them.

The next chapter discusses the debugging facilities built into MFC.

299

13DEBUGGING AND ROBUSTNESS

The MFC class hierarchy provides a number of different tools that help you debug
your applications during development. The goal of these tools is to help you release a
product that is bug-free and robust. This chapter will show you how to use all these
tools and techniques while developing new applications. This chapter also discusses
MFC’s built-in exception handling mechanism. This mechanism allows you to detect
exceptional situations such as out-of-memory errors and file errors at runtime.

Many of the features discussed in this chapter exist because of inherent capabil-
ities built into MFC’s base class,

CObject

. You may wish to review the

CObject

 class
in the MFC documentation and in Section 12.3 before proceeding.

13.1 Setting Up

Many of the features described in this chapter are active only when working with
the

debugging version

, as opposed to the

release version

, of MFC. You control the ver-
sion by specifying the

target

 as described in Appendix B.2. The advantage of using the
release version is that the final executable for your application is smaller and it com-
piles and links somewhat more quickly. The advantage of the debugging version is
that you can access all the normal debugging facilities, and the MFC library does more
thorough tests internally to help catch errors.

When you turn on the debugging mode, three things happen:

1. The “-D_DEBUG” option is added to the compile command, causing debug-
ging statements

ifdef

ed in the header files and code to be included into the
application.

2. Debugging information is added into the executable so the debugger can watch
variables, single step through code, and so on.

3. The linker links against the debugging version of the MFC DLL rather than
the release version.

300

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

Note that the conditional compilation variable used in MFC programs to indi-
cate debugging is named “_DEBUG”. You will see that value frequently used in many
of the example programs in this chapter to switch code in and out of the application.

When you build the debug release of an application, you can use the debugging
features in Visual C++. For example, you will probably want to use the

Go

 option
rather than the

Execute

 option in the

Project

 menu to run your programs. Using the

Go

 option causes the program to run more slowly, but gives you far more control at
runtime. In particular, it gives you the ability to halt the program at any time, single
step through code, look at variables, and examine the call stack. See Appendix B.2 for
details on the different features available in the debug menu.

The following sections show you how to make the most of the debugging facil-
ities built-in to MFC and Visual C++. Keep in mind that while these features help you
in the debug target, they are completely stripped out in the release target, and there-
fore have no impact on the performance of your final product.

13.2 Assertions

One of the easiest to use, and most obvious, debugging features in MFC is called
an

assertion

. You use assertions during the debugging phase to verify that your pro-
gram does not violate any inherent assumptions in the source code that you or other
programmers have written. The debugging versions of the MFC libraries use asser-
tions in the same way, making sure that you do not violate any of MFC’s assumptions
about parameters, working environment, class derivation, and so on.

An

assertion

 in a line of source code looks like this:

ASSERT (<boolean expression>);

The <boolean expression> portion should yield a Boolean value. In debug ver-
sions, the program halts and displays an Assertion Failed dialog for any ASSERT
statement whose Boolean expression evaluates to FALSE. In release versions of the
code, all ASSERT statements are removed by the pre-processor. Note that, because the
pre-processor strips out the ASSERT statements in release versions of the code, the
boolean expression needs to have no side effects. For example, you should not incre-
ment a variable inside an ASSERT statement, because the increment will be lost in the
release version of the code.

It is easy to see an example of MFC’s assertion mechanism in action: Simply vi-
olate an assumption made by MFC. For example, the code in Listing 13.1 violates one
of the assumptions that the

CUIntArray::SetSize

 function makes.

Listing 13.1
Violating an assumption of the CUIntArray::SetSize function

// list.cpp

#include <afxwin.h>
#include <afxcoll.h>

// Define the application class

13.2
A

sse
rtio

ns

This book is continuously updated. See http://www.iftech.com/mfc

301

class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

CUIntArray *array;
public:

CWindow();
};

// The window's constructor
CWindow::CWindow()
{

// Create a window with the new class
Create(NULL, "Drawing Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

array = new CUIntArray;

array->SetSize(-100); // This line is a problem

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

In Listing 13.1, the constructor for the window allocates an instance of the class
CUIntArray and then sets the array’s initial size to a negative number. If you create a
new project, compile Listing 13.1 as a release version program (select release target in
the Target combo box at the top of the project window), and then run it. It will either
die with an unexpected heap error or simply fail to execute. Either error behavior is
useless because you have no idea what caused the error.

On the other hand, if you rebuild the project with the debugging information
turned on (select the debug target in the Target combo box at the top of the project
window) and then rerun the application, you will instead see an assertion dialog.
This dialog is the standard Assertion Failed dialog and does four things for you:

1. It tells you that you have violated an assumption somewhere.
2. It tells you the exact source file and line where the assumption was tested.
3. It pauses program execution so you can track down the problem.

302

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

4. It gives you three options for your next move.
Whenever you violate an assumption, you will have two immediate questions:

1) What was the assumption, and 2) where in my code did I violate it? You can answer
both questions using the debugger. Take the following steps to try it out:

1. Create a new project for Listing 13.1. Build a debug version of the project.
2. Run the program under the debugger using the Go option. The program will

stop with an assertion error dialog.
3. Click the

Retry

 option in the dialog.
4. Select the

Call Stack

 option in the

View

 menu to look at the current function
call stack for the application at the point where you halted execution.
By looking at the Call Stack dialog, you can see a record of which functions were

active at the moment execution halted. If you double-click on the top line in the call
stack window, you will immediately see the line in the code that violated an assertion.
If you double-click on the line for

CUIntArray::SetSize

 in the call stack window, you
will see the line in the MFC source where the assertion was checked. Being able to look
at the ASSERT statement in the MFC source code is useful because there often will
be comments around the ASSERT statement that tell you what is being checked and
why. At the very least you can look at the Boolean expression. Knowing this informa-
tion, you can usually fix the problem.

You should use assertions in your own code to test any assumptions that you
make. For example, you should test assumptions about incoming parameters, loop ex-
tents, and variable values. All these tests will be automatically and totally removed
from your code when you create a release version of the program, so they will have no
effect on the execution speed of your final application.

Note that these tests are different from standard error checking. For example,
you do not want to make an assertion about a file handle right after you open a file.
There is a strong likelihood that a file will fail to open in

any

 version of the program,
debug or release. That is a fact of life with files. Therefore, you want all versions of
your application to appropriately test file handles and then respond. You should use
an assertion inside a function that assumes it receives an open and valid file handle as
an input parameter. The code calling the function should not call the function unless
the file is open and valid, so if it does it is violating an assumption inside the function.
You want to know about that violated assumption during testing, but it should never
occur once the program is fully debugged.

One place where you can use assertions extensively is inside classes that you de-
rive from

CObject

 (see Section 12.3). You can use assertions in every member
function to guarantee that parameters, and the instance itself, are valid. You can also
override

CObject

’s

AssertValid

 function to perform further tests. The

AssertValid

function is called by other classes that want to test the

internal state

 of a

CObject

-de-
rived class instance. The ASSERT_VALID macro calls the

AssertValid

 function.
Listing 13.2 shows the

CObPoint

 class first seen in Chapter 12, modified appropri-

13.2
A

sse
rtio

ns

This book is continuously updated. See http://www.iftech.com/mfc

303

ately to check all assumptions. For the sake of this example, imagine that negative
values for the point’s coordinates are considered erroneous.

Listing 13.2
A fully ASSERTed class derived from CObject. In this class negative values for x and y
are assumed invalid for the sake of the example.

class CObPoint : public CObject
{
DECLARE_SERIAL(CObPoint)
protected:

LONG x, y;
public:

CObPoint() {x=0; y=0;}
CObPoint(const CObPoint &p)
{

ASSERT_VALID(&p);
x=p.x;
y=p.y;

}
CObPoint operator=(const CObPoint& p)
{

ASSERT_VALID(&p);
x=p.x;
y=p.y;
return *this;

}
CObPoint(int ix, int iy)
{

ASSERT (ix >= 0);
ASSERT (iy >= 0);
x=ix;
y=iy;

}
CObPoint(CPoint &p)
{

ASSERT (p.x >= 0);
ASSERT (p.y >= 0);
x=p.x;
y=p.y;

}
virtual void Serialize(CArchive &archive)
{

ASSERT_VALID(this);
CObject::Serialize(archive);
if (archive.IsStoring())

archive << x << y;
else

archive >> x >> y;
}
// The (int) casts in the line below are
// needed only in Windows 3.1. Remove in
// WIN32 environments
CPoint GetPoint() const
{

304

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

ASSERT_VALID(this);
return CPoint((int)x, (int)y);

}
#ifdef _DEBUG

virtual void AssertValid() const
{

// check base class first
CObject::AssertValid();

// check data members...
ASSERT(x >= 0);
ASSERT(y >= 0);

}
#endif //_DEBUG
};

IMPLEMENT_SERIAL(CObPoint, CObject, 0)

In Listing 13.2 there are three different things happening:

1. The code uses ASSERT statements to test integer coordinate values to make
sure they are positive. As mentioned previously, this stipulation is made simply
for the sake of example here.

2. The class declares an AssertValid function to override the COb-
ject::AssertValid virtual function.

3. The class uses the ASSERT_VALID macro on itself in non-constructor classes.
The AssertValid function of the CObject class is designed to allow classes to

check themselves for basic validity. When you derive a class from CObject you should
override the AssertValid function, call the base class’s AssertValid function, and then
check the validity of all data members with ASSERT or ASSERT_VALID statements.
If the class is a list or array class, you should look through all the elements in the con-
tainer and test each for validity as well. Note that the AssertValid function has been
placed inside an ifdef block so its code is excluded when the compiler forms the release
version of the code.

You use the ASSERT_VALID macro to test the validity of any class derived
from CObject. This macro simply calls the AssertValid function on an instance of the
class. The advantage of using the macro is that the compiler does not generate any
code for the ASSERT_VALID statement in the release version of an application.

The class in Listing 13.2 tests itself using ASSERT_VALID in all non-construc-
tor member functions. It does this because there is no guarantee that the class is valid
at any given point in time. By testing the instance with ASSERT_VALID, you are
simply verifying that the instance is healthy and catching problems early if it is not. In
your own code, you should always add ASSERT_VALID statements to check any
variable you use that is an instance of a CObject-derived class.

One other macro related to the ASSERT macro is the VERIFY macro. Whereas
the compiler removes the ASSERT macro and its statement from the release version
of an application, the compiler leaves the statement behind when you use the VERIFY

13.3
Tra

c
ing

This book is continuously updated. See http://www.iftech.com/mfc

305

macro. For example, if you make a function call in an ASSERT statement, the call will
not exist in the release version of the application. You will find that the debug and re-
lease versions of the application behave differently. By placing the function call in a
VERIFY statement, you guarantee that the release and debug versions work identical-
ly. In general it is best to write your code so it contains no VERIFY macros. Anything
requiring a function call or generating a side effect should stand as an independent line
of code, and then you should ASSERT the result.

13.3 Tracing

MFC contains a trace facility that, in a debug version of an application, allows
you to print messages during runtime to an output window. For example, in front of
a piece of code that saves a file to disk, you might place the following trace statement:

TRACE("Saving file to disk\n");

To see the output of the TRACE statement, you must do two things:

1. You must run an executable in Visual C++’s

bin

 directory named

tracer.exe

 and use it to turn on tracing.
2. You must run the program using the

Go

 option rather than using the

Execute

option.
As an example of how to use the TRACE macro, use Listing 13.3 and take the

following steps.

1. Type in the code for Listing 13.3 or copy it from the diskette supplied with the
book. Create a new project or add the file to an existing project.

2. Make sure you are building a debug release.
3. Run

tracer.exe

 and turn on the first check box to enable basic tracing.
The

tracer.exe

 file is provided in the BIN directory of Visual C++.
4. Build the project.
5. Run the application using the

Go

 option in the

Debug

 menu of the

Build

menu.
Listing 13.3 contains a call to the TRACE macro in the window’s constructor.

Because you are running through the debugger, the trace output will appear directly
in the output window of Visual C++. If you do not see any output, select the

Output

option in the

View

 menu. If you still see no output, repeat the above steps paying par-
ticular attention to steps 2 and 3.

Listing 13.3
Testing the TRACE macro.

// trace.cpp

#include <afxwin.h>
#include <afxcoll.h>

// Define the application class

306

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

CUIntArray *array;
public:

CWindow();
};

// The window's constructor
CWindow::CWindow()
{

// Create a window with the new class
Create(NULL, "Drawing Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

array = new CUIntArray;
TRACE("Array created\n");

}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

When you run Listing 13.3 and then terminate the application, you will see
something like this in the output window of Visual C++:

Array created
Detected memory leaks!
Dumping objects ->
{6}
a CUIntArray at $2E0A50
with 0 elements
Object dump complete.

The first line is the output of the TRACE statement that you find in the win-
dow’s constructor. The rest of the output is coming from inside the MFC library. It
turns out that MFC is laced with error checks and TRACE statements, and these
come out in the debug output once you enable tracing. Here the MFC library has de-
tected unfreed memory, has warned you of that fact, and has dumped (see Section

13.4
D

um
p

ing

This book is continuously updated. See http://www.iftech.com/mfc

307

13.4) the offending object. You can solve this particular problem by making the fol-
lowing change to the

CWindow

 class in Listing 13.3 to add a destructor to it:

// Define the window class
class CWindow : public CFrameWnd
{

CUIntArray *array;
public:

CWindow();

~CWindow() { delete array; }

};

With the destructor in place, you should see only one line of TRACE output
when you run Listing 13.3 again. Note that, because the MFC library automatically
generates TRACE output when it detects internal errors, it is a good idea to turn
TRACE output on with

tracer.exe

 and then run under the debugger at all times
while developing an application.

TRACE statements work just like

printf

 statements. They accept variable argu-
ment lists and the same “%” placeholders that the

printf

 function uses. Search on

printf

 in the documentation for more information. For example, if

str

 is a string and

cnt

 is an integer, the following TRACE statement is valid:

TRACE("str = %s, cnt = %d\n", str, cnt);

Everything you know about the

printf

 statement works in the TRACE
statement.

When you run

tracer.exe

 you will note that it has several different tracing
options. Each is described briefly below:

• Multi-App debugging — Prefixes TRACE output with the application name
so you can tell which application it comes from.

• Main Message Pump — When

CWinApp

 receives a message, it displays it as
TRACE output

• Main Message Dispatch — When

CWnd::WindowProc

 receives a message,
it displays it as a TRACE statement. This causes internal application messag-
es, as well as Windows messages, to be displayed.

• WM_COMMAND Dispatch — Reports information about commands
routed through message maps.

• OLE Tracing — Reports OLE messages.
• Database Tracing — Reports database messages.
There are two ways to learn about these different options: Try them out or ex-

plore the source code of MFC for specifics. Search on the variable name

afxTraceFlags

 as you explore the source.

13.4 Dumping

Every class that MFC derives from

CObject

 contains a

Dump

 function that al-
lows you to dump the current state of the object to the output window. This
information can be useful in certain debugging situations. The code below shows how
you could modify the constructor in Listing 13.3 to dump the contents of the

CWin-
dow

 object and a

CUIntArray

.

308

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

// The window's constructor
CWindow::CWindow()
{

// Create a window with the new class
Create(NULL, "Drawing Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

array = new CUIntArray;
array->Add(5);
array->Add(10);
array->Add(15);
TRACE("Array created\n");

#ifdef _DEBUG
array->Dump(afxDump);
this->Dump(afxDump);

#endif
}

This code creates an array, adds three elements to it, prints a TRACE statement,
and then dumps the state of the array and the window. It uses the variable

afxDump

as the dump site. This is the standard site for all TRACE and

Dump

 calls. The output
that you will see in the output window when you run this code under the debugger
appears below.

Array created

a CUIntArray at $2E0A50 with 3 elements

a CFrameWnd at $2E07EC
m_hWnd = 0xA301C6 (permanent window)
caption = "Drawing Tests"
class name = "AfxFrameOrView"
rect = (L 0, T 0, R 250, B 100)
parent CWnd* = $0
style = $4CF0000
m_hAccelTable = 0x0
m_nWindow = -1
m_nIDHelp = 0x0
m_nIDTracking = 0x0
m_nIDLastMessage = 0x0
no active view

The array’s

Dump

 function identifies its class and its size. The window’s

Dump

function identifies its class and a variety of useful information about the window. If
you do not see any output, see the previous section for instructions on enabling
TRACE statements.

When you are creating your own

CObject

-derived classes, you should create a

Dump

 function specific to the new class as you create the object. The

Dump

 function
should dump the contents of the base class as well as the contents of all member vari-
ables. For example, you might add the following

Dump

 function to the bottom of
Listing 13.2.

#ifdef _DEBUG
virtual void Dump(CDumpContext& dumpSite) const

13.5
M

e
m

o
ry Sta

te

This book is continuously updated. See http://www.iftech.com/mfc

309

{
CObject::Dump(dumpSite);

dumpSite << "x = " << x << "y = " << y;
}

#endif //_DEBUG

When you call this new

Dump

 function during debugging, it will print its class
and then dump the contents of its

x

 and

y

 members.
In the previous dump example, the array object dumped itself by declaring the

number of elements it contained. However, all the MFC collection classes support the
concept of

dump depth

. By changing the depth you tell the collections that you want
them to recursively dump their contents as well. By default the depth is set to zero.
You change it to a non-zero value using the

SetDepth

 function, as shown here:

afxDump.SetDepth(1);

 You can set depth back and forth between zero and one as often as you wish,
and the

afxDump

 variable will remember the setting you choose until you change it
again (because the

afxDump

 variable is global to MFC). If you add this call to

Set-
Depth

 to the previous dumping example, you will see output that looks like this for
the array:

a CUIntArray with 3 elements
[0] = 0x5
[1] = 0xA
[2] = 0xF

You can see that this array of UINT dumps its values in hex. A

CObArray

 will
ask each of the objects it contains to dump themselves.

13.5 Memory State

Another extremely useful feature provided by MFC is the

CMemoryState

 class.
You can use this class to detect memory leaks in any section of your program. This
class not only detects leaks, but can also tell you exactly where they are occurring. The
capabilities built into the

CMemoryState

class let you solve memory allocation prob-
lems that were once virtually impossible to track.

An instance of the

CMemoryState

 class has the ability to hold a snapshot of the
current state of the heap at any given point during a program’s execution. You use the

CheckPoint

 function to take the snapshot. Once you have two different snapshots
you can compare them. That is how you discover potential leaks. The

CMemoryState

class has four member functions:
•

CheckPoint

 — Stores an image of the current state of the heap in an instance
of the class.

•

Difference

 — Finds differences between the heap images held in two in-
stances of the class and returns TRUE if there are any.

•

DumpAllObjectsSince

 — Performs a standard dump (see the previous sec-
tion) on all objects allocated on the heap since a snapshot was taken with

CheckPoint

. If

CheckPoint

 has not been called and the instance is therefore
uninitialized, this function dumps everything currently on the heap.

310

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

•

DumpStatistics

 — Performs a concise dump of memory statistics, telling
you how much memory is allocated in the current snapshot.

The program in Listing 13.4 demonstrates a very simple use of the

CMemoryState

 class to detect a memory error.

Listing 13.4
Detecting a memory leak

// memstate.cpp

#include <afxwin.h>
#include <afxcoll.h>

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

CUIntArray *array;
public:

CWindow();
};

// The window's constructor
CWindow::CWindow()
{

// Create a window with the new class
Create(NULL, "Drawing Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

#ifdef _DEBUG
// Take first snapshot
CMemoryState startState;
startState.Checkpoint();

#endif

array = new CUIntArray;
array->Add(5);
array->Add(10);
array->Add(15);
TRACE("Array created\n");
delete array;

#ifdef _DEBUG
// Take second snapshot
CMemoryState finishState;

13.5
M

e
m

o
ry Sta

te

This book is continuously updated. See http://www.iftech.com/mfc

311

finishState.Checkpoint();
// Look at the difference
CMemoryState diff;
if (diff.Difference(startState, finishState))
{

TRACE("Memory leak detected.\n");
diff.DumpStatistics();
startState.DumpAllObjectsSince();

}
else

TRACE("No memory leaks detected.\n");
#endif
}

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

When you run Listing 13.4 under the debugger, it will produce a single message
indicating that the system detected no leaks. However, if you remove the delete state-
ment, the difference check will detect a leak and the system will dump all undeleted
allocations made since the first snapshot. A typical dump in this situation appears
below:

Memory leak detected.
0 bytes in 0 Free Blocks.
20 bytes in 1 Object Blocks.
20 bytes in 1 Non-Object Blocks.
Largest number used: 44 bytes.
Total allocations: 44 bytes.
Dumping objects ->
{6} array_u.cpp(111) : non-object block at $002E0AB8, 20 bytes long
{4} a CUIntArray object at $002E0A50, 20 bytes long
Object dump complete.

The first part of this dump contains the overall statistics for the leak. It summa-
rizes the allocations that occurred between the two snapshots. Object Blocks are blocks
directly allocated for CObject-derived objects. Non-Object Blocks are blocks allocated
from the heap by new statements but not associated with CObject-derived classes. For
example, as discussed in Chapter 12, a CUintArray allocates a block of memory big
enough to hold the elements it contains. Blocks are allocated directly from the heap
as non-object blocks.

The object dump gives more information about the individual blocks on the
heap. The number in braces is simply a counter. When an MFC program starts, every
allocation increments the counter. The creation of the array object was the fourth al-
location. The block holding the array’s elements was the sixth. If you sequentially add

312

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

elements to the array, you will probably find that the array is reallocating its memory
block in four-integer increments (although this is version dependent).

You can get even more information in the dump by replacing all calls to

new

with the macro DEBUG_NEW. If you make this change in Listing 13.4, you will see
the following dump information:

Dumping objects ->
{6} array_u.cpp(111) : non-object block at $002E0AB8, 20 bytes long
{4} H:\brain\VCPPBOOK\code\ch13\memstate.cpp(37) :
a CUIntArray object at $002E0A50, 20 bytes long

Allocation number four now contains information indicating the file and line
number of the statement that allocated it. DEBUG_NEW does not introduce any in-
efficiency to your code: Any use of DEBUG_NEW is replaced by a normal call to

new

in the release version of an application. You can easily use normal

new

 statements in
your code if you choose and then #define a replacement for

new

 as shown here:

#define new DEBUG_NEW

Your code will then look normal while still taking advantage of the
DEBUG_NEW capability. Be sure to place this particular #define statement below
any IMPLEMENT_ macros.

An additional heap check that you can perform whenever you like is contained
in the

afxCheckMemory

 function. This function scans the entire heap for corrupt
blocks. Generally a block gets corrupted when a piece of code overwrites the boundary
of the block. For example, if the block is being treated as an array of characters and
the code writes too many characters into the block, this will often corrupt the heap.
The

afxCheckMemory

 function returns a Boolean TRUE if it discovers any invalid
blocks.

Whenever you run in debug mode, MFC and the debugger work together to
check memory rather carefully. You can tune these checks by adjusting a global vari-
able in MFC named

afxMemDF.

This variable accepts zero or more of the following
enumerations or-ed together:

•

allocMemDF

(the default) Enables debugging in the memory al-
locator

•

delayFreeMemDF

Cause blocks of memory freed in your program to
remain allocated so the program undergoes in-
creased memory stress

•

checkAlwaysMemDF

Causes the memory system to automatically call

afxCheckMemory

 before any allocation or deallo-
cation operation

The default value for

afxMemDF

 is

allocMemDF

. You can turn this default val-
ue off by setting

afxMemDF

 to zero. Alternatively, you can turn any or all three of the
values on by oring them together and assigning them to

afxMemDF

. Note that the

checkAlwaysMemDF

 option can significantly slow execution under the debugger.

13.6
Exc

e
p

tio
ns

This book is continuously updated. See http://www.iftech.com/mfc

313

13.6 Exceptions

The MFC class hierarchy and C++ itself support the concept of an

exception

 as
its primary mechanism for handling system errors and exceptional situations. For ex-
ample, if the system runs out of memory during an allocation, your program will
receive a memory exception. If the loading or storing of an archive file during serial-
ization fails, your program will receive an archive exception. These exceptions are

thrown

 by certain functions in MFC, and by various C++ operations. If your program
contains the proper code to

catch

 the exception, you can handle the situation and con-
tinue execution. If you do not handle the exception yourself, the

CWinApp

 class
handles it for you.

Exceptions serve the same sort of purpose that error codes returned by functions
do. An exception warns you that something went wrong during a function call and
gives you the opportunity to do something about it. The use of exceptions tends to
reduce the amount of code you have to write. Instead of having to create code to check
every return value from every function in a block of code, you can surround the block
code in a

try block

. Any exception that occurs inside the block gets handled, or

caught

,
by a

catch block

 that immediately follows the try block and acts as the exception
handler.

MFC supports exceptions of the following types:
CArchiveException Thrown for errors in archive file loading or saving
CDBException Thrown for database errors
CFileException Thrown for file errors
CMemoryException Thrown for any allocation error that occurs dur-

ing a call to

new

CNotSupportedException Thrown if the specified operation is not supported
COleException Thrown if an error occurs during an OLE opera-

tion
COleDispatchException Thrown for OLE automation errors
CResourceException Thrown if a resource cannot be found or created
CUserException Thrown following notification of a user error
Memory, Not Supported, and Resource exceptions are

unqualified

. Archive,
File, and OLE errors are

qualified

. When an exception is qualified it means you can
examine an additional variable to determine the exact reason for the exception. For
example, a file exception might be generated by a missing file, a lack of disk space, a
drive error, etc., and the

m_cause

 member variable contains this specific information.
This will make a bit more sense after you see several examples.

The code in Listing 13.5 creates an exception and lets you see MFC’s default be-
havior when an exception occurs. The exception is created by attempting to allocate
one billion bytes of memory from the heap when the user clicks a push button.

Listing 13.5
A program that creates an exception

314

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

// except1.cpp

#include <afxwin.h>

const int IDC_BUTTON = 100;

// Define the application class
class CApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

CApp App;

// Define the window class
class CWindow : public CFrameWnd
{

CButton *button;
public:

CWindow();
afx_msg void HandleButton();
DECLARE_MESSAGE_MAP()

};

// The message handler function
void CWindow::HandleButton()
{

char *p;

SetDlgItemText(IDC_BUTTON,
"Allocating one billion bytes");

p = new(char[1000000000]);
SetDlgItemText(IDC_BUTTON,

"Push me");
}

// The window's constructor
CWindow::CWindow()
{

// Create a window with the new class
Create(NULL, "Exception Tests",

WS_OVERLAPPEDWINDOW,
CRect(0,0,250,100));

// Get the size of the client rectangle
CRect r;
GetClientRect(&r);
r.InflateRect(-20,-20);

// Create a button
button = new CButton();
button->Create("Push me",

WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
r, this, IDC_BUTTON);

}

13.6
Exc

e
p

tio
ns

This book is continuously updated. See http://www.iftech.com/mfc

315

// The message map
BEGIN_MESSAGE_MAP(CWindow, CFrameWnd)

ON_COMMAND(IDC_BUTTON, HandleButton)
END_MESSAGE_MAP()

// Init the application
BOOL CApp::InitInstance()
{

m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

Listing 13.5 presents the user with a button. When the user clicks the button,
the HandleButton function attempts to allocate a block of one billion bytes. On most
machines this request will fail. You will see a system-generated message dialog indicat-
ing that the program has failed.

If you want to trap the memory error yourself, you need to add exception han-
dling code at the point where the allocations occur. By changing the code in the
HandleButton function to that shown below, you can trap the exception yourself:

// The message handler function
void CWindow::HandleButton()
{

char *p;

SetDlgItemText(IDC_BUTTON,
"Allocating one billion bytes");

try
{

p = new(char[1000000000]);
}
catch(CMemoryException* exception)
{

MessageBox("Out of memory", "Memory error", MB_OK);
}
SetDlgItemText(IDC_BUTTON,

"Push me");
}

By wrapping the call to new in a try block, you make the application sensitive to
the memory exception. The keyword try in C++ marks a try block. If an exception
occurs anywhere in the block, the system will attempt to find an exception handler,
identified by the catch keyword, that can catch the exception. The catch keyword ac-
cepts a parameter that identifies the type of exception that the handler catches (and
optionally declares an instance of that type).

In this piece of code, the handler handles memory exceptions. The catch block
will automatically create and fill the exception instance with information about the
exception. At the end of the catch block this instance is automatically destroyed.

316

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

When an error occurs, the code in the associated

catch

 section executes. In the
code shown here a message box appears, and then the program continues execution
normally.

Many functions in MFC throw specific exceptions instead of returning error val-
ues. The

Rename

 function in the

CFile

 class is an example of this type of function. If
you read about

Rename

 in the MFC documentation, you will see in the description
that it throws a file exception when a renaming error occurs. The code in Listing 13.6
demonstrates how to use this feature to detect a renaming error (replace the

Handle-
Button

 function in Listing 13.5 with this code):

Listing 13.6
Catching file exceptions

// except2.cpp

// The message handler function
void CWindow::HandleButton()
{

try
{

// call static CFile function to rename
CFile::Rename("invalid.xyz",

"newname.xyz");
}
catch(CFileException *exception)
{

if (exception->m_cause==
CFileException::fileNotFound)
MessageBox(

"The file does not exist",
"Rename Error", MB_OK);

else
MessageBox(

"Disk problem",
"Rename Error", MB_OK);

}
}

Note the use here of the variable exception and the m_cause member variable
of CFileException. If you look up this variable in the MFC documentation, you will
find that it is a data member of the CFileException class. This data member can hold
any of a dozen or so different values that give you specific information about the file
error. Here this member allows us to detect whether the renaming failed because the
original file did not exist, or because of some other problem. See Section 12.4 for other
file exception examples.

13.6
Exc

e
p

tio
ns

This book is continuously updated. See http://www.iftech.com/mfc

317

13.6.1 Catching Multiple Exceptions

A large block of code could potentially have more than one type of exception
that it might generate. For example, the block might generate file exceptions and
memory exceptions. There are three different ways to handle this situation. The first
technique appears in Listing 13.7, using multiple catch macros:

Listing 13.7
Catching multiple exceptions, version 1

// except3.cpp

// The message handler function
void CWindow::HandleButton()
{

try
{

// memory error
char *p=new(char[1000000000]);
// file error
CFile::Rename("invalid.xyz",

"newname.xyz");
}
catch(CFileException *exception)
{

if (exception->m_cause==
CFileException::fileNotFound)
MessageBox(

"The file does not exist",
"Rename Error", MB_OK);

else
MessageBox(

"Disk problem",
"Rename Error", MB_OK);

}
catch(CMemoryException *)
{

MessageBox("Out of memory", "Memory error", MB_OK);
}

}

When you run this code, the memory allocation will generate an error. If you
comment out the allocation statement, the file exception will generate an error. The
catch blocks work together to handle both cases.

The second technique involves the use of a generic exception in the catch block,
which you then qualify with if statements inside the catch block. This technique is
shown in Listing 13.8.

Listing 13.8
Catching multiple exceptions, version 2

318

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

// except4.cpp

// The message handler function
void CWindow::HandleButton()
{

try
{

// memory error
char *p=new(char[1000000000]);
// file error
CFile::Rename("invalid.xyz",

"newname.xyz");
}
catch(CException *exception)
{

if (exception->
IsKindOf(RUNTIME_CLASS(CFileException)))

{
if (((CFileException *)exception)->m_cause ==

CFileException::fileNotFound)
MessageBox(

"The file does not exist",
"Rename Error", MB_OK);

else
MessageBox(

"Disk problem",
"Rename Error", MB_OK);

}
else if (exception->

IsKindOf(RUNTIME_CLASS(CMemoryException)))
{

MessageBox("Out of memory", "Memory error", MB_OK);
}

}
}

The catch block accepts any type of exception. The IsKindOf function lets you
detect the specific type of exception that occurred.

The third technique uses nesting of try blocks, as shown in Listing 13.9.

Listing 13.9
Catching multiple exceptions, version 3

// except5.cpp

// The message handler function
void CWindow::HandleButton()
{

try
{

// memory error
char *p=new(char[100000000]);
try

13.6
Exc

e
p

tio
ns

This book is continuously updated. See http://www.iftech.com/mfc

319

{
// file error
CFile::Rename("invalid.xyz",

"newname.xyz");
}
catch(CFileException *exception)
{

if (exception->m_cause==
CFileException::fileNotFound)
MessageBox(

"The file does not exist",
"Rename Error", MB_OK);

else
MessageBox(

"Disk problem",
"Rename Error", MB_OK);

}
}
catch(CMemoryException *)
{

MessageBox("Out of memory", "Memory error", MB_OK);
}

}

In the code shown here, memory exceptions are caught by the outer try block.
File exceptions are captured for the specific line that causes the error. If a memory ex-
ception were to occur in the inner try block, then it would be handled by the outer
catch block. Because the inner block does not handle memory errors, the exception
bounces out to the outer block and gets handled there. You can nest try blocks as deep
as you like. If none of your catch blocks handles a given exception, then it gets routed
out to the global exception handler in the CWinApp class.

The ellipses (“...”) used in a catch statement implies “catch all remaining excep-
tions regardless of type.” The code in Listing 13.10 demonstrates the process.

Listing 13.10
Catching other errors

try
{

int i=0;
int j=5/i;

}
catch(CMemoryException *)
{

MessageBox("Out of memory", "Memory error", MB_OK);
}
catch(...)
{

MessageBox("Unknown error", "error", MB_OK);
}

320

This book is continuously updated. See http://www.iftech.com/mfc

13
D

e
b

ug
g

in
g

 a
nd

 R
o

b
us

tn
e

ss

This code will correctly catch the divide-by-zero error. The

GetExceptionCode

function in Win32 can be useful for decoding the type of error.

13.6.2 Throwing Exceptions

It is possible to create your own exceptions using the

throw

 keyword or special

Afx

 functions built into MFC. You might do this if, for example, you created your own
memory allocator using

malloc

 or some other mechanism. Or you might use the

throw

keyword if you inherited from the

CFile

 class and wanted to add new error codes as
shown in Listing 13.11.

Listing 13.11
Throwing exceptions

// except6.cpp

void TestCondition()
{

AfxThrowFileException(
CFileException::generic);

MessageBox(NULL, "This line will not execute",
"Skipped over", MB_OK);

}

// The message handler function
void CWindow::HandleButton()
{

// Call a function that generates an exceptions
try
{

TestCondition();
}
catch(CFileException *exception)
{

MessageBox("Caught a File Exception",
"Exception", MB_OK);

}
}

If you want to create your own exception classes, you should inherit from the
CException class and, in your code that needs to generate exceptions, use the throw
keyword to generate the exceptions.

The following exception-throwing functions are provided by MFC:
AfxThrowArchiveException
AfxThrowDBException
AfxThrowFileException
AfxThrowMemoryException
AfxThrowNotSupportedException
AfxThrowOleException

13.7
O

the
r D

e
b

ug
g

ing
 Fe

a
ture

s

This book is continuously updated. See http://www.iftech.com/mfc

321

AfxThrowOleDispatchException
AfxThrowResourceException
AfxThrowUserException
For additional information about exceptions, see the MFC documentation and

books on line. This is an incredibly rich topic and the documentation has a number
of interesting examples.

13.7 Other Debugging Features

MFC contains a number of other debugging facilities that are invoked with

Afx

functions. The list below briefly describes each of these functions:
AfxAbort Aborts the program after a fatal error
AfxCheckMemroy Checks the heap and free pool for corruption
AfxDoForAllClasses Iterates through all

CObject

-derived classes
AfxDoForAllObject Iterates through all

CObject

-derived objects on
heap

AfxEnableMemoryTracking Enables and disables memory tracking
AfxIsMemoryBlock Confirms that a pointer points to a valid block on

the heap
AfxIsValidAddress Confirms that an address resides in the program’s

memory space
AfxIsValidString Confirms that an address points to a valid string
AfxSetAllocHook Lets you perform tests before memory allocations
AfxTraceEnabled Enables and disables trace output
AfxTraceFlags Lets you customize trace features
See the MFC documentation for complete descriptions of these functions.

13.8 Conclusion

By combining all the different techniques seen in this chapter, you can create ap-
plications that are much more robust and much easier to test than normal programs.
You will find that as you gain experience you will enjoy using these features more and
more.

Part 3

U

SIN
G

TH
E

 V

ISU
A

L

 C
++ W

IZA
RD

S

Part 1 introduced you to the fundamentals of MFC programming. It showed you the
basic form of any MFC application and demonstrated how to customize controls and
respond to their events. In Part 2 you learned about the wide variety of classes available
in MFC. You use these different classes as application “building blocks,” combining
them in unique ways to meet the goals of your project.

In Part 3 we begin to bring these building blocks together to create actual appli-
cations. Visual C++ provides three different tools that make this process much easier:
the AppWizard, the ClassWizard, and the resource editors.

You will use the AppWizard as you begin each new application. It creates an

ap-
plication framework

. This framework acts as the starting point for your program. The
framework that the AppWizard creates is extremely thorough and robust. The App-
Wizard framework also gives your application an organized document-centric
orientation. The AppWizard integrates document and view classes into the frame-
work, making it extremely easy to think about applications that contain multiple
documents and multiple views. You will use the AppWizard once at the beginning of
every application development cycle.

The ClassWizard gives you an automated way to modify message maps and is
specifically tuned to work within the framework that the AppWizard provides. You
will use the ClassWizard to add event processing into your application, create new
classes, manipulate virtual functions, and integrate new dialogs into your applications.

The resource editors, in conjunction with the ClassWizard, give you an easy way
to add menus, dialogs, and other resources to your applications. You will design and
lay out any dialog box, menu, accelerator table, string resource, or bitmap with the re-
source editors. You will then modify your code, either by hand or with the aid of the
ClassWizard, to take advantage of these new resources.

Part 3 demonstrates these tools using five different sample applications. Each ap-
plication demonstrates a different style. Part 4 then builds on this introduction by
showing you how to add the advanced features that let you create truly professional
applications.

325

14UNDERSTANDING THE APPWIZARD
AND CLASSWIZARD

All the concepts covered in Parts 1 and 2 have been building to the point where you
can create your own full-scale Windows applications. You are now ready to begin the
process. Visual C++ contains several tools that make this process easier, and in this
chapter you will learn about the first one, the AppWizard.

The AppWizard is a “framework generator.” It builds a framework that acts as
the starting point for an application. The first time you look at one of these frame-
works, however, it will seem outrageously complicated. The goal of this chapter and
the other chapters in this section is to help you feel comfortable with this framework.
Once you understand the intent of the framework, and once you know where to cor-
rectly insert your own code, you will be able to rapidly create your own applications
from the framework that the AppWizard provides.

One thing you should be aware of before embarking on your study of the App-
Wizard is that its proper use demands a fairly complete knowledge of the MFC class
hierarchy. That is why Part 2 spent so much time going over the different classes in
MFC. You may want to work through all examples in Part 2 before starting on Part
3. Alternatively, Part 3 includes a tremendous number of pointers back into Part 2 so
you can quickly learn about or review the concepts when you need them.

14.1 The Goal of the AppWizard

Say that you want to begin building a new Windows application. How would
you begin? If you already had created several other Windows applications, chances are
you would pick out one of these previous applications and build from it as a starting
point. For example, you might start with Listing 2.1, strip out the

CStatic

 control for
the “Hello World” message, and begin adding in your own controls as required by
your new design. If you want to build a new drawing program, you might start with
one of the drawing programs in Chapter 11 and build from there.

In other words, whenever you start a new program, you generally begin by tak-
ing an old program that works and has most of the important features that your new

326

This book is continuously updated. See http://www.iftech.com/mfc

14
U

nd
e

rs
ta

nd
in

g
 th

e
 A

p
p

W
iz

a
rd

 a
nd

 C
la

ss
W

iz
a

rd

program needs. You strip out the parts of the old program that you do not need in the
new application and then start building from there.

The AppWizard is designed to make this process easier. You can think of it as
an automatic framework generator. Instead of stripping down an old program to cre-
ate a starting point for a new program, you use the AppWizard to create a fresh, new
template. The AppWizard has a number of options that let you customize the tem-
plate to perfectly match the needs of your new application. From this new,
standardized, and consistent template, you begin building your new application.

Note that the AppWizard is nothing more than a framework generator. For any
new application you will use the AppWizard exactly once, at the very beginning of the
process. Once it generates the application’s framework you will start adding code and
developing your application from that starting point, but you will never again use the
AppWizard for that application. The AppWizard’s goal is simply to generate a clean,
new starting point that is consistent and tuned to the needs of the application. It does
not contain any facilities to change a framework after it has been generated. The App-
Wizard simply saves you the step of stripping out code from an old program to create
a starting point.

Whenever you create a new framework from the AppWizard, you have a number
of options. For example, you must decide whether you want to create an SDI applica-
tion (Single-Document Interface, like Notepad, where only one file can be open at a
time) or an MDI application (Multiple-Document Interface, like Microsoft Word,
where several windows can be open in the application at one time). Here are some of
the other features that the AppWizard lets you add to a new application framework:

• Tool bars and status bars
• Printing
• Help menu and context-sensitive help
• OLE client or server capabilities
• ODBC database capabilities
In this chapter we will start with the very simplest framework that the AppWiz-

ard creates so you can completely understand what the AppWizard is doing. The
AppWizard, even for the simplest framework, generates about 15 different files. It will
take a little time and experience before you will feel completely comfortable with all
these files. In this chapter we will discuss, in a general way, what all the different files
do and what the AppWizard is trying to accomplish with each of them. Then, in the
next chapter, we will create a simple application from this framework so you can see
what is involved. From there we move into different variations of the framework and
more advanced features. By taking the time to go through the different examples, you
will bring yourself to the point where you completely understand what each part of
the framework does. You will then be able to quickly create your own applications us-
ing the AppWizard as a comfortable starting point.

14.2
C

re
a

ting
 a

 Sim
p

le
 Fra

m
e

w
o

rk w
ith the

 A
p

p
W

iza
rd

This book is continuously updated. See http://www.iftech.com/mfc

327

14.2 Creating a Simple Framework with the AppWizard

To create a new framework you should start Visual C++ and then refer to Ap-
pendix B.6.1 for specific instructions.

At this point you should build the project that the AppWizard has created for
you. Simply choose the

Build

 option as described in Appendix B.6.1. It will form an
executable and you should run it. What you will find is that you have a remarkably
complete starter application. The menu bar works and contains all the normal menu
options you would expect to find. The

Open

,

New

, and

Exit

 options will all do the
expected things. The application has an About box. The AppWizard’s files create a
very good starting point for a new application.

14.3 The AppWizard’s Document-Centric Approach

One of the interesting things about the AppWizard is that it takes a

document-
centric approach

 to application design. The MFC class hierarchy contains two classes
that help support this approach:

CDocument

 and

CView

. The AppWizard and MFC
use this approach because most Windows applications work this way. Built into the
framework generated by the AppWizard is the assumption that your application will
want to load and work with multiple

documents

, and that each document will have one
or more

views

 open at a time. This approach makes it extremely easy to create both
SDI and MDI applications. There is a very small number of simple applications that
do not need the document concept. A simple digital clock is an example. All other ap-
plications can be thought of in terms of documents and views. In the case of a simple
digital clock, you can leave the document class in place and simply ignore it.

Before looking at the files created by the AppWizard, it is useful to have a feeling
for what this document-centric approach means. It is easiest to understand the docu-
ment/view architecture if you think about a typical MDI word processor like
Microsoft Word, as pictured in Figure 14.1. At any given time you can have one or
more documents open. A document represents a single open file. The user generally
has one view open on each document. The view shows the user a part of the document
in an MDI window and lets the user edit the document. However, Microsoft Word
allows the user to split a window into multiple frames so the user can have two or more
views on the document if desired. When the user edits in one of the views, it changes
the data in the document associated with the view. If a document has multiple views
open and the user changes data in one of the views, the document and all other related
views should reflect the change. When the user saves the document, it is that data held
by the document that gets saved to disk.

Many applications allow the user to open just one type of document. Microsoft
Word, for example, works only with Microsoft Word documents. It may open other
types of documents, but it first filters them to turn them into Word documents. Other
applications open several different types of documents and can display all of them si-
multaneously in its MDI framework. Visual C++ is an example of this type of
application. The most common type of document Visual C++ works with is a text file
that contains code. However, you can open a browser file (see Appendix B.4) as well

328

This book is continuously updated. See http://www.iftech.com/mfc

14
U

nd
e

rs
ta

nd
in

g
 th

e
 A

p
p

W
iz

a
rd

 a
nd

 C
la

ss
W

iz
a

rd

and it will display itself as a second type of document in the MDI framework. Mi-
crosoft Works is similar. It can open word processing documents, but it can also open
spreadsheet and database documents. Each of these documents has a completely
unique view in the MDI frame, but all the different views live there in harmony with
one another. In addition, database documents can be viewed both in a spreadsheet-
like list or in a customizable form that shows one complete record at a time.

Therefore, in the most general case an application may be able to open several
different types of documents simultaneously. Each type of document can have a
unique viewing window. Any document may have multiple views open at once. In
fact, a document might have more than one way of viewing its data. Each document
stores its data on disk. The views give the user a way to view and edit that data. Figure
14.2 shows that the application, documents, and views represent a tree. Because this
arrangement is typical of most applications, the framework generated by the AppWiz-
ard supports this structure implicitly. The MFC class hierarchy contains classes that
make this structure easy to create.

At a code level, the document and view classes separate functionality. The doc-
ument class is responsible for data. It reads the data from a file on disk and holds it in
memory. The view class is responsible for presentation. The view class takes data from
the document class and presents it to the user in a view. The multiple views for a single
document synchronize themselves through the data in the document. The separation
between documents and views is explained in more detail in the following section. See
also Tech Note Number 25.

Figure 14.1

A typical MDI application can have several documents open at once. The user can
have one or more views into each document

A normal MDI window

gives the user a view on

a document

A normal MDI window

A "splitter" window gives

the user two views on a

single document

14.4
U

nd
e

rsta
nd

ing
 the

 A
p

p
W

iza
rd

’s File
s

This book is continuously updated. See http://www.iftech.com/mfc

329

14.4 Understanding the AppWizard’s Files

Before you can build a new application from any framework that the AppWizard
creates, you must understand what all the different files do. You must also understand
how they work together to create a complete application once they are compiled.

One
of the best things that you can do at this point is print out all the different files and start
marking them up with notes and pointers to other files.

 This section takes you on a brief
tour of all the different files, showing you what each file does. You should also look at
the README file the AppWizard generated for information about the different files.

From your experience with the programs in Parts 1 and 2, you now have a great
deal of experience with MFC code. What you will find as we walk though all these
AppWizard files is that this experience is extremely useful. For example, every MFC
program that you see in Parts 1 and 2 has a class that inherits behavior from

CWi-
nApp

. You will find the same thing happening in the framework files. The framework
files simply do it in a more thorough and complete fashion. The framework files also
leverage off the strengths of resource files (see Chapter 6) as well as the document-cen-
tric classes described in the previous section of this chapter.

14.4.1 STDAFX Files

Using the sample framework you generated in Section 14.2, let’s start the tour
of the AppWizard files with the STDAFX files. When you look at your printouts of
these files, you will find that both files are extremely short.

The STDAFX files handle pre-compiled header optimization. If you look inside
STDAFX.H, it simply includes two AFX header files. The first, AFXWIN.H, is the
same file that you have included in every sample program seen so far. The second,
AFXEXT.H, contains extensions that are useful to the AppWizard. STDAFX.CPP
contains nothing but an include statement for STDAFX.H. In the project file gener-
ated by the AppWizard, Visual C++ is instructed to compile STDAFX.CPP and then
save its symbol table into a pre-compiled header file. By separately compiling just the

Figure 14.2

An MDI application can have several documents open at once. The documents
could potentially be of different types. Each document can display itself to the user
in one or more views

The application

Document Document Document

View View View View

330

This book is continuously updated. See http://www.iftech.com/mfc

14
U

nd
e

rs
ta

nd
in

g
 th

e
 A

p
p

W
iz

a
rd

 a
nd

 C
la

ss
W

iz
a

rd

AFX header files into a pre-compiled header, the system ensures that the pre-compiled
portion of the header is the same for all source files used in the framework.

You will notice that all the other CPP files generated by the AppWizard include
STDAFX.H first. This file brings in the pre-compiled header file containing all the
standard MFC symbols. Any other includes come below that. Because each CPP file
is already aware of all MFC symbols after it includes STDAFX.H, the additional head-
er files can use all those symbols rather than including them themselves. This structure
speeds up the build process tremendously when you compile the project.

14.4.2 SAMP Files

The SAMP.H and SAMP.CPP files house the

CWinApp

 object. Every sample
program created in Parts 1 and 2 contains a single instance of

CWinApp

, and the ap-
plications generated by the AppWizard are just the same. The AppWizard simply
isolates the

CWinApp

 class in the files SAMP.H and SAMP.CPP.
The SAMP.CPP file contains the implementation of the new application class.

The important function is the

InitInstance

 function. In Parts 1 and 2,

InitInstance

has consistently been four lines long. In the AppWizard framework it expands some-
what. In particular, the framework adds code that reads profile strings (see Chapter 6),
checks for command line parameters, and creates a

document template.

 See Chapter 10
for more details on these features. You will often modify the framework’s standard

InitInstance

 function, including in it things like database or device initialization that
must occur when the application starts.

An important line in the

InitInstance

 function is the call to

AddDocTemplate,

duplicated below:

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(

IDR_MAINFRAME,
RUNTIME_CLASS(CSampDoc),
RUNTIME_CLASS(CMainFrame), // main SDI frame window
RUNTIME_CLASS(CSampView));

AddDocTemplate(pDocTemplate);

This code links the application to its frame window, its document, and the doc-
ument’s view. In an application that supports multiple document types, there will be
one of these lines for each type of document. See Section 16 for more information on
multiple-document applications.

The bottom part of the SAMP.CPP file contains a derived dialog class to handle
the application’s About box. Generally, derived dialog classes go in their own separate
files, but the About dialog is always placed at the bottom of SAMP.CPP by the frame-
work. Chapter 15 gives a complete description of how to create and use your own
dialog classes.

14.4.3 The MAINFRM Files

The MAINFRM files handle the main frame window for the application. In all
the programs shown in Parts 1 and 2, a new class has been derived from

CFrameWnd

to act as the application’s main window on the screen. MAINFRM.H and MAIN-

14.4
U

nd
e

rsta
nd

ing
 the

 A
p

p
W

iza
rd

’s File
s

This book is continuously updated. See http://www.iftech.com/mfc

331

FRM.CPP hold the frame window’s class declaration and implementation. Generally,
you will not manipulate these files.

14.4.4 SAMPDOC Files

The SAMPDOC files hold the document class for the application. The
SAMPDOC.H file derives a new document class from

CDocument

, and SAMP-
DOC.CPP begins the implementation.

Note that SAMPDOC.H contains four sections: Attributes, Operations,
Overrides and Implementation. You can also see this arrangement in SAMPVW.H
and MAINFRM.H. Each of these sections has an intended purpose. In the

At-
tributes

 section you place new data members, along with access functions (generally
beginning with

Get

 and

Set

) that let you manipulate the member variables. For ex-
ample, if your document needs an array data member to hold the document’s data,
you would declare the instance of the array here, probably as a protected value, and
if necessary you would also create

GetArray

 and

SetArray

 functions to get and set
the contents of the array. These two functions could be either protected or public,
depending on how your application uses the array. In the

Operations

 section go
member functions that will be called by other classes to operate on the document
class. These would be either protected or public depending on their use. Normally
you develop the interface for the document class in this section, and the view class
calls these functions to manipulate the document. In the

Overrides

 section go func-
tions that override virtual functions in the

CDocument

 class. This section is
manipulated automatically by the ClassWizard, and you will have no occasion to
manipulate it yourself. In the

Implementation

 section go functions that are used in-
ternally by the document class or derived classes. Generally they will be protected.
If you created a special function, used internally by the document class to clear some
data structures or manipulate a database, these functions would go here. See the ar-
ticle entitled “MFC: Using the MFC Source Files” in the MFC encyclopedia in
books on-line for further details.

Note that the document class’s implementation in SAMPDOC.CPP contains

Serialize

,

AssertValid,

 and

Dump

 functions as discussed in Chapters 12 and 13.
These are standard functions that every object derived from

CObject

 needs to fit
properly into the MFC hierarchy. Because

CDocument

 is derived from

CObject

, the
framework stubs out these functions for you and you simply fill in the blanks. See the
example in the next chapter for a further discussion.

The document class should

completely

 encapsulate the data known to the docu-
ment. When the user opens a new document, the class should load the document from
a file and then provide member functions that let the view display the document to
the user. The document class should also provide member functions that let the view
class add and change data in the document. The document should do nothing but
hold the data for multiple views, as shown in Figure 14.3..

332

This book is continuously updated. See http://www.iftech.com/mfc

14
U

nd
e

rs
ta

nd
in

g
 th

e
 A

p
p

W
iz

a
rd

 a
nd

 C
la

ss
W

iz
a

rd

14.4.5 SAMPVIEW Files

The SAMPVIEW files hold the view of the document. The view normally has
two jobs: It displays the data in the document to the user and it obtains new or mod-
ified data from the user and stores it back in the document (it is also possible for the
document class to gather data from the user, as will be seen in Chapter 18). SAMP-
VIEW.H contains the declarations for a new class derived from

CView

.
SAMPVIEW.CPP implements the new class. This class will normally be heavily mod-
ified, and you will see examples of this in the following chapters.

One part of SAMPVIEW.CPP to pay particular attention to is the

OnDraw

function. It replaces the

OnPaint

 function discussed extensively in Chapter 11, and
is explained in detail in the next chapter.

You should note that all four CPP files described above have a message map.
How do you decide which messages to put where? Your decision will come mostly
from experience, and you will gain this experience from the examples shown in the
other chapters in Part 3. In general, application-wide messages go in the application
class (the SAMP files). The About box is a good example: Regardless of how many
documents and views are active, the About box appears as a single dialog for the ap-
plication. Other messages will go either in the document or view classes, and you base
those decisions on coding convenience. Some events are much more easily handled in
the document, while others are handled more easily in the view.

Figure 14.3

The relationship between a document and its view(s)

Document

Class

Load and save

document to

disk

Function 1

Function 2

Function 3

Function 4

View class

Member functions let the

view retrieve, add and change

data in the document

There may be one

or more views sharing

the same document

14.5
U

nd
e

rsta
nd

ing
 the

 C
la

ssW
iza

rd

This book is continuously updated. See http://www.iftech.com/mfc

333

14.4.6 RESOURCE Files

RESOURCE.H is a resource header file like those that you saw in Chapter 6. It
contains new constants you declare in the process of creating menus, dialogs, and so
on. For example, if you create an edit control in a dialog and assign it a special constant
value, the constant will appear in RESOURCE.H

SAMP.RC is the resource for the application framework. It initially contains sec-
tions for the application’s icon, the menu bar, its accelerator table, the application’s
string table, the toolbar and the About dialog. It also contains version information.
You should not manipulate this file yourself—you should always edit it using the re-
source editors available in Visual C++. See Chapter 6 for details.

One good way to get a feel for the contents of the SAMP.RC file is to examine
its sections using the resource editors built into Visual C++. Open the resource view
as described in Appendix B.6.2. Now double-click on any of the individual resources
such as the dialog box or the menu. Visual C++ will display the resource in the appro-
priate editor. If you want to experiment, try customizing the About dialog or adding
options to the menu bar. Change some of the version information.

Each change that you make gets written into SAMP.RC. If you look into the file
with a text editor such as Notepad, you will be able to see the changes you make.

The first time you look at all these files it can be quite intimidating. The goal of
the next four chapters is to show you several different example applications so you feel
comfortable with this group of files. By the end of this section you will have touched
all the different files and you will understand what to put where when you create your
own applications.

14.5 Understanding the ClassWizard

The AppWizard is a tool that you use once for each application that you create.
It is the very first step you take in creating a new application. Once you have created
the framework you are done with the AppWizard tool. See Appendix B.7.

The ClassWizard, on the other hand, is used constantly. It allows you to do
many things, but three of its different capabilities are most commonly used:

1. It gives you an easy way to modify message maps and to override virtual func-
tions.

2. It creates new classes derived from many of the classes declared by MFC.
3. It lets you easily implement DDX (dialog data exchange) and DDV (dialog

data verification) in dialog boxes.
The only way to learn how to use the ClassWizard is by example, and the fol-

lowing chapters contain plenty of opportunities to use it. Right now let’s look at how
you can use the ClassWizard to manipulate a message map so you can begin to get
comfortable with this tool.

If you look at the message maps contained in the files the AppWizard generated,
you will find they contain some rather odd-looking comments. The AFX_MSG tag
inside a message map is a special string understood by the ClassWizard. The Class-

334

This book is continuously updated. See http://www.iftech.com/mfc

14
U

nd
e

rs
ta

nd
in

g
 th

e
 A

p
p

W
iz

a
rd

 a
nd

 C
la

ss
W

iz
a

rd

Wizard can look into the file, find these tags, and manipulate any message map that
contains them. As the comments indicate, you should not modify the tags or the code
within them because that will upset the ClassWizard’s ability to orient itself in the
code. There are some cases where it is valid to add entries into the ClassWizard’s sec-
tion, and we will see several examples of this in Part 4. In general, however, it is a good
idea to steer clear of the sections tagged for the ClassWizard’s use.

To demonstrate how the ClassWizard can modify a message map, let’s make a
very simple addition to the message map for the view class in the framework we just
generated with the AppWizard. We will add an handler function for the
WM_MOUSEMOVE message.

Open the file named SAMPVIEW.CPP. Look at the message map and you will
find that it is empty. Do the same in SAMPVIEW.H, and you will again find that the
message map is empty.

Now open the ClassWizard. Following the instructions in Appendix B.7.1 add
a new message map entry for the WM_MOUSEMOVE event to SAMPVIEW.CPP.
You will find that the message map gains a new entry for

OnMouseMove

. Edit the
OnMouseMove function.

The new

OnMouseMove

 function looks like this:

void CSampView::OnMouseMove(UINT nFlags, CPoint point)
{

// TODO: Add your message handler code here and/or call default

CView::OnMouseMove(nFlags, point);
}

It contains a comment that you can replace with your own code. It also contains
a call down to the base implementation of

OnMouseMove

. You can keep this call or
remove it, depending on how you plan to use the new function. Generally it is a good
idea to keep it, but we will see examples in later chapters where it is useful to remove
it or move it elsewhere.

Modify the

OnMouseMove

 function so that it looks like this:

void CSampView::OnMouseMove(UINT nFlags, CPoint point)
{

if (nFlags == MK_LBUTTON)
{

CClientDC dc(this);
dc.SetPixel(point,RGB(0,0,255));

}

CView::OnMouseMove(nFlags, point);
}

This code should look familiar if you worked with any of the drawing programs
in Chapters 11 and 12.

Now build the project and run it. You will find that you can draw points just
like you could with the previous drawing applications. However, in this case you were
able to create the drawing program by adding just five lines of code to an automatically
generated framework, rather than typing an entire program as you did in Chapter 11.

14.6
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

335

As mentioned before, you will see a number of examples that demonstrate the
uses of the ClassWizard in the following chapters. From the example here you can see
that using it to add entries to any message map is extremely easy, and its other capa-
bilities are just as easy to learn.

14.6 Conclusion

The next chapter will show you how to expand the drawing program started in
the previous section, adding to it the ability to open and save documents. To do this
will require you to extensively modify the document class, and from this experience
you will learn a great deal about how documents and views work together in a frame-
work to create an application.

337

15CREATING A DRAWING PROGRAM

Several different chapters in Part 2 work with a simple drawing program that does
nothing more than draw points. For example, in Chapter 11 this simple program in-
troduced the concept of mouse motion events. In Chapter 12 it was modified to dem-
onstrate how to create

CObject

-derived classes and

CObArray

s.

In this chapter we will use these same concepts to create a complete drawing ap-
plication from an AppWizard framework. First we will create an SDI (Single
Document Interface) version of the application, and then we will start over again and
create an MDI (Multiple Document Interface) version. Then we will expand the pro-
gram to include scrolling and splitter windows. We will add a new menu option and
dialog to the application to demonstrate the use of the Visual C++ resource editors and
the

CDialog

 class first seen in Chapter 6. We will also add printing capabilities so you
can see how to use the Print Preview and Print options that are implemented in the
AppWizard framework.

Once you have finished working through the examples in this Chapter, you will
have a much clearer view of how the different pieces in an AppWizard framework
work together. Chapter 18 will then reinforce and continue the process, showing you
additional features like the tool bar, status bar, and additional printing options.

15.1 The Goal of the Application

In this chapter you will create a drawing program using a framework generated
by the AppWizard as the starting point. To simplify the program, it will draw nothing
but points: When you move the mouse while holding down the left mouse button,
the program will paint the pixels that the mouse moves over. It would be an easy ex-
trapolation to create more sophisticated editors able to draw lines, rectangles, circles,
polygons, and so on using the rubber-banding techniques seen in Chapter 11. Our
goal here is not to create a complete drawing editor, but instead to expose you to the
features available in the AppWizard’s framework and show you how to use them with-
out bogging you down with extraneous details.

338

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

By creating this application within an AppWizard framework, the application
will have a number of standard features derived from the framework’s inherent capa-
bilities. The program will initially be an SDI application with the following features:

1. It will be able to draw points, just like the previous programs in Chapters 11
and 12.

2. It will properly refresh the window on exposure.

3. It will properly implement the Open, Close, Save, and Save-As menu options
so you can open and save drawings.

4. It will put the proper file extension in File Open dialog, have a proper title bar,
etc.

5. It will recognize that you have to save before closing.

6. It will have an appropriate About box and icon.

To create this application, you will take the following steps:

1. Create an SDI framework using the AppWizard.
2. Wire in

OnMouseMove

 event in the view.

3. Create a complete document class for documents generated with this applica-
tion. The document class needs to have a way to accept points from the view,
store them in the document class, serialize the document, and retrieve points
for the view.

4. Create the

OnDraw

 function in the view to handle exposure.

5. Modify the IDM_MAINFRAME string resource. You can do this in AppWiz-
ard or after the fact. See the

CDocTemplate::GetDocString

 page in the MFC
documentation for documentation on this string resource.

6. Properly set the dirty bit with

SetModified

 so the document knows when it has
to save itself.

7. Customize the application’s about box and icon.

The next section walks you through the process of creating this application in a
detailed, step-by-step manner. The following section then explains what you have
done at a high level so you can understand why you made each change to the frame-
work. Subsequent sections show you how to change the application over to an MDI
format and then extend its capabilities.

15.2 Creating a Drawing Program

Chapter 14 described the steps you need to take to create an SDI application
framework with the AppWizard (see Appendix B.6.1 for details). You will start creat-
ing your drawing application by creating a new SDI framework for it in the same way.
You will then add modifications piece by piece until you have fully integrated a com-
plete drawing application into the framework.

15.2
C

re
a

ting
 a

 D
ra

w
ing

 Pro
g

ra
m

This book is continuously updated. See http://www.iftech.com/mfc

339

15.2.1 Step 1—Create the Framework

Create a new SDI framework with the AppWizard, following the exact same
steps that you saw in Chapter 14. See Appendix B.6.1 for details.

• Choose the

Single-Document

 option.
• Choose

None

 for database support.
• Choose

None

 for OLE support.
• Disable all application features: Disable the dockable tool bar, Initial Status

bar, printing, context-sensitive help, and 3-D controls (you can come back and
enable these when you do this exercise a second time later in the chapter). Leave
the MRU list set to 4.

Change the file extension to “drw” in the

File Extension

field as described in Appendix B.6.3.

• Leave all file names as chosen by the AppWizard.
When you added the word “drw” to the

File Extension

 field, you told the Ap-
pWizard to create a framework that will automatically append the DRW extension to
files without extensions. The application will also be able to associate itself with files
ending with the DRW extension.

Create the framework.

15.2.2 Step 2—Examine the Framework

Look around at all the files that the AppWizard created. There are many, as de-
scribed in the previous chapter. The main categories are:

• A CPP and H file for the precompiled headers (stdafx)
• Four CPP files for the application, window, document, and view
• Four H files for the CPP files
• Resource files: an RC file and RESOURCE.H
• Project files
We will focus all our changes in this section on the document and view files.

Note: The EXAMPLES directory on the diskette makes it easy to work through this
example.

15.2.3 Step 3—Handle Mouse Movement Events

Add in an

OnMouseMove

 event handler. This step is described in detail at the
end of the previous chapter (see Section 14.6). You will use the ClassWizard tool to
do this. Add the code in Listing 15.1 in place of the TODO comment in that
function:

Listing 15.1
Mouse motion handler code. See Section 14.5 for further information

if (nFlags == MK_LBUTTON)

{

CClientDC dc(this);

dc.SetPixel(point,RGB(0,0,255));

340

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m }

See Chapter 11 for more information on drawing and device contexts.

15.2.4 Step 4—Compile and Run

Compile the program and try it out. You should be able to draw by dragging the
mouse. The program will not handle exposure right now because there is no data
structure to remember the points. This is the purpose of the document class, and all
the necessary modifications to it occur in Step 5.

15.2.5 Step 5—Adjust the Document Class

Modify the document class so it can remember points. We are going to add in a
data structure based on CObArray, add code to serialize the data, and then add mem-
ber functions to access the data in the document. The document will then be a
completely self-contained class that can hold, load, and save the data of any drawing.
See Chapter 12 for information on CObArray.

15.2.6 Step 5a

Create COBPOINT.H and COBPOINT.CPP. These two files create a point
class derived from the CObject class. See Chapter 12 for information on deriving
classes from CObject and an explanation of the process and advantages. See Chapter
13 for information on AssertValid and Dump functions. Listing 15.2 contains COB-
POINT.H, while Listing 15.3 contains COBPOINT.CPP.

Listing 15.2
The COBPOINT.H file

// cobpoint.h
class CObPoint : public CObject
{
DECLARE_SERIAL(CObPoint)
protected:

LONG x, y;
public:

CObPoint();
CObPoint(const CObPoint &p);
CObPoint operator=(const CObPoint& p);
CObPoint(int ix, int iy);
CObPoint(CPoint &p);
virtual void Serialize(CArchive &archive);
CPoint GetPoint() const;

#ifdef _DEBUG
virtual void Dump(CDumpContext& dumpSite) const;
virtual void AssertValid() const;

#endif
};

15.2
C

re
a

ting
 a

 D
ra

w
ing

 Pro
g

ra
m

This book is continuously updated. See http://www.iftech.com/mfc

341

Choose the

New

 option in the

File

 menu, create a new text file, and copy the
code in Listing 15.2 into the window. Save the file in the project’s directory and give
the file the name COBPOINT.H. Now create a second new file to hold the imple-
mentation, as shown in Listing 15.3.

Listing 15.3
The COBPOINT.CPP file

// cobpoint.cpp

#include "stdafx.h"
#include "cobpoint.h"

CObPoint::CObPoint()
{

x=y=0;
}

CObPoint::CObPoint(const CObPoint &p)
{

x=p.x;
y=p.y;

}

CObPoint CObPoint::operator=(const CObPoint& p)
{

x=p.x;
y=p.y;
return *this;

}

CObPoint::CObPoint(int ix, int iy)
{

x=ix;
y=iy;

}

CObPoint::CObPoint(CPoint &p)
{

x=p.x;
y=p.y;

}

void CObPoint::Serialize(CArchive &archive)
{

CObject::Serialize(archive);
if (archive.IsStoring())

archive << x << y;
else

archive >> x >> y;
}

// The (int) casts in the function below are
// needed only in Windows 3.1. Remove in

342

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

// WIN32 environments
CPoint CObPoint::GetPoint() const
{

return CPoint((int)x, (int)y);
}

#ifdef _DEBUG
void CObPoint::Dump(CDumpContext& dumpSite) const
{

CObject::Dump(dumpSite);

dumpSite << "x: " << x << "y: " << y;
}

void CObPoint::AssertValid() const
{

// check base class first
CObject::AssertValid();

// check data members.
}

#endif //_DEBUG

IMPLEMENT_SERIAL(CObPoint, CObject, 0)

Save the second file as COBPOINT.CPP. Add COBPOINT.CPP to the project
file (see Appendix B.1.4). Include COBPOINT.H in the Document file: That is, some-
where below the include statement for the file STDAFX.H in the file DRAWDOC.H
you should include the file COBPOINT.H, as shown here:

// drawdoc.cpp : implementation of the CDrawDoc class
//

#include "stdafx.h"
#include "draw.h"

#include "drawdoc.h"
#include "cobpoint.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif
...

You might also consider deriving a class from CObArray in the same manner to
override its delete and RemoveAll functions. Here we will do that work in the Doc-
ument class, instead of creating a stand-alone class derived from CObArray, to save
typing.

15.2.6.1 Step 5b In the document’s header file (DRAWDOC.H), add the fol-
lowing declaration to the “attributes” section as a protected member:

CObArray array;

15.2
C

re
a

ting
 a

 D
ra

w
ing

 Pro
g

ra
m

This book is continuously updated. See http://www.iftech.com/mfc

343

This array will be used to remember what the user has drawn. The top of
DRAWDOC.H should look like this when you are done:

// drawdoc.h : interface of the CDrawDoc class
//
///

class CDrawDoc : public CDocument
{
protected: // create from serialization only

CDrawDoc();
DECLARE_DYNCREATE(CDrawDoc)

// Attributes
protected:

// holds the document's points in the drawing.
CObArray array;

// Operations
public:
...

15.2.6.2 Step 5c

In the Document’s DRAWDOC.CPP file, add an overriding
implementation of the virtual function named

DeleteContents

. To do this, use the

ClassWizard

 as described in Appendix B.7.2. Modify the

DeleteContents

 function
so it looks like the version shown in Listing 15.4.

Listing 15.4
Modifications to the DeleteContents virtual function

void CDrawDoc::DeleteContents()
{

int x;
for (x=0; x<array.GetSize(); x++)

delete(array.GetAt(x));
array.RemoveAll();
CDocument::DeleteContents();

}

This function gets called whenever the user selects the New option and also
when the program exits. In this implementation it empties the array.

Note that, as described in Chapter 12, the elements of the CObArray must ac-
tually be deleted. As mentioned above, you could derive a new class from CObArray
and handle the deletion there. Handling the deletion inside the document class simply
saves some typing.

15.2.6.3 Step 5d Add the following line to the end of document’s Serialize
function in DRAWDOC.CPP:

array.Serialize(ar);

Because the CObArray knows how to serialize itself, and because the CObPoint
elements it contains also know how to serialize themselves, this single line is all that is

344

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

needed to save or load the array to and from disk. See Chapter 12, as well as the MFC
Encyclopedia’s entry on Serialization in books on-line, for information on serializa-
tion. After you have added the line, the serialize function should look as shown in
Listing 15.5.

Listing 15.5
The modified Serialize function in the Document class

void CDrawDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())
{

// TODO: add storing code here
}
else
{

// TODO: add loading code here
}
array.Serialize(ar);

}

15.2.6.4 Step 5e Find the AssertValid and Dump functions in the DRAW-
DOC.CPP file. Modify them so the document complies with the debugging and
dumping features of MFC, as shown in Listing 15.6.

Listing 15.6
Completing the AssertValid and Dump functions in the document class

void CDrawDoc::AssertValid() const
{

CDocument::AssertValid();
ASSERT_VALID(&array);

}

void CDrawDoc::Dump(CDumpContext& dc) const
{

CDocument::Dump(dc);
dc << array;

}

15.2.6.5 Step 5f As the final modification to the document class, we need to
create three access functions that allow the view to access the data held in the docu-
ment. These functions will add points to the array, get points from the array, and
indicate the number of points currently held in the array. Add the following proto-
types for these functions to the Attributes section of the document’s header file:

void CDrawDoc::AddPoint(CPoint p);
CPoint CDrawDoc::GetPoint(int x);
int CDrawDoc::GetNumPoints();

15.2
C

re
a

ting
 a

 D
ra

w
ing

 Pro
g

ra
m

This book is continuously updated. See http://www.iftech.com/mfc

345

These functions should be declared as

public

 functions so functions in the View
class can call them. You will have to add these prototypes manually—the ClassWizard
will not help with adding new attribute functions like these. When you are done mod-
ifying the attributes section of DRAWDOC.H, it should look like this:

class CDrawDoc : public CDocument
{
protected: // create from serialization only

CDrawDoc();
DECLARE_DYNCREATE(CDrawDoc)

// Attributes
protected:

// holds the document's points in the drawing.
CObArray array;

public:

// functions allow access to the array
void CDrawDoc::AddPoint(CPoint p);
CPoint CDrawDoc::GetPoint(int x);
int CDrawDoc::GetNumPoints();

// Operations
public:
...

Toward the bottom of the document’s DRAWDOC.CPP file add a section
called “Attributes” and add the implementations for these three functions as shown in
Listing 15.7

Listing 15.7
Implementations for the three array encapsulation functions

///
// Attributes

void CDrawDoc::AddPoint(CPoint p)
{

array.Add(new CObPoint(p));
SetModifiedFlag();

}

CPoint CDrawDoc::GetPoint(int x)
{

return ((CObPoint *)(array.GetAt(x)))->GetPoint();
}

int CDrawDoc::GetNumPoints()
{

return array.GetSize();
}

You have now finished your modification to the document class. It handles all
data manipulations, including file saving and loading, for the application.

346

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

15.2.7 Step 6—Add Points to the Document

Open the ClassWizard. Select the

CDrawView

 class and edit the code for the

OnMouseMove

 function. Change the code by adding the two lines shown in Listing
15.8.

Listing 15.8
Modifications to the OnMouseMove function that allow it to save new points to the
document class.

void CDrawView::OnMouseMove(UINT nFlags, CPoint point)

{

if (nFlags == MK_LBUTTON)

{

CClientDC dc(this);

dc.SetPixel(point,RGB(0,0,255));

// Add each point to the array

GetDocument()->AddPoint(point);

}

CView::OnMouseMove(nFlags, point);

}

The new line that calls AddPoint causes points to get added to the document
class each time the user drags the mouse.

Note that this function, as well as the function in Step 7, both call the GetDoc-
ument function. Each view contains a pointer back to its document. The
GetDocument function retrieves that pointer and lets the view talk to its document.
In the case of this OnMouseMove function, the view needs to call the AddPoint
member function in the document, so it retrieves its document pointer to do that.

15.2.8 Step 7—Handle Exposure Events

Open the ClassWizard. Select the CDrawView class and edit the code for the
OnDraw function. Place the code shown in Listing 15.9 in place of the TODO com-
ment that you find in the OnDraw function.

Listing 15.9
Exposure-handling code for the view’s OnDraw function.

int x;

// Redraw all points in the array

for (x=0; x<pDoc->GetNumPoints(); x++)

pDC->SetPixel(pDoc->GetPoint(x),

RGB(0,0,255));

15.3
U

nd
e

rsta
nd

ing
 the

 D
ra

w
ing

 Pro
g

ra
m

This book is continuously updated. See http://www.iftech.com/mfc

347

This code causes the view to properly refresh itself during exposure events by re-
trieving all the points held by the array and redrawing them. See Chapter 11 for
details.

15.2.9 Step 8—Compile and Run

Recompile and run the project. You should be able to draw. You should be able
to re-size or iconify the window and it should update properly on exposure. The

On-
Draw

 function accomplishes this.

The file should also properly save itself when you
use the

Save

 option in the

File

 menu, and then reload again with the

Open

 option.
This occurs because the document’s

Serialize

 function now works and it gets called
automatically by the

Open

 and

Save

 menu options (see Section 15.3 for an explana-
tion). If you try to quit without saving you will get a dialog asking you if you want to
save. This occurs because of the call to

SetModifiedFlag

 in the document’s

AddPoint

function (see Step 5f).

15.2.10 Step 9—Change the Icon and About Box

Use the dialog editor and icon editor to modify the About Box and icon resourc-
es for the application to suit your tastes. To do this, open the resource file by double-
clicking on it in the project window (see Section 14.4). Then double-click on the di-
alog and icon resources that you find there. Change both resources as appropriate. You
may also wish to modify the version information in the version resource. Recompile
and run. The application is now complete.

15.3 Understanding the Drawing Program

In the previous section you made a series of changes to a standard SDI frame-
work produced by the AppWizard. These changes resulted in the creation of a
complete drawing program. But how? There are two things that make it difficult to
understand why the nine steps described in Section 15.2 resulted in a complete draw-
ing editor:

1. You made so many small changes to so many different pieces that it is hard to
get a global understanding of what you did.

2. So many things happen automatically in the framework and the base MFC
classes that it is difficult to know why certain things work the way they do. For
example, the

Open

 option in the

File

 menu of the drawing program works cor-
rectly, yet there does not seem to be any code that causes that to happen.
The purpose of this section is to help you understand why the code you entered

in Section 15.2 actually works.
Let’s start by summarizing the changes you made to the framework’s code to

produce the drawing program. Here is a list of the different modifications:

1. In the view, you used the ClassWizard to add an

OnMouseMove

 function. Ini-
tially (Step 3) that function simply drew pixels into the view, but later (Step 6)
it also added the pixels into the document.

348

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

2. In the view you also modified the existing

OnDraw

 function (Step 7). By doing
so you gave the program the ability to refresh its screen on exposure.

3. You implemented a complete

CObPoint

 class derived from

CObject

 (Step 5a).
The reasons for, and advantages of, this step are described in Chapter 12. The

CObPoint

 class is designed to hold one point of the drawing. You then added
an instance of a

CObArray

 to the document class (Step 5b) to hold the collec-
tion of all points drawn by the user.

4. You overrode the document’s

DeleteContents

 member function (Step 5c). By
default this function does nothing. You overrode it to clear the member variable
you added to the document class. The function gets called by the framework dur-
ing destruction of the document. In an SDI application, it is also called each time
the user opens or creates a new document, because an SDI application reuses the
same document object throughout the run of the program. In an MDI applica-
tion, a new document instance is created each time the user selects the

New

 or

Open

 option, so

DeleteContents

 only gets called during destruction.
5. You modified the document’s

Serialize

 function (Step 5d) by adding one line to
it. This line serializes the array to or from disk automatically. The document’s

Serialize

 function gets called automatically by the framework each time the
user chooses the

Open, Save,

 or

Save As

 options.
6. You modified the

AssertValid

 and

Dump

 functions of the document class
(Step 5e) so these functions work properly. See Chapter 13 for more informa-
tion on these functions.

7. You added three functions to the document class (Step 5f) to complete its
encapsulation:

AddPoint

,

GetPoint

, and

GetNumPoints

. The view class uses
these three functions when it wants to manipulate data in the document class.
Note that these changes were made strictly to the document and view classes.
The goal of the document class is to completely encapsulate the data for one

open document. It knows how to load the data from the disk and save it to the disk.
It also has member functions that the view class uses to manipulate the data in the doc-
ument. In this case the document has only three functions that the view uses:

AddPoint

,

GetPoint

, and

GetNumPoints

. In more complicated programs the inter-
face will be more complicated, but here those three functions are enough to satisfy all
the needs of the view.

The view class is responsible for letting the user view the contents of the docu-
ment. In this case the document is a drawing. The view accepts drawing events from
the user and adds new points to the document.

The relationship between the document and view classes is summarized in Fig-
ure 15.1. When you are designing your own applications, you want the document
class to completely encapsulate the data, and you want the view to display information
to the user. There should be a clear and obvious way for the view to interact with the
document through member functions.

15.3
U

nd
e

rsta
nd

ing
 the

 D
ra

w
ing

 Pro
g

ra
m

This book is continuously updated. See http://www.iftech.com/mfc

349

With a clear understanding of what the document and view classes do in this ap-
plication, it is easier to see how the total application handles events. Much of the event
handling happens automatically in the framework. When an event occurs, code in the
framework processes the event and then ends up calling certain functions in the doc-
ument and view classes in response to those events. By understanding how events are
processed in the framework, you get a much clearer understanding of why certain
functions in the document and view classes should be modified.

Before proceeding, take a moment to look in the MFC documentation at the
member functions for the

CDocument

 and

CView

 classes. When you look through
the documentation for the document class you should recognize two functions that we
have used in this chapter’s example program:

SetModifiedFlag

 and

DeleteContents

.
In the view class you will also recognize two functions:

OnDraw

 and

GetDocument

.
Take a moment to read about some of the other functions in these two classes. You will
find that many of them are called automatically by code or classes built into the frame-
work. We will see examples of many of these functions in the chapters that follow.

Right now the application accepts only eight events that we care about in our
implementation. Six of these come in the form of menu commands, while the other
two are system events:

• The Open option in the File menu
• The New option in the File menu
• The Save option in the File menu

Figure 15.1

The relationship between the document and the view

Document

ClassLoad and save

document to

disk

AddPoint

GetPoint

GetNumPoints

View class

WM_MOUSEMOVE events

WM_PAINT events

The document class

owns an array that

holds all of the

document's points

These three member

functions encapsulate

the array

The user can

see the

drawing

through

the view

350

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

• The Save As option in the File menu

• The Exit option in the File menu

• The About option in the Help menu

• WM_PAINT messages in the view

• WM_MOUSEMOVE messages in the view

 Let’s look at each one of these individually to understand what happens when
one of the events is recognized by the application. You may also want to peruse Tech
Note 22 for more information on default menu behavior. Also be aware of the fact
that you can look at the MFC source code and that this code is very educational. Using
the debugger (see Appendix B.2) you can step right into the source and see what is
happening.

15.3.1 The Open Menu Option

 If you look in the message map generated by the AppWizard for the application
class in DRAW.CPP, you will find an entry for the ID_FILE_OPEN command. The
AppWizard built a default menu bar when it generated the framework, and the

Open

option in that menu bar generates this ID when the user selects it. As you can see in
the application’s message map, this message map entry calls

CWinApp::OnFile-
Open

. If you walk through the source code for this function, you will see it displays
the dialog to get a file name from the user and then calls the

OpenDocumentFile

function in the

CWinApp

 class. The

OpenDocumentFile

 function is more compli-
cated, but essentially all that it does is attempt to create (in an MDI application) or
reuse (in an SDI application) an instance of the document and view classes. Eventually
the

OnOpenDocument

 function in the

CDocument

 class gets called. We have not
overridden this function, so its default behavior executes. It first calls

DeleteCon-
tents

, which we have overridden to clear the document’s array, and then calls

Serialize,

 which we have modified to load the file.

There are many ways you can modify default behavior. You can, for example,
override any of the functions in this chain of events. In most cases, however, the de-
fault behavior described above handles everything in an appropriate way. You simply
modify

DeleteContents

 and

Serialize

 to take the appropriate actions and everything
else happens automatically.

15.3.2 The New Menu Option

 The

New

 menu option, like the

Open

 menu option, is handled in the message
map of the application class. Eventually the framework calls the

OnNewDocument

function in the

CDocument

 class. This function actually appears in the

CDrawDoc

class that the framework created, but we did not modify it. You can examine it with
the ClassWizard. By default it calls

CDocument::OnNewDocument

, which eventu-
ally calls

DeleteContents

. The

DeleteContents

 function that we created in Step 5c
clears the array.

15.3
U

nd
e

rsta
nd

ing
 the

 D
ra

w
ing

 Pro
g

ra
m

This book is continuously updated. See http://www.iftech.com/mfc

351

15.3.3 The Save Menu Option

Deep inside the core implementation for the

CDocument

 class, the document’s
message map handles the ID_FILE_SAVE message. You can modify this behavior by
creating your own message map entry for that ID in your derived

CDocument

 class,
but the default behavior is so rich that it is better to override some function in the stan-
dard chain of events to accomplish any goals that you have. First the

CDocument

message map calls

CDocument::OnFileSave

, which calls

CDocument::OnSave

,
which calls

CDocument::OnSaveDocument

, which calls the overridden

Serialize

function of Step 5d. The

Serialize

 function saves the document to disk. Both

OnSa-
veDocument

 and

Serialize

 can be easily overridden or modified.

15.3.4 The Save As Menu Option

The

Save As

 option, like the

Save

 option, is handled by a message map in the
core of

CDocument

. The only difference between

Save

 and

Save As

 is that the

Save
As

 option additionally uses a dialog to get a new file name. It then calls

CDocu-
ment::OnSaveDocument

 as described in the previous section.

15.3.5 The Exit Menu Option

The

Exit

 option in the

File

 menu is handled by the core behavior for the

CWinApp

 class. Eventually the following overridable functions get called in the

CDocument

 class:
• CanCloseFrame
• SaveModifed
• OnSaveDocument
• Serialize
The

SaveModified

 function is the one that asks the user if the document should
be saved before exiting. You can override it if you want a fancier query dialog. The call
to

Serialize

 is made only if the user wishes to save the document.

15.3.6 The About Menu Option

The

About

 menu option is handled in the derived application class’s message
map in DRAW.CPP. It calls

OnAppAbout

, located at the bottom of DRAW.CPP as
well. See Chapter 6 for a discussion of dialog classes and their implementation.

15.3.7 The WM_PAINT Message

We first discussed the WM_PAINT message in Chapter 11. This message is
generated any time any part of a window gets exposed. In the framework generated by
the AppWizard the

CView

 class receives this message. Its implementation for the
event’s handler is extremely simple:

void CView::OnPaint()
{

// standard paint routine
CPaintDC dc(this);
OnPrepareDC(&dc);

352

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

OnDraw(&dc);
}

As you can see, the framework simply reroutes the drawing activity over to

On-
Draw

. It does this so it can simplify printing, as discussed later in this chapter. Here
we simply place the code for exposure handling into the

OnDraw

 function rather
than the

OnPaint

 function.

15.3.8 The WM_MOUSEMOVE Message

The WM_MOUSEMOVE event calls the

OnMouseMove

 function.

On-
MouseMove

 is called because we added an entry to the view’s message map to handle
that message using the ClassWizard. Our implementation appears in Listing 15.10
(from Step 6):

Listing 15.10
The OnMouseMove function from Section 15.2.6.

void CDrawView::OnMouseMove(UINT nFlags, CPoint point)
{

if (nFlags == MK_LBUTTON)
{

CClientDC dc(this);
dc.SetPixel(point,RGB(0,0,255));

// Add each point to the array
GetDocument()->AddPoint(point);

}

CView::OnMouseMove(nFlags, point);
}

This implementation simply paints one pixel at the appropriate position, and
then adds the position into the document’s data structure with the AddPoint
function.

Unlike the previous functions, there is no magic framework processing going on
in the background and no virtual functions to override. Most standard Windows mes-
sages you see under the CView class in the ClassWizard (with the exception of
WM_PAINT) are handled directly like this.

15.4 Creating an MDI Application
In Section 15.2 the application we created can edit only one document at a time.

In this section we will recreate the application so that it can edit multiple documents
in an MDI framework. In the process you will learn about the UpdateAllViews func-
tion in the CDocument class and the OnUpdate virtual function in the CView class.

The process involved in creating an MDI application is nearly identical to that
of creating an SDI application. The only modification occurs in Section 15.2. When
you create the framework with the AppWizard, simply choose the Multiple Docu-

15.4
C

re
a

ting
 a

n M
D

I A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

353

ment Interface

 option instead of the

Single Document Interface

 option. You may
also want to choose several of the other options like the tool bar to try out some of the
AppWizard’s capabilities.

To create an MDI version of the drawing program, complete all the steps exactly
as you did for the SDI application in Section 15.2. Compile and run the new version
and you should be able to open and edit multiple documents simultaneously.

It may surprise you to see that

exactly identical

 code, applied to two different
frameworks, can yield both SDI and MDI functionality. This is possible because both
the implementations use the document and view classes, and the document and view
classes created above were implemented in their intended manner. In the SDI version,
there is only one document and one view. However, the

CDocument

 and

CView

classes we created are general enough to handle multiple documents and multiple
views. Because we complied with the requirements of the document and view classes
during the initial implementation, we gained the power of MDI functionality “for
free.”

The differences between the MDI and SDI frameworks reside in the document
templates used in the framework’s application and frame classes, and in the resource
file. For example, if you compare the resource file of the SDI and MDI applications,
you will find the MDI version differs in that it has two menu bars, two accelerator ta-
bles, and two icons. The two menu bars (and their associated accelerator tables) handle
the two possible states an MDI application can enter. When the application has no
windows visible, the IDR_MAINFRAME menu bar appears. It contains a minimum
of options, as appropriate for a no-windows state. When there are windows open, the
second menu bar appears and displays to the user the standard menu options for the
application. We will see in Chapter 16 that you can add multiple document types to
a single MDI application and each document type can have its own menu bar to go
with it. The framework handles all the details of displaying the appropriate menu bar.

There is one subtle way in which the MDI version that you just created is lack-
ing. To see this, run the MDI drawing program again. Close any windows that are
open (note how the menu bar changes) and create a new document by selecting the

New

 option in the

File

 menu. Draw something in this window. Now select the

New
Window

 option in the

Window

 menu. You now have two views into the same doc-
ument. Then select the

Tile

 option in the

Window

 menu so you can see both
windows simultaneously. You can see that both views contain the same drawing. If
you like, open several more new windows on the same document. They should all dis-
play the same drawing.

Now draw into one of the windows. You will find that the other windows do
not update properly. What we would like is total synchronization in real time—as you
draw into one view, the other views should get updated with the same information si-
multaneously. If you iconify one of the windows and then double-click on the icon,
that view will suddenly synchronize itself because its

OnDraw

 function redraws all the
points in the document and the document knows about the entire drawing.

354

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

You can use two functions to fix this problem. The

CDocument

 class contains
a function called

UpdateAllViews

. This function calls the

OnUpdate

 function in the

CView

 class. The

UpdateAllViews

 function is designed so that the document
traverses its list of views and calls the

OnUpdate

 function in each one. This allows all
the views to know when any changes to the document occur.

If you look up the

UpdateAllViews

 function in the

CDocument

 class, you will
find that it accepts three parameters:

1. The first parameter points to a view. If you set it to NULL when you call

UpdateAllViews

, the document calls the

OnUpdate

 function in all of its
views. If, on the other hand, you pass a pointer to a view in this parameter, the
document will call all its views

except

 the one specified.
2. The second parameter accepts a value of type LPARAM. You can pass any four-

byte value you like through this parameter and it will be passed to the

OnUp-
date

 function of each view. You can design your code to use this value in any
way you like.

3. The third parameter accepts a pointer to a

CObject

. The pointer will be passed
to the

OnUpdate

 function of each view. You can design your code to use this
value in any way you like.
The latter two parameters are hints. You can use them in any way you please to

pass information to the views. Generally you use this information to tell the views
what to do or to help them optimize redrawing. We can modify our MDI program to
take advantage of this update facility in several different ways.

The steps below present one way to use the

UpdateAllViews

 function to syn-
chronize the different views of a drawing document. Here are the modifications you
will make to the MDI application:

1. Change the

OnMouseMove

 function so it does not draw each pixel but instead
simply calls

AddPoint

 to add the points to the document.
2. Modify the

AddPoint

 function so it calls

UpdateAllViews

 to notify all views
whenever any point is added to the document.

3. Override the

OnUpdate

 function to the view class and cause it to draw the
most recently added pixel in the document.
Note: The EXAMPLES directory on the diskette makes it easy to work through

this example.

15.4.1 Step 1—Modify OnMouseMove

Modify the

OnMouseMove

 function in the view and eliminate the

dc

 variable
and the call to

SetPixel

. We are going to move this functionality to the

OnUpdate

function. The revised

OnMouseMove

function is shown in Listing 15.11.

Listing 15.11
The revised OnMouseMove function calls UpdateAllViews

15.4
C

re
a

ting
 a

n M
D

I A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

355

void CDrawView::OnMouseMove(UINT nFlags, CPoint point)
{

if (nFlags == MK_LBUTTON)
{

// Add each point to the array
GetDocument()->AddPoint(point);

}

CView::OnMouseMove(nFlags, point);
}

Use the ClassWizard to find this piece of code so you can modify it.

15.4.2 Step 2—Create OnUpdate

Create a new OnUpdate function in the CDrawView class (DRAW-
VIEW.CPP) file using the ClassWizard. Edit the function so its code appears as shown
in Listing 15.12.

Listing 15.12
The view’s OnUpdate function

void CDrawView::OnUpdate(CView *pSender,
LPARAM lHint, CObject *pHint)

{
CDrawDoc* pDoc = GetDocument();
int numPoints = pDoc->GetNumPoints();
if (numPoints==0)

return;
CPoint point = pDoc->GetPoint(numPoints - 1);
CClientDC dc(this);
dc.SetPixel(point,RGB(0,0,255));

}

You can see from this implementation that, in the OnUpdate function, the view
simply retrieves the last point in the data structure held by the document. It then
paints this point on the screen.

15.4.3 Step 3—Add UpdateAllViews

Modify the AddPoint function in the document class (DRAWDOC.CPP) so it
calls UpdateAllViews. When you are finished, AddPoint should look like Listing
15.13.

Listing 15.13
The modified AddPoint function in the document class.

void CDrawDoc::AddPoint(CPoint p)
{

array.Add(new CObPoint(p));

356

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

SetModifiedFlag();

UpdateAllViews(NULL, 0, NULL);
}

In this implementation, the document simply updates all the views each time it
gets a new point added to the data structure. The OnUpdate function in the view class
draws the point that got added and all views are updated appropriately.

15.4.4 Step 4—Compile and Run

Compile and run the program, create a new document, and then select the New
Window option in the Window menu. Tile the windows. When you draw on one
window of the document, the second window will update itself as well. The two views
are completely synchronized.

There are many other ways to implement this same behavior. For example:

1. The document could pass the point number as the second parameter in the call
to UpdateAllViews. By doing this, you save each view from having to call Get-
NumPoints.

2. The view could draw its own pixel and then call UpdateAllViews itself, passing
this in the first parameter. The document would then update any other views if
they existed.

3. The view could update itself as in the previous approach and then pass the
point as the third parameter to UpdateAllViews. This would probably be the
most efficient way to implement the updating in this particular application.
Also note that you can override the OnInitialUpdate function in the view class.

This function is called immediately after the view is created, but before it appears on
the screen, and is useful for initialization of data or visuals that you use inside the On-
Update function.

15.5 Scrolling

The two simple drawing programs presented in the previous sections demon-
strate the basic steps involved in creating any application with the AppWizard.
However, the programs are fairly limited in several respects. One of the most impor-
tant limitations is the fixed image size: At present, the user cannot draw a picture any
larger than the maximum screen size. Fortunately, MFC and the AppWizard frame-
work make it easy to add scrolling to your drawing program using a class called
CScrollView. We saw how to handle scrolling by hand in Chapter 11, but it is much
easier in MFC. The CScrollView class inherits behavior from CView and automati-
cally adds horizontal and vertical scroll bars to the client area so the user has access to
a client area that is potentially much larger than the screen itself.

It would be possible for you to duplicate the scrolling activity of the CScroll-
View class fairly easily by adding your own scroll bars to the view and managing their
horizontal and vertical scrolling events (see Chapter 4). The CScrollView class simply

15.5
Sc

ro
lling

This book is continuously updated. See http://www.iftech.com/mfc

357

saves you the work. It also automatically handles sizing and mapping mode issues. Sev-
eral useful member functions make the class extremely easy to adjust and manipulate.
See the MFC documentation for details.

Using the

CScrollView

 class is easy because you can specify its inclusion when
you create an application framework with the AppWizard. Once you create a frame-
work that includes the

CSrollView

 class, there are only two things you have to add to
the drawing program to make it handle scrolling properly:

1. You must set the size of the scrolled client area.
2. You must handle the translation of the coordinate system from the scrolling

view to your data structure whenever the user adds points to the drawing.
The best way to understand these two issues is to create an application contain-

ing the

CScrollView

 class and then watch how it works.
Create a new MDI framework with the AppWizard. Give the new project the

name “draw.”
As you go through the AppWizard option screens, select the following options:
• Choose the

Multiple-Document

 option.
• Choose

None

 for database support.
• Choose

None

 for OLE support.
• Enable or disable any application features as you see fit. (However, leave

printing turned off for the moment. See Section 15.8 for details on printing.)
Add the file extension “drw” as described in Appendix B.6.3.

• Leave all file and class names as chosen by the AppWizard. However, change
the

Base Class

 of the

CDrawView

 class to

CScrollView

 as described in Ap-
pendix B.6.4.

The last step simply modifies the base class of the view. If you look in the file
DRAWVIEW.H, you will find that

CDrawView

 now inherits its behavior from

CScrollView

 as shown below:

// drawview.h : interface of the CDrawView class
//
//

class CDrawView : public CScrollView
{

...

Note: Use the files in the EXAMPLES directory on the diskette to work through
the examples.

Now recreate the drawing application by following all the steps in Section 15.4
to create an MDI program that can update multiple views properly. At this point you
should be getting good at modifying AppWizard code and it should only take about
five minutes to recreate the application. Compile and run the application to confirm
that it works exactly as the program did in Section 15.4. The

CScrollView

 class is com-
pletely silent because we have not yet activated it.

To activate scrolling, you first have to tell the scrolling view class how big an area
it needs to handle. You do this by calling the

SetScrollSizes

 function in the

CScroll-

358

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

View

 class. Additionally, the document class needs to hold the size of the document and
then initialize the size of the views as they open. To do this, take the following steps.

15.5.1 Step1—Add a Document Size Variable and Access Functions

Add a size variable to the document class by adding a new protected attribute
variable and access function to the DRAWDOC.H header file as shown in Listing
15.14

Listing 15.14
Changes to the DRAWDOC.H file

// Attributes
protected:

CObArray array;
CSize docSize;

public:
void CDrawDoc::AddPoint(CPoint p);
CPoint CDrawDoc::GetPoint(int x);
int CDrawDoc::GetNumPoints();
CSize GetDocSize();
void SetDocSize(CSize s);

 The access function GetDocSize simply retrieves the size of the document,
while the SetDocSize function sets it. Add the two functions shown in Listing 15.15
below the GetNumPoints function in the attributes section of DRAWDOC.CPP.

Listing 15.15
Functions to allow manipulation of the document size

CSize CDrawDoc::GetDocSize()
{

return docSize;
}

void CDrawDoc::SetDocSize(CSize s)
{

docSize = s;
}

15.5.2 Step 2—Initialize the Document Size

The initial document size needs to be set to something. You might typically read
this initial value in from an application profile file or document file, but for this ex-
ample we will initialize it to a constant value of 2,000 x 2,000. The best place to do
this is either in the document’s constructor or in the OnNewDocument virtual func-
tion. The OnNewDocument function is preferred because, in the SDI case, only one
instance of the document class gets created and it is reused each time the user requests

15.5
Sc

ro
lling

This book is continuously updated. See http://www.iftech.com/mfc

359

a new document. The

OnNewDocument

 function is also easier to use because you
can get to it through the ClassWizard (you have to find the constructor by hand).
Open the ClassWizard and add the

OnNewDocument

 function to the

CDrawDoc

class (see Appendix B.7.2). Modify the function as shown in Listing 15.16.

Listing 15.16
The OnNewDocument function for the document class

BOOL CDrawDoc::OnNewDocument()
{

if (!CDocument::OnNewDocument())
return FALSE;

docSize = CSize(2000,2000);

return TRUE;
}

15.5.3 Step 3—Serialize the Document's Size

The document will need to save the document size with the document itself. Be-
cause we are using a constant document size of 2,000 x 2,000 right now, this step is
not strictly required, but it will be useful when we create a variable-size document op-
tion later in the Chapter. To save the document size you need to modify the
document’s Serialize function so that it can load and save the docSize member. Mod-
ify the function as shown in Listing15.17.

Listing 15.17
The new Serialize function can save the document size

void CDrawDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())
{

ar << docSize;
}
else
{

ar >> docSize;
}
array.Serialize(ar);

}

As you saw in Chapter 12, classes that serialize themselves can specify a
version number in the file so the application can ignore old versions of the data
files. To turn on this capability, change the DELCARE_DYNCREATE macro
at the top of DRAWDOC.H to DECLARE_SERIAL and change the

360

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

IMPLEMENT_DYNCREATE macro at the top of DRAWDOC.CPP to
IMPLEMENT_SERIAL. The IMPLEMENT_SERIAL macro should look like
this when you are done:

IMPLEMENT_SERIAL(CDrawDoc, CDocument, 1)

The third parameter to the macro specifies the version number. See the MFC
documentation and Chapter 12 for more information. Each time you change the

Se-
rialize

 function in the document you should increment the version number.

After you make this change and compile the code in Step 5, you might try an
experiment: load a drawing created in one of the earlier sections in this chapter and
see what happens.

15.5.4 Step 4—Set the Scrolling Size

The view contains the scroll bars. Therefore, the

CDrawView

 class needs to set
the size of the scrolling area. To do this, use the ClassWizard to find the

OnInitial-
Update

 function in the

CDrawView

 class and modify it so it contains the change
shown in Listing 15.18.

Listing 15.18
The modified OnInitialUpdate function in the view class.

void CDrawView::OnInitialUpdate()

{

SetScrollSizes(MM_TEXT, GetDocument()->GetDocSize());

CScrollView::OnInitialUpdate();

}

The call to SetScrollSizes sets the mapping mode (see Chapter 11) and sets the
maximum size of the virtual drawing area. Additionally you can set the amount the
document scrolls when the user clicks on the arrows or the shaft of the scroll bar. See
the documentation’s description of CScrollView::SetScrollSizes for more
information.

15.5.5 Step 5—Compile and Run

Compile and run the program. You will find the drawing window now has scroll
bars. You can click in the scroll bars and they will respond appropriately. However,
you will notice that something is not quite right. If you draw on the screen, and then
scroll down and draw some more, and then scroll back to the top of the drawing, the
two parts of the drawing are superimposed. In fact, you can scroll all the way to the
bottom right hand corner of the drawing, draw the word “hi”, and then scroll back to
the top left corner. You will find that the word “hi” displays in the top left corner of
the drawing.

15.5
Sc

ro
lling

This book is continuously updated. See http://www.iftech.com/mfc

361

15.5.6 Step 6—Synchronize Coordinate Systems

This problem results from the fact that mouse coordinates that come back in the

OnMouseMove

 function are always in

device coordinates

. Therefore, every time you
click on a point to draw it, the mouse coordinates received by the

OnMouseMove

function are always in pixel coordinates based on an origin of 0,0 for the window’s
upper left hand corner. However, the

CScrollView

 class is correctly adjusting things
to the

logical coordinate system

 of the 2,000 x 2,000 pixel drawing space and adjusting
the logical origin of the window to reflect that fact.

The solution to the problem lies in translating the coordinates coming from the

OnMouseMove

 function so they match the logical coordinate system of the scrolling
view. To do this, change the

OnMouseMove

 function in the

CDrawView

 class so it
matches Listing 15.19.

Listing 15.19
A revised Version of the OnMouseMove function in the view class.

void CDrawView::OnMouseMove(UINT nFlags, CPoint point)

{

if (nFlags == MK_LBUTTON)

{

// Convert device coordinates to logical coordinates

// of the view.

CClientDC dc(this);

OnPrepareDC(&dc);

dc.DPtoLP(&point);

// Add each point to the array

GetDocument()->AddPoint(point);

}

CScrollView::OnMouseMove(nFlags, point);

}

The first line of the modification creates a client DC (see Chapter 11). The call
to OnPrepareDC changes the DC so it understands the logical coordinate system of
the CDrawView class.

The CDrawView class is “preparing” the DC so it understands the view’s logical
coordinate system. A properly prepared DC is essential to translating the point to log-
ical coordinates. The third line translates the point from device coordinates to logical
coordinates using the DC’s DPtoLP function. Because of the translation, the point
that gets stored in the data structure is properly adjusted to fit inside the 2,000 x 2,000
coordinate framework. An extremely useful exercise is to walk through the code in
Listing 15.19 with the debugger and watch the point change from device to logical
coordinates.

You have to make one other change, this time to the OnUpdate function as
shown in Listing 15.20.

362

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

Listing 15.20
Modifying the DC in OnUpdate.

void CDrawView::OnUpdate(CView* pSender, LPARAM lHint,

CObject* pHint)

{

CDrawDoc* pDoc = GetDocument();

int numPoints = pDoc->GetNumPoints();

if (numPoints==0)

return;

CPoint point = pDoc->GetPoint(numPoints - 1);

CClientDC dc(this);

// match the DC to the CScrollView

OnPrepareDC(&dc);

dc.SetPixel(point,RGB(0,0,255));

}

In this code the call to OnPrepareDC simply makes the DC aware of the coor-
dinate system of the CScrollView class. The DC therefore starts using the correct
origin, which changes as you scroll around. See Chapter 11’s discussion of virtual
drawing specifications for a description of the sorts of origin calculations that the
CScrollView class has to do.

Note that the OnDraw function requires no changes. The DC used in this func-
tion is provided as a parameter from the CScrollView class, so it is already properly
prepared.

15.5.7 Step 7—Compile and Run

Compile and run the program. You should now be able to draw into a 2,000 x
2,000 pixel drawing space. As you scroll around, points will remain in their proper
places.

15.6 Splitter Windows

When you use scroll bars to scroll through large drawings, you have a problem:
It becomes impossible to look at the entire drawing at one time at normal resolution.
So, while scroll bars do add a useful capability, they also create a difficulty for the user.
When the drawing is extremely large, the user may wish to look at one portion of the
drawing while modifying another. One option for the user is to open two separate
windows on the same document and scroll them separately. However, it is then the
user’s responsibility to tile the windows properly. The overall effect is bothersome.

In applications like Microsoft Word or Excel, this problem is solved by using
splitter windows. For example, if you create a 100-page document in Word and you
wish to look at page two while you modify part of page 95, you can split the docu-
ment’s window and scroll through the document in two separate panes. MFC and the

15.6
Sp

litte
r W

ind
o

w
s

This book is continuously updated. See http://www.iftech.com/mfc

363

AppWizard let you do this same thing by adding splitter windows to the application
framework that the AppWizard creates.

Adding splitter windows is easy. See Appendix B.6.5. If you do this and then use
the code shown in Section 15.5, you will have an application with scrollable and split-
table windows. If you want to try this out, take the following steps.

Note: The EXAMPLES directory on the diskette will help you to work through
this example quickly.

15.6.1 Step 1—Create the Framework

 Create a new scrolling MDI framework with the AppWizard as described in Ap-
pendix B.6.1. In the New Project dialog, give the new project the name “draw”.

As you go through the AppWizard option screens, select the following options:
• Choose the

Multiple-Document

 option.
• Choose

None

 for database support.
• Choose

None

 for OLE support.
• Enable or disable any application features as you see fit. (However, leave

printing turned off for the moment. See Section 15.8 for details on printing.)
Use the file extension “drw” in the

File Extension

 field as described in Ap-
pendix B.6.3.

Select the

Use Splitter Windows

 check box as described in Ap-
pendix B.6.5.

• Leave all file and class names as chosen by the AppWizard.

Change the

Base
Class

 of the

CDrawView

 class as described in Appendix B.6.4

.
If you look at the generated framework you will find that the set of files in the

framework contains a pair of files named CHILDFRM.H and CHILDFRM.CPP.
These two files create a class called

CChildFrame

. This class holds an instance of the

CSplitterWnd

 class. The

CChildFrame

 class is then used as the child window in the
document template in DRAW.CPP. That is all that is necessary to bring in the capa-
bilities of splitter windows to this application.

Recreate the application by following all the steps in the previous sections. These
steps are consolidated below so you have them all in one place.

15.6.2 Step 2—Create a New CObPoint Class

Create COBPOINT.H and COBPOINT.CPP. These two files create a point
class derived from the

CObject

 class. See Chapter 12 for information on deriving
classes from

CObject

 and an explanation of the process and advantages. See Chapter
13 for information on

AssertValid

 and

Dump

 functions. Listing 15.21 contains
COBPOINT.H. Listing 15.22 contains COBPOINT.CPP.

Listing 15.21
The COBPOINT.H file.

// cobpoint.h

class CObPoint : public CObject

364

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

{
DECLARE_SERIAL(CObPoint)
protected:

LONG x, y;
public:

CObPoint();
CObPoint(const CObPoint &p);
CObPoint operator=(const CObPoint& p);
CObPoint(int ix, int iy);
CObPoint(CPoint &p);
virtual void Serialize(CArchive &archive);
CPoint GetPoint() const;

#ifdef _DEBUG
virtual void Dump(CDumpContext& dumpSite) const;
virtual void AssertValid() const;

#endif
};

Choose the New option in the File menu, create a new text file, and copy the
code above into the window. Save the file in the project’s directory with the file name
COBPOINT.H. Do the same for COBPOINT.CPP.

Listing 15.22
The COBPOINT.CPP file.

// cobpoint.cpp

#include "stdafx.h"
#include "cobpoint.h"

CObPoint::CObPoint()
{

x=y=0;
}

CObPoint::CObPoint(const CObPoint &p)
{

x=p.x;
y=p.y;

}

CObPoint CObPoint::operator=(const CObPoint& p)
{

x=p.x;
y=p.y;
return *this;

}

CObPoint::CObPoint(int ix, int iy)
{

x=ix;
y=iy;

}

15.6
Sp

litte
r W

ind
o

w
s

This book is continuously updated. See http://www.iftech.com/mfc

365

CObPoint::CObPoint(CPoint &p)
{

x=p.x;
y=p.y;

}

void CObPoint::Serialize(CArchive &archive)
{

CObject::Serialize(archive);
if (archive.IsStoring())

archive << x << y;
else

archive >> x >> y;
}

// The (int) casts in the function below are
// needed only in Windows 3.1. Remove in
// WIN32 environments
CPoint CObPoint::GetPoint() const
{

return CPoint((int)x, (int)y);
}

#ifdef _DEBUG
void CObPoint::Dump(CDumpContext& dumpSite) const
{

CObject::Dump(dumpSite);

dumpSite << "x: " << x << "y: " << y;
}

void CObPoint::AssertValid() const
{

// check base class first
CObject::AssertValid();

// check data members.
}

#endif //_DEBUG

IMPLEMENT_SERIAL(CObPoint, CObject, 0)

Add COBPOINT.CPP to the project file as described in Appendix B.1.4. Include
COBPOINT.H in the Document file: That is, somewhere below the include statement
for the file STDAFX.H in the file DRAWDOC.H you should include the file COB-
POINT.H, as shown in Listing 15.23:

Listing 15.23
Including COBPOINT.H in the document file.

// drawdoc.cpp : implementation of the CDrawDoc class
//

366

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

#include "stdafx.h"
#include "draw.h"

#include "drawdoc.h"

#include "cobpoint.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif
...

15.6.3 Step 3—Create an Array in the Document Class

In the document’s header file (DRAWDOC.H), add the following line to the
“attributes” section as a protected member:

CObArray array;

Create three access functions that allow the view to access the data held in the
document. These functions will add points to the array, get points from the array, and
indicate the number of point currently held in the array. Add prototypes for these
functions to the Attributes section of the document’s header file:

void CDrawDoc::AddPoint(CPoint p);
CPoint CDrawDoc::GetPoint(int x);
int CDrawDoc::GetNumPoints();

These functions should be declared as public so functions in the view class can
call them. Put them in the Attributes section of the header file. Toward the bottom of
the document’s DRAWDOC.CPP file add a section called “Attributes” and add the
three functions that appear in Listing15.24.

Listing 15.24
Adding attribute functions to the document class

///
// Attributes

void CDrawDoc::AddPoint(CPoint p)
{

array.Add(new CObPoint(p));
SetModifiedFlag();
UpdateAllViews(NULL, 0, NULL);

}

CPoint CDrawDoc::GetPoint(int x)
{

return ((CObPoint *)(array.GetAt(x)))->GetPoint();
}

int CDrawDoc::GetNumPoints()
{

return array.GetSize();

15.6
Sp

litte
r W

ind
o

w
s

This book is continuously updated. See http://www.iftech.com/mfc

367

}

See Section 15.2, Steps 5b and 5f, for more information.

15.6.4 Step 4—Override DeleteContents

Using the ClassWizard, add an override for the DeleteContents function in the
document class. See Section 15.2, Step 5c, for more information. The new function
should appear as shown in Listing 15.25.

Listing 15.25
The modified DeleteContents file in the document class

void CDrawDoc::DeleteContents()
{

int x;
for (x=0; x<array.GetSize(); x++)

delete(array.GetAt(x));
array.RemoveAll();
CDocument::DeleteContents();

}

15.6.5 Step 5—Add a Size Variable to the Document

Add a size variable to the document class by adding a new protected attribute
variable and access function to the DRAWDOC.H header file as shown in Listing
15.26.

Listing 15.26
Adding the document size variable and functions to the document class

// Attributes
protected:

CObArray array;
CSize docSize;

public:
void CDrawDoc::AddPoint(CPoint p);
CPoint CDrawDoc::GetPoint(int x);
int CDrawDoc::GetNumPoints();
CSize GetDocSize();
void SetDocSize(CSize s);

 The access function GetDocSize needs to simply retrieve the size, while the Set-
DocSize function needs to set it. Add the two functions in Listing 15.27 below the
GetNumPoints function in the attributes section of DRAWDOC.CPP.

Listing 15.27

368

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

The implementations for the document size functions

CSize CDrawDoc::GetDocSize()
{

return docSize;
}

void CDrawDoc::SetDocSize(CSize s)
{

docSize = s;
}

15.6.6 Step 6—Initialize the Document Size

Use the ClassWizard to find the OnNewDocument function in the document
class list and double-click to edit it. Modify it as shown in Listing 15.28 to set the ini-
tial document size.

Listing 15.28
Initializing the document size

BOOL CDrawDoc::OnNewDocument()
{

if (!CDocument::OnNewDocument())
return FALSE;

docSize = CSize(2000,2000);

return TRUE;
}

See Section 15.5, Step 2, for more information.

15.6.7 Step 7—Serialize the Document

Modify the serialize function so it saves the document size and the array as
shown in Listing 15.29.

Listing 15.29
Modifying the Serialize function

void CDrawDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())
{

ar << docSize;
}
else
{

ar >> docSize;
}

15.6
Sp

litte
r W

ind
o

w
s

This book is continuously updated. See http://www.iftech.com/mfc

369

array.Serialize(ar);
}

Classes that serialize themselves can specify a version number in the file so that
the application can ignore old versions of the data files. To turn on this capability,
change the DELCARE_DYNCREATE macro at the top of DRAWDOC.H to
DECLARE_SERIAL, and change the IMPLEMENT_DYNCREATE macro at the
top of DRAWDOC.CPP to IMPLEMENT_SERIAL. The IMPLEMENT_SERIAL
macro should look like this when you are done:

IMPLEMENT_SERIAL(CDrawDoc, CDocument, 1)

See Section 15.2, Step 5d, and Section 15.5, Step 3, for more information.

15.6.8 Step 8—Modify the Document's AssertValid and Dump
Functions

Find the AssertValid and Dump functions in the DRAWDOC.CPP file. Mod-
ify them so the document complies with the debugging and dumping features of
MFC, as shown in Listing 15.30.

Listing 15.30
The documents AssertValid and Dump functions

void CDrawDoc::AssertValid() const
{

CDocument::AssertValid();
ASSERT_VALID(&array);

}

void CDrawDoc::Dump(CDumpContext& dc) const
{

CDocument::Dump(dc);
dc << "document size:\n" << docSize;
dc << array;

}

See Section 15.2, Step 5e, for more information.

15.6.9 Step 9—Handle Mouse Movement Events

Open the ClassWizard and select the CDrawView class. Add an event handler
for the WM_MOUSEMOVE event. Change the code by adding the lines shown in
Listing 15.31.

Listing 15.31
Modifying the OnMouseMove function

void CDrawView::OnMouseMove(UINT nFlags, CPoint point)
{

370

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

if (nFlags == MK_LBUTTON)
{

// Convert device coordinates to logical coordinates
// of the view.
CClientDC dc(this);
OnPrepareDC(&dc);
dc.DPtoLP(&point);
// Add each point to the array
GetDocument()->AddPoint(point);

}

CScrollView::OnMouseMove(nFlags, point);
}

See Section 15.2, Step 6, and Section 15.5, Step 6, for more information.

15.6.10 Step 10—Set the Scrolling Size

Use the ClassWizard to find the OnInitialUpdate function in the CDrawView
class and modify it so it looks like Listing 15.32.

Listing 15.32
Modifying the OnInitialUpdate function

void CDrawView::OnInitialUpdate()
{

SetScrollSizes(MM_TEXT, GetDocument()->GetDocSize());
CScrollView::OnInitialUpdate();

}

See Section 15.5, Step 4, for more information.

15.6.11 Step 11—Update Views

Use the ClassWizard to override the OnUpdate function in the CDrawView
class and modify it so it looks like Listing 15.33.

Listing 15.33
Modifying the OnUpdate function

void CDrawView::OnUpdate(CView* pSender, LPARAM lHint,
CObject* pHint)

{
CDrawDoc* pDoc = GetDocument();
int numPoints = pDoc->GetNumPoints();
if (numPoints==0)

return;
CPoint point = pDoc->GetPoint(numPoints - 1);
CClientDC dc(this);
// match the DC to the CScrollView
OnPrepareDC(&dc);

15.7
A

d
d

ing
 N

e
w

 M
e

nu O
p

tio
ns a

nd
 D

ia
lo

g
s.

This book is continuously updated. See http://www.iftech.com/mfc

371

dc.SetPixel(point,RGB(0,0,255));

}

See Section 15.4, Step 2, and Section 15.5, Step 6, for more information.

15.6.12 Step 12—Modify the OnDraw Function

Use the ClassWizard to find the OnDraw function in the CDrawView class and
modify the function as shown in Listing 15.34.

Listing 15.34
Modifying the OnDraw function

void CDrawView::OnDraw(CDC* pDC)

{

CDrawDoc* pDoc = GetDocument();

ASSERT_VALID(pDoc);

int x;

// Redraw all points in the array

for (x=0; x<pDoc->GetNumPoints(); x++)

pDC->SetPixel(pDoc->GetPoint(x),

RGB(0,0,255));

}

See Section 15.2, Step 7, for more information.

15.6.13 Step 13—Compile and Run

Compile and run the application. The application will correctly support splitter
windows. Because the document and view were correctly created and their responsi-
bilities appropriately subdivided in the previous sections, the framework handles
splitter windows automatically and transparently. Figure 15.2 shows a typical run of
the application with the splitter windows turned on.

15.7 Adding New Menu Options and Dialogs.

One of the most important features of an AppWizard framework is its ability to
allow you to easily add new menus, menu options, and dialogs. The ease with which
you can add and manipulate these features comes from the fact that much of the ma-
nipulation occurs in the resource file. You modify the menu and dialog resources using
standard graphical editors. Then the ClassWizard makes it easy to add a new dialog
class to handle the dialog.

To get a feeling for how you can easily add menu options and dialogs to the
framework, this example will add a new Options menu to the drawing application
created in Section 15.6. This menu will contain an item named Drawing Size that
lets the user change the size of the drawing. The Drawing Size option will present a

372

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

dialog box that lets the user change the height and width of the scrollable drawing area.
You will take the following steps to accomplish this:

1. Add the new

Options

 menu and

Drawing Size

 menu option to the menu bar.
2. Add an event handler function for the new menu option.
3. Create a new dialog resource that lets the user enter the document’s width and

height.
4. Create a new dialog class with the ClassWizard to manage the dialog.
5. Wire in the code so the document can activate the dialog and retrieve its data.

You will want to review Chapter 6 to get a good overview of how to create and
use menus and new dialog classes.

Note: The EXAMPLES directory on the diskette contains listings that will help
you do this example.

15.7.1 Step 1—Start the Application

Start with the completed program from the previous section. This application
has scrollable and splittable windows in an MDI framework.

Figure 15.2

The draw application using splitter windows

15.7
A

d
d

ing
 N

e
w

 M
e

nu O
p

tio
ns a

nd
 D

ia
lo

g
s.

This book is continuously updated. See http://www.iftech.com/mfc

373

15.7.2 Step 2—Add a New Menu

Open the program’s resources as described in Appendix B.6.2. Open the
IDR_DRAWTYPE menu (note that the IDR_DRAWTYPE menu is visible when the
MDI framework has open views, while the IDR_MAINFRAME menu is visible when
there are no views open). Add a new menu named

Options

 and add a new menu item
named

Drawing Size

. When creating the name for the menu item, be sure to add an
“&” symbol in front of the character you wish to use for the mnemonic (see Chapter
6). For example, if you wish to use the “O” in “Options” as the mnemonic, enter the
name as “&Options”. Move the new menu into a suitable position in the menu bar
by dragging it.

If you now double-click on the

Drawing Size

 item in the menu resource editor,
you will find that the editor has automatically assigned this item the ID of
ID_OPTIONS_DRAWINGSIZE. This is the ID that will identify the menu item
when you create an event handler for it.

15.7.3 Step 3—Create a Menu Handler Function

Now wire in a handler for the

Drawing Size

 menu option. Before doing this it
is important to ask yourself a question: “There are several message maps in this appli-
cation that

could

 handle this menu option—which one should I use?” In this case,
because it is the

docSize

 member variable in the document class that will be affected
by the dialog, you should choose the message map in the document class.

Use the ClassWizard to add a new menu handler function as described in Ap-
pendix B.7.3. Edit the new event handler and add the following line of code to the
new function:

AfxMessageBox("Test", MB_OK);

15.7.4 Step 4—Compile and Run

Compile and run the program. You will find that when you choose the

Drawing
Size

 menu option, a message box that says “Test” will appear. Now you can imple-
ment the actual dialog box for this option.

15.7.5 Step 5—Create the Dialog Box

Create a new dialog resource as described in Appendix B.5.6. Then take the fol-
lowing steps.

15.7.5.1 Step 5a—Create Static Labels

Add two new static items to the dialog
as described in Appendix B.5.6. Double-click on each one so you can change the cap-
tions. One should display the word “Height” and the other should display the word
“Width.” You can change the IDs of both if you like, but this is not necessary because
we will not be using the IDs.

See Chapter 6 for more information on adding controls to dialogs.

15.7.5.2 Step 5b—Add Edit Controls

Add two new Edit controls in a similar
manner. Arrange things as shown in Figure 15.3. Double-click on the first edit control

374

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

and change its ID to IDC_HEIGHT. Change the second control’s ID to
IDC_WIDTH.

15.7.5.3 Step 5c—Change the Dialog ID

Double-click on the title bar of the
new dialog. Change the ID of the dialog to IDD_DRAWINGSIZE and change the
caption to “Drawing Size”.

15.7.6 Step 6—Create a Dialog Class

Now that you have a new dialog, you need to create a new class to manage the
dialog. This class, as described in Chapter 6, will handle the transfer of data to and
from the dialog’s edit fields and also control when the dialog appears on the screen.

To create the new dialog class see Appendix B.7.4

.

Name the new class

CSizeDlg

 and make sure the

Class Type

 is set to

CDialog

. Make sure the

Dialog

field is set to IDD_DRAWINGSIZE.

15.7.7 Step 7—Make the New Dialog Appear

To make the dialog appear in response to the

Drawing Size

 menu option, you
need to modify the

OnOptionsDrawingsize

 function in the

CDrawDoc

 class.

You
also need to include the SIZEDLG.H file in the DRAWDOC.CPP file. Edit DRAW-
DOC.CPP and include SIZEDLG.H as shown in Listing 15.35

.

Listing 15.35
Including the new dialog class

// drawdoc.cpp : implementation of the CDrawDoc class

//

#include "stdafx.h"

#include "draw.h"

#include "drawdoc.h"

#include "cobpoint.h"

#include "sizedlg.h"

Then find the OnOptionsDrawingsize function in the DRAWDOC.CPP file
either manually or with the ClassWizard’s Edit Code button. Change the OnOp-

Figure 15.3
The Drawing Size dialog

15.7
A

d
d

ing
 N

e
w

 M
e

nu O
p

tio
ns a

nd
 D

ia
lo

g
s.

This book is continuously updated. See http://www.iftech.com/mfc

375

tionsDrawingsize

function so instead of displaying a message box it displays the new
dialog. The new code is shown in Listing 15.36.

Listing 15.36
Modifying the menu handler for the dialog function

void CDrawDoc::OnOptionsDrawingsize()
{

CSizeDlg dlg(AfxGetMainWnd());
if (dlg.DoModal()==IDOK)

AfxMessageBox("OK selected", MB_OK);
}

15.7.8 Step 8—Create Member Variables

Now that the dialog appears properly, we need to modify it so the program can
assign initial values into the edit field and then retrieve any changes that the user
makes. This is done by using the ClassWizard to add two DDX variables to the dialog,
one for each edit control. Through a mechanism called Dialog Data Exchange
(DDX), these two variables will directly mirror the values in the edit controls. See
Chapter 22 for more information about DDX. We can also use another mechanism,
called Dialog Data Verification (DDV), to make sure the values the user enters are
appropriate.

To add the two variables, see Appendix B.7.5. Add a variable for both the
IDC_HEIGHT and IDC_WIDTH controls. Name the new variables m_height and
m_width respectively. Make them value variables, and for the variable type choose
UINT. Type in whatever you want for the minimum and maximum values for each
of these variables.

If you now look at the top of the SIZEDLG.H file, you will find the two vari-
ables m_height and m_width have been added, as shown in Listing 15.37.

Listing 15.37
The ClassWizard’s modifications to the dialog

///
// CSizeDlg dialog

class CSizeDlg : public CDialog
{
// Construction
public:

CSizeDlg(CWnd* pParent = NULL); // standard constructor

// Dialog Data
//{{AFX_DATA(CSizeDlg)
enum { IDD = IDD_DRAWINGSIZE };
UINTm_height;
UINTm_width;

376

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m //}}AFX_DATA

You will also see evidence of the two new variables in SIZEDLG.CPP. The con-
structor will initialize them to zero, and the DoDataExchange function will verify
them, as shown in Listing 15.38.

Listing 15.38
The ClassWizard’s modification’s to the dialog’s constructor and DoDataExchange
functions

CSizeDlg::CSizeDlg(CWnd* pParent /*=NULL*/)
: CDialog(CSizeDlg::IDD, pParent)

{
//{{AFX_DATA_INIT(CSizeDlg)
m_height = 0;

m_width = 0;

//}}AFX_DATA_INIT
}

void CSizeDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CSizeDlg)
DDX_Text(pDX, IDC_HEIGHT, m_height);

DDV_MinMaxUInt(pDX, m_height, 1, 1000000);

DDX_Text(pDX, IDC_WIDTH, m_width);

DDV_MinMaxUInt(pDX, m_width, 1, 1000000);

//}}AFX_DATA_MAP
}

See Chapter 22 for details on DDX and DDV.

15.7.9 Step 9—Get and Set the Variables

There are two ways to modify member variables in a dialog class. One is to access
them directly. This technique is easier and therefore common and was demonstrated
in Chapter 6. It has the disadvantage of breaking the encapsulation of the dialog class.
The second way involves the use of functions to get and set the member variables. This
technique is stylistically pure but takes a bit more work. We will use the second tech-
nique in this section. The first technique is shown in Chapter 18.

Modify the constructor of the CSizeDlg class so it accepts initial values for the
two DDX member variables, and also create a GetSize function, as described in Chap-
ter 6, that retrieves the values that the user sets when the dialog is on the screen.
Manually modify the constructor in SIZEDLG.CPP so it looks like Listing 15.39.

Listing 15.39
Modifying the dialog’s constructor

15.7
A

d
d

ing
 N

e
w

 M
e

nu O
p

tio
ns a

nd
 D

ia
lo

g
s.

This book is continuously updated. See http://www.iftech.com/mfc

377

CSizeDlg::CSizeDlg(CSize size, CWnd* pParent /*=NULL*/)
: CDialog(CSizeDlg::IDD, pParent)

{
//{{AFX_DATA_INIT(CSizeDlg)
m_height = size.cy;
m_width = size.cx;
//}}AFX_DATA_INIT

}

Also manually modify the prototype for this function in SIZEDLG.H to reflect
the new parameter, as shown in Listing 15.40.

Listing 15.40
Modifying the constructor’s prototype

class CSizeDlg : public CDialog
{
// Construction
public:

CSizeDlg(CSize size, CWnd* pParent = NULL);
...

Now, in SIZEDLG.H, manually add a new function named GetSize. The pur-
pose of this function is to extract the new width and height the user enters in the
dialog. The function prototype should appear as shown in Listing 15.41.

Listing 15.41
Adding a prototype for the GetSize function to the dialog.

...
// Dialog Data

//{{AFX_DATA(CSizeDlg)
enum { IDD = IDD_DRAWINGSIZE };
UINTm_height;
UINTm_width;
//}}AFX_DATA
CSize GetSize();

// Overrides
...

In SIZEDLG.CPP, manually add the new GetSize function at the bottom of
the file. Its implementation should appear as shown in Listing 15.42.

Listing 15.42
Implementing the dialog’s GetSize function

CSize CSizeDlg::GetSize()

378

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

{
CSize size(m_width, m_height);
return size;

}

Change the OnOptionsDrawingsize function in DRAWDOC.CPP so the
function properly calls the dialog’s constructor with the current document size and
then sets the document’s size if the user clicks the OK button in the dialog, as shown
in Listing 15.43.

Listing 15.43
Fully implementing the OnOptionsDrawingSize function.

void CDrawDoc::OnOptionsDrawingsize()
{

CSizeDlg dlg(docSize, AfxGetMainWnd());
if (dlg.DoModal()==IDOK)
{

if (AfxMessageBox("OK to delete drawing?",
MB_OKCANCEL)==IDOK)

{
docSize = dlg.GetSize();
DeleteContents();
UpdateAllViews(NULL, 1, NULL);

}
}

}

Note that this function has to handle several problems. First, because the draw-
ing size can potentially shrink when the user changes it, the document must be cleared
if the user changes the size. Otherwise, the document could contain points that are
outside the boundaries of the new drawing size. This is the same thing that the Paint-
brush application does when the user changes the drawing size. Therefore, the
function calls AfxMessageBox to ask the user if it is OK to delete the current drawing.
If it is, the code changes the document’s size, deletes the contents of the document,
and then calls UpdateAllViews.

The call to UpdateAllViews is solving a second problem. Now that the docu-
ment’s size has changed and the document contains no data, the document class has
to inform all the document’s views. UpdateAllViews is the best way to do this. Note
that the call to UpdateAllViews passes a special hint value of 1 to signify this special
type of update. You must now modify the OnUpdate function in DRAWVIEW.CPP
to recognize this hint, as shown in Listing 15.44.

Listing 15.44
Modifying the OnUpdate function

void CDrawView::OnUpdate(CView* pSender,

15.7
A

d
d

ing
 N

e
w

 M
e

nu O
p

tio
ns a

nd
 D

ia
lo

g
s.

This book is continuously updated. See http://www.iftech.com/mfc

379

LPARAM lHint, CObject* pHint)
{

CDrawDoc* pDoc = GetDocument();

if (lHint==1)
{

SetScrollSizes(MM_TEXT, GetDocument()->GetDocSize());
Invalidate();
return;

}
int numPoints = pDoc->GetNumPoints();
if (numPoints==0)

return;
CPoint point = pDoc->GetPoint(numPoints - 1);
CClientDC dc(this);
// match the DC to the CScrollView
OnPrepareDC(&dc);
dc.SetPixel(point,RGB(0,0,255));

}

In this new version of OnUpdate, the hint value of 1 causes the view to reset its
scroll sizes and then invalidate its contents to clear the view. The integer 1 is used here
for clarity—in production code, you would declare a constant or use a different tech-
nique to signal change.

15.7.10 Step 10—Compile and Run

Compile and run the program. When you choose the Drawing Size item in the
Options menu you should see the Drawing Size dialog with a default width and height
of 2,000. When you change these sizes and click the OK button, you should see a dia-
log asking if it is OK to delete the drawing. If you click the OK button here, any views
on the document will clear and the scroll bars will reflect the new drawing size.

15.7.11 Understanding the New Dialog

You made a number of changes to the drawing program to add a new dialog to
it. Let’s review the steps that you must take whenever you add any new dialog to an
application, and then look at the specific additional changes made here to integrate
the dialog into the application.

To add a new dialog to an application, you must do the following:

1. Create the dialog’s template with the dialog resource editor. To do this, create a
new dialog resource and then add all the appropriate controls to the dialog.

2. Create a dialog class for the dialog with the ClassWizard as described in Appen-
dix B.7.4.

3. In the ClassWizard, create DDX variables for each control on the dialog that
will contain data entered by the user. This section showed how to add DDX
variables for Edit controls. See Chapter 22 for information on adding DDX
variables for all other control types.

4. Create a menu option that will invoke the new dialog.

380

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

5. In the menu option’s handler function, create an instance of the dialog class and
call the dialog’s

DoModal

 function. You may wish to initialize dialog variables
before calling

DoModal

. See Chapters 6 and 22 for details.

Be sure to include
the dialog class’s H file at the top of the file that contains the menu’s handler.

6. Extract the values from the DDX variables and apply them to the application in
whatever way is appropriate.
In this application, we applied these general steps when creating the dialog. Ad-

ditionally, we applied the results of the dialog to the application. In this case we did
the following:

1. Set the document’s size variable.
2. Cleared the document’s data structure.
3. Notified all the views of the change.

There are numerous additional changes that you could make to further adapt
this program to changing drawing sizes. For example, if the user is

increasing

 the size
of the drawing, there is no real need to clear the contents of the document. That is
easily handled with an

if

 statement. If the user is shrinking the drawing size, however,
you may have noticed a problem. Say the user shrinks the document size to 20 x 20
for some reason. The size of the view does not change. What you would probably like
to do is, in the

OnMouseMove

 event handler, ignore points that fall outside the valid
drawing size. You might also like to draw two lines, as Paintbrush does, to show the
user the maximum document size.

15.8 Printing

In the previous sections of this chapter we have dealt with the internal structure
and user interface for a simple drawing program. In this section we will examine the
printing model that the AppWizard framework uses and demonstrate how to use this
structure to add printing options to this program.

Printing functionality is built into the

CView

 class and is activated when you re-
quest the

Printing and Print Preview

 option in the AppWizard. When you select this
option, the AppWizard will create three extra options in the

File

 menu named

Print

,

Print Preview,

 and

Print Setup

.
Selection of the printing option also causes small but fundamental changes in

the AppWizard’s framework. If you create a new framework, turn on printing, and
then look at the view class generated by the AppWizard, you will find that the class
contains several specific changes related to printing. In particular, you will find that
the view’s message map contains entries to handle the

Print

 and

Print Preview

 menu
options (the application class handles

Print Setup

), and you will find stubs to manage
the

OnPreparePrinting

,

OnBeginPrinting,

 and

OnEndPrinting

 functions.
Printing is not particularly easy, and there is no single or best way to do it. The

code shown in this section is optimized for ease of understanding, but there are many
other ways to accomplish the same thing. See the documentation, the MFC Encyclo-

15.8
Printing

This book is continuously updated. See http://www.iftech.com/mfc

381

pedia, and sample programs like CHKBOOK in the Visual C++ Samples directory for
additional information.

15.8.1 Understanding the Native Features

To understand how the framework implements printing, let’s start by building
a new framework and creating the same application demonstrated in Section 15.6.
The only difference here will be that the framework includes printing capabilities. We
can then examine what the framework handles automatically and why. This knowl-
edge will allow us to customize the program to take full advantage of framework’s
printing facilities.

Note: See the EXAMPLES directory on the diskette.

15.8.1.1 Step 1— Reconstruct the Program

Start by recreating the program
discussed in Section 15.6. This program is a drawing area application with scrollable,
splittable windows of size 2,000 x 2,000. When you create the framework with the
AppWizard, enable the printing capability by clicking on the

Printing and Print Pre-
view

 option in the AppWizard’s setup screen.

15.8.1.2 Step 2—Test the Printing Features

Compile and run the program. You
will find three new options in the

File

 menu:

Print

,

Print Preview,

 and

Print Setup

.
The

Print Setup

 menu does exactly what you expect, leveraging off the standard
Print dialog you saw in Chapter 7 to give the user the ability to change printers. This
is an automatic capability that you will probably never change.

The

Print Preview

 option gives you just the sort of preview capability you
would expect in any advanced Windows application, as shown in Figure 15.4. You
can view one or two pages, move forward and backward between the pages, zoom, and
print. The

Print

 button on the preview’s button bar lets you print directly from the
preview screen.

If you try drawing something in a drawing view and then switch to the print pre-
view screen, you will see that your drawing appears there. You can choose the

Print

option in the

File

 menu to actually print the drawing on your printer.
Given the fact that you have had to do absolutely nothing to get it, this is a star-

tling amount of functionality. Again, it all works at no cost because the original
program was designed to properly exploit the document/view paradigm.

15.8.2 Understanding Printing

 The view class contains several functions that allow the framework to handle
printing. These functions are listed below:

• OnBeginPrinting
• OnEndPrinting
• OnEndPrintPreview
• OnPrepareDC
• OnPreparePrinting
• OnPrint

382

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

Also important to the process is a class called the

CPrintInfo

 class. To gain a full
understanding of these functions and the

CPrintInfo

 class, you should read the de-
tailed description of each one in books on-line. You should also find and read the
sections on printing in the MFC Encyclopedia.

For any printing operation, the framework goes through a very specific, choreo-
graphed set of function calls. If you understand the choreography, the whole printing
system is much easier to understand. See Figure 15.5 for a summary of the flow.

Each of the functions shown in Figure 15.5 has a specific intended purpose that
is described in the documentation. That purpose is facilitated by the parameters that
each function receives. All of them receive a pointer to an instance of the

CPrintInfo

class. This class contains information about the current print job, as summarized below:

Data Members

m_pPD Pointer to the Print dialog
m_bPreview Flag that is TRUE if in preview mode
m_bContinuePrinting Set this flag to FALSE in OnPrint to halt print

loop

Figure 15.4

The print preview screen

15.8
Printing

This book is continuously updated. See http://www.iftech.com/mfc

383

m_nCurPage Page number currently being printed (starts at 1)
m_nNumPreviewPages Either 1 or 2, depending on preview mode
m_lpUserData User data
m_rectDraw Usable page area
m_strPageDesc Format string for page number

Attribute Functions

SetMinPage Sets page number for the first page in the docu-
ment

SetMaxPage Sets page number for the last page in the docu-
ment

GetMinPage Page number for the first page in the document
GetMaxPage Page number for the last page in the document
GetFromPage Returns contents of From box in dialog
GetToPage Returns contents of To box in dialog

Figure 15.5

Printing function choreography

OnPreparePrinting DoPreparePrinting

OnBeginPrinting

OnPrepareDC

OnPrint

(The pair is called once for each page)

Start

OnEndPrintPreview (Only called during print preview)

OnEndPrinting

Continue

384

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

Because the same instance of

CPrintClass

 is passed to all the functions in Figure
15.5, the instance acts as a way for the framework to communicate with your code, as
well as a way for your code to communicate with itself. For example, you can point
the

m_lpUserData

 data member to a structure and pass the structure from function
to function.

The functions shown in Figure 15.5 have the following intended purposes:
• OnPreparePrinting—Override this function to do any general initialization.

In particular, you should call

SetMaxPage

 if possible here to initialize the
maximum number of pages before the display of the Print dialog.

• DoPreparePrinting—This function displays the Print dialog. You generally
will not change this function. In some cases, however, you will want to elim-
inate the printing dialog altogether. If you want to avoid displaying the dia-
log, then override

OnPreparePrinting

and remove the call to this function.
• OnBeginPrinting—Override this function to do any general initialization,

such as creation of GDI objects needed during printing. Also override to
check any information relating to the results in the Print dialog. At this point
the printer DC is known and complete.

• OnPrepareDC—Each time a page is printed, this function will be called, im-
mediately followed by

OnPrint

. Do any preparation to the DC here. Note
that the

m_rectDraw

member in

pInfo

will be invalid the first time this
function is called.

• OnPrint—This function does the actual printing. By default it simply calls

OnDraw

. That is why, without any modification, the drawing appeared in
the print preview screen and on the printer when you added printing capabil-
ities to the drawing program. If the application does not use

OnDraw

 to up-
date the display, this step will require modification. See Chapter 18 for an
example.

• OnEndPrintPreview—If in Print Preview mode, this function will be called
when the user closes the preview screen. You can use this opportunity to
check the current page number and set the display to that page.

• OnEndPrinting—Clean up anything you created in

OnBeginPrinting

.

15.8.3 Improving Printing

Rerun the program that you created in Section 15.8.1, draw something recog-
nizable, and print the page by selecting the

Print

 option in the

File

 menu. There are
several important problems to notice in this printout. In this section we will look at
those problems and then work toward some solutions.

If you printed the drawing on a typical 300 DPI laser printer, then what you will
first notice is that the entire drawing fits on a single sheet of paper, but that it is fairly
small compared to how it appears on your screen. If you printed it on a 100 or 150
DPI dot matrix printer, you probably noticed that the entire drawing did not fit on a
single sheet of paper, but that only one sheet was printed. If you are fortunate to own

15.8
Printing

This book is continuously updated. See http://www.iftech.com/mfc

385

a 2500 DPI printer, you will notice that the entire drawing fits in about a 0.80 inch
square. Obviously there is a scaling problem as you move from printer to printer.

This scaling problem arises because the mapping mode (see Chapter 11) of the
drawing is set to MM_TEXT in the call to

SetScrollSizes

 in Section 15.6.10. The
MM_TEXT mapping mode causes drawing coordinates to be interpreted in the

device
coordinate system

 of whatever device happens to be handling the output. On the screen,
the device coordinates are the pixels that you see and their density is 75 to 100 per
inch of screen space depending on monitor size, dot pitch, etc. As you print the same
drawing on printers with different dot densities, the size of the drawing changes
accordingly.

The solution to this problem is to change the drawing to a mapping mode that
is device independent. Windows offers several different device-independent mapping
modes as described in Chapter 11. We can try one of these out by modifying the call
to

SetScrollSizes

in Section 15.6.10 to the following:

SetScrollSizes(MM_LOENGLISH, GetDocument()->GetDocSize());

You could just as easily use any of the other mapping modes. The

LOENGLISH

mode happens to use 1/100th of an inch as its unit of measure. Therefore, a 100 x 100
rectangle drawn on the screen will appear as a one-inch x one-inch square on any
printer, regardless of the printer’s dot density.

If you change the mapping mode and recompile the program, you will notice
absolutely no change in the program’s screen appearance. It will work exactly as it did
before. However, you will notice a significant difference when you print the image to
a printer. If you print it to a 300 DPI laser printer, you will find that the

SetPixel

 call
that draws the image on the printer creates individual dots that are very tiny—so tiny
that they appear on the page as a light gray fog. These dots are 1/300th of an inch
across and spaced much more widely on the page. However, the figure on the page
will accurately mimic the size of the drawing on the screen. It will have the exact same
size no matter what sort of printer you print it on.

To correct the dot-size problem, modify the program so it prints small rectangles
instead of dots. The rectangles will have an identical size regardless of the printer cho-
sen. For example, replace the two calls to

SetPixel

 in the view class with the following:
If you see:

dc.SetPixel(point,RGB(0,0,255));

replace it with:

dc.Rectangle(point.x, point.y, point.x+5, point.y-5);

You may also want to use a brush (Chapter 11) to fill in the rectangle. Note that
five is

subtracted

from the Y coordinate. The MM_LOENGLISH mapping mode uses
a negative coordinate on the Y axis rather than a positive one, as described in Chapter 11.

15.8.4 Multi-Page Printing

Now that the drawing program uses the LOENGLISH mapping mode, you
have created another problem. A 2,000 x 2,000 drawing measures 20 inches x 20 inch-
es on any printer and this is much too big to fit on a single sheet of paper. To solve

386

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

this problem, you need to override and modify the

OnBeginPrinting

,

OnPrint,

 and

OnPrepareDC

 functions in the view class to handle multi-page printing. Use the
ClassWizard to override them and then modify them both as shown in Listing 15.45.

Listing 15.45
Modifications to the OnPrint and OnPrepareDC functions to allow multi-page
printing

BOOL contPrint;

void CDrawView::OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo)
{

contPrint = TRUE;
}

void CDrawView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{

// Page size
CRect rectPage = pInfo->m_rectDraw;
// Document size
CSize sizeDrawing = GetDocument()->GetDocSize();

// Figure out number of pages down and across
int nPagesAcross = sizeDrawing.cx / rectPage.Width();
if (sizeDrawing.cx % rectPage.Width() != 0)

nPagesAcross++;
int nPagesDown = sizeDrawing.cy / abs(rectPage.Height());
if (sizeDrawing.cy % rectPage.Height() != 0)

nPagesDown++;

// Handle the end of the document
// print mode
pInfo->SetMaxPage(nPagesDown * nPagesAcross);
// preview mode
if (!pInfo->m_bPreview)

if (pInfo->m_nCurPage >= UINT(nPagesDown * nPagesAcross))
contPrint = FALSE;

// Figure out appropriate origin
int nAcross = (pInfo->m_nCurPage - 1) % nPagesAcross;
int nDown = (pInfo->m_nCurPage - 1) / nPagesAcross;
pDC->SetWindowOrg(CPoint(

nAcross*rectPage.Width(),
nDown*rectPage.Height()));

// do the actual printing
CScrollView::OnPrint(pDC, pInfo);

}

void CDrawView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{

CScrollView::OnPrepareDC(pDC, pInfo);
// handle end of document in print mode
if (pInfo)

15.8
Printing

This book is continuously updated. See http://www.iftech.com/mfc

387

if (!pInfo->m_bPreview)

pInfo->m_bContinuePrinting = contPrint;

}

If you use the ClassWizard to add the code as shown in Listing 15.45 to your
program, what you will find is that the print preview screen works correctly, allowing
you to use the Next and Previous buttons to move between pages. The Print option
in the File menu also works, printing the entire drawing. If you were to remove the
code that is shown in bold face in Listing 15.1, you would find that the print preview
functionality still works correctly, but that the Print option in the File menu has a
tendency to produce an infinite number of pages.

It is important to look at this code in some detail to fully understand what it is
trying to accomplish. It also demonstrates several subtle features of the underlying
framework that you need to be aware of so you can step around them.

The fundamental printing problem in this drawing application involves pagina-
tion. You need to figure out how to divide a large drawing across multiple pages. In
order to perform the pagination, you need to know the size of a sheet of paper in log-
ical coordinates. In the ideal case, this information would be available to you in an
easy-to-use form when the framework calls the OnPreparePrinting function. With
this information in hand, you could calculate the number of sheets of paper required
to print the drawing and then call pInfo->SetMaxPage there.

In theory the information is available in the m_rectDraw member of the pInfo
parameter. Unfortunately, this member does not get initialized until the point imme-
diately following the first call to OnPrepareDC and just before the first call to
OnPrint. To know the page size in OnPreparePrinting, therefore, you would have
to call the GetPrinterDeviceDefaults in the CWinApp class, get the printer DC with
the GetPrinterDC function of the Print dialog class, and then get the horizontal and
vertical resolution of the printer from the DC using code like that shown below (see
also Chapter 11):

pageWidth = dc->GetDeviceCaps(HORZRES);

pageHeight = dc->GetDeviceCaps(VERTRES);

Then you would need to convert this device information into the LOENGLISH
logical coordinate system (or you could set the mapping mode of the DC before call-
ing GetDeviceCaps). If you were to do all of that, you could call SetMaxPage
properly in OnPreparePrinting. The print preview screen would then provide you
with the extra bonus of a scroll bar that allows the user to scroll through all the avail-
able pages. This technique is used in the CHKBOOK Sample.

An alternative would be to set the maximum number of pages in the OnBegin-
Printing function, because in that function the DC is available from the parameter
list. You still need to set the DC’s mapping mode and call GetDeviceCaps, but at least
you are saved the trouble of extracting the DC from the dialog.

The code in Listing 15.45 has taken the option of postponing the number-of-
pages determination until the OnPrint function. At this point in the code, the

388

This book is continuously updated. See http://www.iftech.com/mfc

15
C

re
a

tin
g

 a
 D

ra
w

in
g

 P
ro

g
ra

m

m_rectDraw

 member of the

pInfo

 parameter contains valid information about the
page size. The code in Listing 15.45 uses that information, along with the document
size, to calculate the number of pages needed across and down. It combines that
knowledge with the current page number to modify the origin of the DC. The pre-
ferred place for this origin-modification activity is

OnPrepareDC

, but as stated
before, the

m_rectDraw

 member of the

pInfo

 parameter does not contain valid in-
formation until the

second

 call to

OnPrepareDC

. You may want to modify the
structure of the code to see how to take advantage of that fact.

Note also that the

OnPrint

 function is doing a certain amount of redundant cal-
culation. You could calculate the number of pages across and down once, and then
store them in static variables, member variables, or in user data structures that you as-
sociate with the user data member in the

pInfo

 parameter.
By calling

SetMaxPage

 in

OnPrint

, you satisfy the print preview screen’s re-
quirements and it will work properly. However, during an actual printing operation
this action is insufficient. Instead, during an actual printing operation, you have to set
the

m_bContinuePrinting

 member to FALSE

in the

OnPrepareDC

 function.

 It will
not work if you set it in the

OnPrint

 function, at least in version 3.0 of MFC. The
lines shown in bold face in Listing 15.45 handle this problem. Note that, in

OnPre-
pareDC

, you need to make sure

pInfo

 is not NULL before checking its members.
When

OnPrepareDC

 is called during a screen update,

pInfo

 will be NULL.
For more information on printing, See Chapter 18.

15.9 Conclusion

In this chapter you have learned how to take an AppWizard framework and turn
it into a fairly complete drawing application with scrollable and splittable windows
and a new dialog that lets the user set the drawing’s size. The application can also print
its documents.

There are numerous additions that you can make to this application. For exam-
ple, you might give the user the ability to change colors and/or dot size and modify
the

CObPoint

 class appropriately to handle the new data. Add menu items and dia-
logs to accept necessary input for these options from the user. You might also want to
look at Chapter 11 and then add code that lets the user create rubber-banded lines,
circles, and rectangles in the drawing. The possibilities are almost endless. The nice
thing, as you have seen in the sections above, is that the AppWizard framework, the
ClassWizard, and the resource editors built into Visual C++ make it extremely easy to
add features to the application.

One useful activity at this point would be to review all the functions available in
the

CDocument

,

CView

, and

CScrollView

 classes in the MFC documentation. By
being aware of what functions are available, you can have a much better idea of the
different possibilities when adding capabilities to your applications. You may also wish
to work through the Scribble tutorial in the on-line documentation, because it con-
tains many of the same capabilities described here. You will find that the tutorial is

15.9
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

389

extremely easy to understand because of the experience you have gained in this
chapter.

You should now understand all the basic concepts involved in working with an
AppWizard framework. In the remaining chapters in Part 3, you will learn how to cre-
ate other types of applications by modifying the behavior of AppWizard frameworks.

391

16CREATING AN EDITOR

WITH CEDITVIEW

It is surprisingly easy to create an MDI text editor application with the AppWizard.
In fact, you can do it without writing a single line of code. The thing that makes it so
easy is a class in MFC called

CEditView

, which you first saw in Chapter 10. In this
chapter you will learn how to use this class, both on its own to create a text editor ap-
plication and together with other document templates to create applications that dis-
play multiple document types simultaneously.

16.1 Creating an MDI Text Editor

This section shows you the steps that you take to create an MDI text editor with
the AppWizard.

16.1.1 Step 1—Create the Framework

Create a new MDI framework with the AppWizard. Give the new project the
name “ed”. See Appendix B.6.1 for more details.

As you go through the AppWizard option screens, select the following options:
• Choose the

Multiple-Document

 option.
• Choose

None

 for database support.
• Choose

None

 for OLE support.
• Use the file extension “tex”. See Appendix B.6.3 for details
• Leave all file and class names as chosen by the AppWizard. You should now

be able to change the base class of the view to

CEditView

. See Appendix
B.6.4 for details. (The

CScrollView

 class is discussed in Chapter 15 and the

CFormView

 class is discussed in Chapter 17.)

This last step simply modifies the base class of the view. If you look in the file ED-
VIEW.H, you will find that

CEdView

 now inherits its behavior from

CEditView

 as
shown below:

// edview.h : interface of the CEdView class

392

This book is continuously updated. See http://www.iftech.com/mfc

16
C

re
a

tin
g

 a
n

Ed
ito

r w
ith

 C
Ed

itV
ie

w

//
///

class CEdView : public

CEditView

{
...

16.1.2 Step 2—Compile and Run

Compile the program and run it. You should find that you have a complete
MDI editor. All the clipboard options should work properly. You should be able to
create as many new windows as you like.

Open

,

Save,

 and

Save As

 should present the
proper dialogs and work as expected.

16.2 Understanding the Editor

In Chapter 8 you learned about the multi-line text control. The

CEditView

 control
simply combines that control with code that gives the class the ability to automatically
handle certain command IDs, such as ID_FILE_PRINT or ID_EDIT_CUT. These IDs
are generated by the menu bar of the AppWizard framework. If you look in the MFC doc-
umentation for the

CEditView

 class, you will find it automatically does just about
everything you would expect from a simple text editor including file opening and closing,
clipboard operations, and find operations.

The command IDs that the

CEditView

class automatically recognizes are listed
below:

ID_EDIT_CUT Normal clipboard cut operation
ID_EDIT_COPY Normal clipboard copy operation
ID_EDIT_PASTE Normal clipboard paste operation
ID_EDIT_UNDO Normal undo operation
ID_EDIT_CLEAR Normal clipboard delete operation
ID_EDIT_SELECT_ALL Selects entire document
ID_EDIT_FIND Finds occurrence of the specified string
ID_EDIT_REPLACE Replaces string with specified string
ID_EDIT_REPEAT Repeats last find/replace operation
ID_FILE_PRINT Prints the current document
The standard framework generated by the AppWizard includes the first four op-

tions automatically as part of its standard menu structure for the

Edit

 menu. The

CEditView

 class automatically detects these commands as the user selects them in the
menu because the AppWizard by default chooses ID names identical to what the

CEditView

 class expects.
To activate the other options, you can simply add new options to the menu bar

using the menu resource editor. As long as the IDs of your new menu options match
what the

CEditView

 class expects, the options will work automatically. Simply by
adding menu options, you enable the capabilities.

To try out some of these options, open the resource view. Then open the menu
labeled IDR_EDTYPE and add the menu items shown in Figure 16.1 to the applica-

16.2
U

nd
e

rsta
nd

ing
 the

 Ed
ito

r

This book is continuously updated. See http://www.iftech.com/mfc

393

tion’s menu. Double-click on each menu option after you add it to make sure its ID
is correct.

After you have added the new menu options, close the menu resource editor
window and rebuild the application. Visual C++ will recompile the resource file and
then relink. Execute the application and open a text file. You will find that all the new
options work as expected.

There is nothing forcing you to add the options to the

Edit

 menu as shown in
Figure 16.1. For example, you could create a

Search

 menu and add the

Find

,

Re-
place,

 and

Repeat

 options to it. You will have to correct the IDs that the Menu editor
automatically assigns to these options because it will automatically name them
ID_SEARCH_FIND, ID_SEARCH_REPLACE, and ID_SEARCH_REPEAT.
Simply rename the IDs as ID_EDIT_FIND, ID_EDIT_REPLACE, and
ID_EDIT_REPEAT. Once you do that, the

CEditView

 class will recognize them and
these options will work as expected.

As you can see, the

CEditView

 class is a tremendous convenience. It encapsu-
lates all the behavior associated with a text editor in a single, easy-to-use class that fits
the document/view paradigm, and it handles the details of that editor internally.
However, you should be aware of one problem with the

CEditView

 class while you
are using it: The

CEditView

 class violates the document data-handling guidelines that
you learned about in Chapters 14 and 15.

The

CEditView

 class is built from a normal

CEdit

 control. As discussed in
Chapter 8, this control stores all its data internally. If a

CEdit

 control is displaying a
15,000 byte text file, the characters are stored inside the control itself. The same holds
true for the

CEditView

 class. One advantage of this structure is that it makes the class
extremely easy to use. On the other hand, it makes it difficult or impossible to support

Figure 16.1

Adding new menu options to the editor application

ID_EDIT_REPEAT

ID_EDIT_REPLACE

ID_EDIT_FIND

ID_EDIT_SELECT_ALL

ID_EDIT_CLEAR

394

This book is continuously updated. See http://www.iftech.com/mfc

16
C

re
a

tin
g

 a
n

Ed
ito

r w
ith

 C
Ed

itV
ie

w

the

UpdateAllViews

 capability described for the drawing editor in Section 15.4. The
document class in this editor application is not storing the data for the document. In-
stead, each individual view is.

A good question to ask, then, is, “Do we even need a document class in this ed-
itor application?” Technically, we do not. However, the document class automatically
handles the

Open

,

Save,

 and

Save As

 menu options by calling the

Serialize

 function.
By leaving the document class in place you can take advantage of this automatic han-
dling mechanism. A single line in the document’s

Serialize

 function serializes the
ASCII text data held by the control. The document class’s built-in functionality is eas-
ily tapped to implement these menu options. The document class really does nothing
else. It does not hold any data. It is simply used as a convenience.

You should eliminate the

New Window

 option from the

Window

 menu in the
editor application because it will never work properly unless you add code that keeps
multiple views synchronized. While it is possible to implement multi-view function-
ality for a single document, you would have to write a good bit of code to make the
synchronization work in an efficient way.

16.3 Combining Two Documents and Views in a Single Application

When you generate any MDI framework with the AppWizard, you have the op-
tion of allowing the application to handle several different document types
simultaneously. That is, the MDI framework can allow the user to open several differ-
ent types of documents in the same MDI application. It is very easy to demonstrate
this capability by combining the editor application demonstrated above with the
drawing application seen in the previous chapter. After combining them, we will have
a single application capable of opening and editing both drawings and text files
simultaneously.

The feature that makes this combination possible is the “document template”
capability built into the MFC class hierarchy. Templates are created in the

InitIn-
stance

 function in the application class. For example, the

InitInstance

 function in the
editor application we created above looks like this:

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(

IDR_EDTYPE,
RUNTIME_CLASS(CEdDoc),
RUNTIME_CLASS(CChildFrame), // custom MDI child frame
RUNTIME_CLASS(CEdView));

AddDocTemplate(pDocTemplate);

This is the section of the program that bonds a document to a view and then
links both of them to the application’s frame window. The

AddDocTemplate

 func-
tion adds a document template to the application. The constructor for the

CMultiDocTemplate

 class creates the template to add. The template consists of four
parts:

1. A constant that is used to extract standard resources from the resource file
2. The document class

16.3
C

o
m

b
ining

 Tw
o

 D
o

c
um

e
nts a

nd
 V

ie
w

s in a
 Sing

le
 A

p
p

lic
a

tio
n

This book is continuously updated. See http://www.iftech.com/mfc

395

3. The view’s window frame
4. The view class.

The constant, in this case IDR_EDTYPE, is particularly interesting because it
has several side effects. If you look at the resources in the resource file, you will find
three different resources tagged with that same constant:

1. One of the application’s two menu bars is named IDR_EDTYPE
2. One of the application’s icons is named IDR_EDTYPE
3. One of the strings near the top of the string table is named IDR_EDTYPE (see

the MFC documentation’s description of

CDocTemplate::GetDocString

 for
more information on this string)
You can see that the IDR_EDTYPE ID references the three different things in

the resource file that go with an individual view window: its icon, its menu, and its
document string.

When you add a second document template to an application, the application be-
comes able to handle two different types of documents simultaneously in the same
MDI framework. For example, say that you create an application that contains tem-
plates for both a text editor and drawing editor. When the user chooses the

New

 option
in the

File

 menu, the application will display a dialog asking the user what type of doc-
ument it should create. Once the user has several MDI windows open, when the user
clicks on a text editor window the menu bar will change to a text editor menu, and
when the user clicks on a drawing editor window the menu bar will change to a drawing
editor menu. Minimizing either type of window will yield the correct icon.

The best way to get a feel for the possibilities is to create an application that in-
cludes multiple document types. To do this, take the following steps.

16.3.1 Step 1—Create a Drawing Program

Go back to Chapter 15 and create, from scratch, an MDI drawing editor appli-
cation as you did in Section 15.4 (or, if you have a working drawing editor from that
chapter available, you can use it). Compile the application and make sure it is working
properly. Keep that project open and apply the following changes to it.

16.3.2 Step 2—Create a New Class

You now have an MDI application that can edit drawings. Our goal is to add to
that application the ability to edit text files at the same time. First create a new docu-
ment and view class for the text editor.

Open the ClassWizard. Create a new class of type

CDocument

(see Appendix
B.7.6). Name the new class

CTextDoc

. Now add another new class of type

CEdit-
View.

Name this new class

CTextView

.

16.3.2.1 Step 3—Modify the Document Class

In the new TEXTDOC.CPP
file, find the

Serialize

 function and add the following line to the end of it:

((CTextView*)m_viewList.GetHead())->SerializeRaw(ar);

396

This book is continuously updated. See http://www.iftech.com/mfc

16
C

re
a

tin
g

 a
n

Ed
ito

r w
ith

 C
Ed

itV
ie

w

This line will cause the edit windows to properly serialize themselves. This line
was added automatically to the framework that the AppWizard generated in Section
16.1 because the AppWizard created the document and view classes. Here we have to
add it manually because the ClassWizard does not have any idea that the document
and view classes we just created have any relationship to one another. After modifica-
tion the

Serialize

 function in the

CTextDoc

 class should look like this:

void CTextDoc::Serialize(CArchive& ar)
{

// Serialize the text view

((CTextView*)m_viewList.GetHead())->SerializeRaw(ar);

}

In addition, you will have to add a #include statement at the top of TEXT-
DOC.CPP so it includes TEXTVIEW.H, as shown here:

// textdoc.cpp : implementation file
//

#include "stdafx.h"
#include "draw.h"
#include "textdoc.h"

#include "textview.h"
...

16.3.3 Step 4—Add the Document Template

In the application file named DRAW.CPP, find the

InitInstance

 function, and
in it find the code that creates the document template. Duplicate that function call
and modify it for the new edit classes. When you are done you should have a pair of
templates that look like this:

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(

IDR_DRAWTYPE,
RUNTIME_CLASS(CDrawDoc),
RUNTIME_CLASS(CChildFrame), // standard MDI child frame
RUNTIME_CLASS(CDrawView));

AddDocTemplate(pDocTemplate);
pDocTemplate = new CMultiDocTemplate(

IDR_EDTYPE,
RUNTIME_CLASS(CEdDoc),
RUNTIME_CLASS(CChildFrame), // custom MDI child frame
RUNTIME_CLASS(CEdView));

AddDocTemplate(pDocTemplate);

Also add the following two include files at the top of DRAW.CPP:

#include "textdoc.h"
#include "textview.h"

These are the include files for the new editor document and view. If you have
named them something different, adjust accordingly.

16.3.4 Step 5—Create New Resources

Open the resource file and use the resource editors to create a new menu bar, an
icon, and a string resource for the text editor portion of this application. The easiest

16.4
Fixing

 a
 Sub

tle
 Pro

b
le

m

This book is continuously updated. See http://www.iftech.com/mfc

397

way to do this is to duplicate the existing resources for the drawing editor and modify
them to handle the text editor.

Find the menu named IDR_DRAWTYPE. Select it by single-clicking on it.
Copy it to the clipboard with Ctrl-C and then paste it. Visual C++ will create a new
menu resource named IDR_DRAWTYPE1. Rename it to IDR_TEXTTYPE by us-
ing the Property dialog. Open the new IDR_TEXTTYPE menu and eliminate the

New Window

 option from the

Window

 menu. If you would like, add in the menu
options for selecting, finding, and printing, as described previously in Section 16.2.

Now move to the icon section of the resource view. Copy the
IDR_DRAWTYPE icon and paste it back. Visual C++ will create a new icon resource
named IDR_DRAWTYPE1. Rename it IDR_TEXTTYPE. Customize the new icon
in any way you like.

Now move to the string table section. Find the string named IDR_DRAWTYPE.
Copy and paste it and rename the new string IDR_TEXTTYPE. Modify the new string
so that it looks like this:

\nText\nText\nText Files (*.tex)\nTEX\nText.Document\nText Document

See the MFC documentation description of

CDocTemplate::GetDocString

for more information on this string.

16.3.5 Step 6—Compile and Run

Compile the new application by selecting the

Rebuild All

 option in the

Project

menu. Execute it. When the application starts running you should see a dialog asking
you what type of document you wish to initially create. Choose either type and draw
or type in the new window. Create a second new window of the other type and draw
or type into it as appropriate.

With this new application, you should be able to create and manipulate both
text and drawing files. As you can see, the addition of the second document template,
along with some additions to the resource file, lets the application know about two
different document templates. The application can then handle both types equally
well.

16.4 Fixing a Subtle Problem

There is one subtle problem with the code presented in Section 16.3. You may
notice the problem if you try to open a file that has neither a TEX nor DRW exten-
sion. For example, if you try to open a CPP file with the program created in Section
16.3 you will get an error dialog. What you would like for the program to do is un-
derstand that anything other than a drawing file should be interpreted as a text file and
opened in a text-editing window.

The error dialog appears because the application framework that the AppWizard
generated has the following behavior: If the document you are trying to open has an
extension that matches none of the document templates, the application uses the first
registered document template to try to open the document. In the program in Section
16.3, this behavior causes the application to attempt to open unknown file types as

398

This book is continuously updated. See http://www.iftech.com/mfc

16
C

re
a

tin
g

 a
n

Ed
ito

r w
ith

 C
Ed

itV
ie

w

drawing files. Text files, of course, fail when the

CDrawDoc

 class tries to read in a text
file as serialized drawing information, and it is that failure that produces the dialog.

To get around this particular problem, the solution is straightforward. You need
to register the text file template first so it becomes the default template. Then any non-
drawing program will be opened as a text file by default.

16.5 Handling Multiple Views on One Document

Imagine an application where you have a single document type, but where you
would like to create multiple views on the document’s data. For example, you might
want to allow the user to view numeric data textually and also as a graph. To create
this sort of functionality, you need to create two document templates as demonstrated
in the previous exercise. Both templates will use the same document class but different
view classes.

If you were to follow the steps described in the previous exercise to add the sec-
ond document template, the second document template would need to have the same
document class and the same window class as the initial template. Only the resource
ID and the view class would be different. If you then ran the application, however,
you would note a problem: the application would think that the two document tem-
plates were separate entities. It would not understand that you are trying to create two
separate views on the same document.

The solution to this problem is straightforward. In the document string resource
that you create for the second document template, leave the third sub-string blank.
The third substring, as described in the documentation under the

GetDocString

function, identifies the name of the document type. By leaving this string out, the
framework assumes that you do not want to create a separate document type. Both
views are then available for the same document.

This now creates a second problem: There is no way to create an instance of the
second view. To solve this problem you can create menu options that invoke instances
of the two views. This process is demonstrated in Microsoft’s Check Book sample pro-
gram, which contains a very nice function named

CreateOrActivateFrame

 that solves
the problem completely (look in SAMPLES\MFC\CHKBOOK for the sample code).
You will want to examine this function and use it if you want to create this sort of
multi-view functionality.

While examining the Check Book sample code, look also at the document class
for the application. It avoids serialization and instead writes directly to a binary file in
the same way that Microsoft Money and Quicken do each time the user modifies a
transaction. This technique is useful in a variety of applications, and the checkbook
example handles it in a very nice way.

16.6 Conclusion

In this chapter you have seen how you can create simple text editor applications.
You have also seen how you can add multiple document templates to a single applica-

16.6
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

399

tion to create a single MDI program that can open multiple document types. You will
find that this is an extremely useful capability when creating high-end applications
having a variety of data to display.

401

17CREATING A FAHRENHEIT-TO-
CELSIUS CONVERTER

In Chapter 5 you used a basic knowledge of controls, styles, and message maps to cre-
ate your first real, albeit simple, application: a Fahrenheit to Celsius converter. Now
that you know about the AppWizard, the ClassWizard, and the Resource editors, you
can implement that same program again using these advanced tools. This will allow
you to compare the tools with the “by hand” approach demonstrated in Chapter 5.

This application will also allow you to gain experience with the

CFormView

class in the AppWizard. The

CFormView

 class is a specialized view class derived from

CView

 that lets you place controls on the face of an SDI application or in the windows
of an MDI application. We will use another form view in the next chapter to create
an address list application.

One of the best examples of a form view type of interface in the standard Win-
dows interface is the PIF editor, as seen in Figure 17.1. The PIF editor is nothing but
a collection of standard Windows controls arranged to form the application’s main
user interface window. You may also use form views to emulate a paper form that you
might be using around the office for order entries, payroll deductions, etc. The form
view class makes it easy to create form-like interfaces that exist in the application as a
main window rather than as a dialog.

17.1 Creating the Converter

The goal of this application, as it was in Chapter 5, is to allow users to convert
Fahrenheit temperatures to Celsius. The application presents the user with a

CEdit

control in which to type a Fahrenheit temperature. The Celsius equivalent will appear
in a

CStatic

 control below it. In this section we will use the

SetDlgItemInt

 and

Get-
DlgItemInt

 functions that you learned about in Part 1. In Section 17.3 we will revisit
this application using DDX and DDV.

17.1.1 Step 1—Creating the Framework

Create a new SDI framework with the AppWizard. Give the new project the
name “f2c.”

402

This book is continuously updated. See http://www.iftech.com/mfc

17
C

re
a

tin
g

 a
 F

a
hr

e
nh

e
it-

to
-C

e
ls

iu
s

C
o

nv
e

rte
r

As you go through the AppWizard option screens, select the following options:
• Enable or disable any application features as you see fit. Use the file extension

“f2c” as described in Appendix B.6.3.
• Chang the base class of the

CF2cView

 class to

CFormView

 as described in
Appendix B.6.4.

The second change simply modifies the base class of the view. If you look in the
file F2CVIEW.H, you will find that

CF2cView

 now inherits its behavior from

CFormView

 as shown below:

// f2cview.h : interface of the CF2cView class
//
//

class CF2cView : public

CFormView

{...

17.1.2 Step 2—Adding Controls to the Form

Open the resource file. Open the dialog named IDD_F2C_FORM. The
IDD_F2C_FORM dialog is the form that will act as the main user interface for this
application. Delete the TODO static control already in the form. Add in three new
statics and a

CEdit

 control, as shown in Figure 17.2.

Name the

CEdit

 control
IDC_FAHRENHEIT and the

CStatic

 control containing the zero IDC_CELSIUS

.
Double-click on the two controls to change their IDs.

Figure 17.1

The PIF editor, an example of a form-type application interface

17.1
C

re
a

ting
 the

 C
o

nve
rte

r

This book is continuously updated. See http://www.iftech.com/mfc

403

17.1.3 Step 3—Handling Messages

You now need to wire in a message handler for the

CEdit

 control so you can de-
tect its changes and then reflect them as the Celsius temperature displayed in the
IDC_CELSIUS control. Open the ClassWizard and look at the Message Map section
for the

CF2cClass

 as described in Appendix B.7.7.

Double-click on the
IDC_FAHRENHEIT control in the

Object IDs

 list of the ClassWizard. Double-
click on the EN_CHANGE message. Name the function whatever you like, although
the default is a good name.

Edit the code for the new function. Add the code shown in Listing 17.1.

Listing 17.1
The OnChangeFahrenheit function

void CF2cView::OnChangeFahrenheit()
{

// Get the fahrenheit temperature
int temp = GetDlgItemInt(IDC_FAHRENHEIT);
// Set the Cesius temperature
SetDlgItemInt(IDC_CELSIUS, (temp - 32)*5/9);

}

17.1.4 Step 4—Compile and Run

Compile and run the program. You should see an application like the one shown
in Figure 17.3. When you type a Fahrenheit temperature into the edit control, you
should immediately see changes in the displayed Celsius temperature.

Figure 17.2
Creating the form with the dialog editor

Figure 17.3
The new F2C application

404

This book is continuously updated. See http://www.iftech.com/mfc

17
C

re
a

tin
g

 a
 F

a
hr

e
nh

e
it-

to
-C

e
ls

iu
s

C
o

nv
e

rte
r

17.2 Understanding the Program

In the previous section you created an application that uses a dialog box resource
as the main window for an application. This style of window is called a “form.” This
style gives you a little more flexibility when designing your applications: For example,
if you need to collect information from the user you can either present the user with
a modal dialog box to collect information or you can present the user with an MDI
child window that contains the same controls. When the request for information is
presented as an MDI child window, users have the option to create multiple identical
forms simultaneously if they so desire. You might try recreating the F2C application,
this time with an MDI style, simply to demonstrate that the MDI implementation is
no different from the SDI implementation. You can open several conversion windows
simultaneously in the MDI shell.

One interesting thing that you should notice about this Fahrenheit-to-Celsius ap-
plication is the fact that, for the first time in a very long time, you can see a reduction
in your workload. The total amount of code that you had to write to create an applica-
tion is actually

declining

. To understand this phenomenon, think about the following
comparison. If you wanted to create an extremely simple text-based version of this f2c
program in C, it might take you four or five lines of code as shown in Listing 17.2.

Listing 17.2
Text-based version

void main()
{

int temp;
printf("Enter fahrenheit temperature: ");
scanf("%d", &temp);
printf("The celsius temeperature is %d\n", (temp-32)*5/9);

}

If you were to do this program “properly” in C, creating new functions for input,
processing, and output, it might take 10 or 15 lines of code. If you created a C++ class
for I/O and another for temperature conversions, it might take 30 to 50 lines to imple-
ment the code properly in C++. If you look back at Chapter 5 and examine the straight
MFC implementation in Listing 5.1, you will find that the pretty GUI version of the
program is about 150 lines long. In other words, the more advanced the programming
system and user interface requirements, the more code you have to write.

However, using the AppWizard and the ClassWizard, the tables have finally
turned. Now to create a complete GUI Fahrenheit-to-Celsius application with every
bell and whistle possible, you only had to write two or three lines of code. We have
finally gotten back to the point we were at in the original C program, where the code
you write deals mainly with the task at hand, rather than with the user interface. It’s
an interesting turn of events.

17.3
U

sing
 D

D
X

This book is continuously updated. See http://www.iftech.com/mfc

405

17.3 Using DDX

The previous section used techniques that you learned in Part 1 of this book to
manipulate the controls. However, you can also use DDX and DDV to work with con-
trols on a form view. This section will recreate the application from Section 17.1 using
DDX and DDV. Be sure to look at Chapter 22 for more information on this topic.

17.3.1 Step 1—Create the Framework

Recreate the SDI framework from Section 17.1 using the AppWizard.

17.3.2 Step 2—Add Controls to the Form

Recreate the form for the application as you did in Section 17.1.2.

17.3.3 Step 3—Add a DDX Variable

You now need to set up a mechanism to get data from the Edit control. In Section
17.1 we used

GetDlgItemText

. However, if you had 30 controls in the form this tech-
nique would leave a lot to be desired. The easiest way to handle the controls, especially
if there are a lot of them, is to use DDX, as discussed in Chapters 15, 18, and 22.

Open the ClassWizard. Add a member variable for the IDC_FAHRENHEIT
control. Name the new variable

m_fahrenheit

, set its category to

Value,

 and set its
type to

int

 as described in Appendix B.7.5. Give the new variable minimum and max-
imum values if you like—for the sake of this example choose 0 and 200.

Repeat these steps to add a variable for the IDC_CELSIUS control as well.
Name the valiable

m_celsius

.Set its category to

Value

 and set the type to

CString

.

17.3.4 Step 4—Respond to Input

When using DDX, you need a way to tell the DDX controls to transfer and ver-
ify their data. When we used DDX in Chapter 15, we used DDX inside a dialog box
and the

CDialog

 class handled the transfers automatically. When the user caused the
dialog to appear, DDX moved data from the member variables to the controls, and
when the user clicked the dialog’s

OK

 button, DDX moved data back from the con-
trols to the member variables.

In the case here we need to wire the code so some specific event forces a DDX
transfer. We could use the EN_CHANGE event as we did in Section 17.1. Or we
could add a button to the form and use its BN_CLICKED event. Let’s use the former
right now, because it is easier.

Create a new function for the EN_CHANGED event in the
IDC_FAHRENHEIT control owned by the view class. See Appendix B.7.7 for de-
tails. Inside that function place the code as shown in Listing 17.3.

Listing 17.3
The OnChangeFahrenheit function

void CF2cView::OnChangeFahrenheit()
{

406

This book is continuously updated. See http://www.iftech.com/mfc

17
C

re
a

tin
g

 a
 F

a
hr

e
nh

e
it-

to
-C

e
ls

iu
s

C
o

nv
e

rte
r

UpdateData(TRUE);
m_celsius.Format("%d",(m_fahrenheit-32)*5/9);
UpdateData(FALSE);

}

The UpdateData function, as discussed in Chapter 22, is extremely important
to DDX. It moves data in and out of DDX controls. When the parameter passed to
UpdateData is FALSE, data move from the variables into the controls. When it is
TRUE, data move from the controls into the variables. At the same time, any DDV
checking takes place.

The code above, therefore, causes the application to copy data from the controls
into the DDX variables. It then performs a Fahrenheit to Celsius conversion and
leaves the result in the variable for the static control. It then calls DDX again to move
the changed data back to the controls. It may seem like overkill to use DDX to do this,
but if you had 30 controls on the form and wanted to read or update them all, you
can see that the single call to UpdateData that DDX provides would be extremely
helpful. Read about this function both in Chapter 22 and in the MFC
documentation.

17.3.5 Step 5—Compile and Run

Compile and run the program. You should see an application that behaves al-
most exactly like the one you created in Section 17.1. When you type a Fahrenheit
temperature into the edit control, you should immediately see changes in the dis-
played Celsius temperature. However, if you type an invalid integer, or an integer
value that is out of range, you should see an error dialog. DDV provides that dialog
for you automatically.

You may want to change the constructor in the view class so that the m_celsius
member variable starts with the value 0.

17.4 Using the Document Class
In the applications created in Sections 17.1 and 17.3, the document class is not

doing anything. Because the document is available, however, you might want to make
use of it. In this simple form-based application, you could allow the document to store
the current Fahrenheit temperature so you can move it to and from a file. Although
this seems like overkill here, it can be useful.

In a larger form-based application this practice actually has merit. For example,
say that you create a form-based application to help loan officers in a bank write up
mortgage estimates for customers. Perhaps the application displays a form that accepts
the customer’s name and address, the cost of the home, the amount of the down pay-
ment, and the current interest rate. The document could hold all this information and
allow the loan officer to save the form to disk. Then, if the customer returns with ques-
tions, the officer could pull up the stored form quite easily.

17.4
U

sing
 the

 D
o

c
um

e
nt C

la
ss

This book is continuously updated. See http://www.iftech.com/mfc

407

To use the document class with the F2C application, let’s consider what we are
trying to accomplish. When the user types a Fahrenheit temperature into the edit con-
trol, we want that value stored in the document class so the user can save the “form.”
At a later time, the user should be able to go back and reload the “form,” which in this
case will contain the previously entered temperature. Once loaded, the value in the file
should get moved to the edit control on the form so the user can see it.

As you can see, the view and the document need to talk to each other for this to
work. As discussed in Chapters 14 and 15, the document should hold the data and
handle the interface to the disk. The view should handle user I/O and presentation.
Therefore, every time the user changes the number on the form, the new value should
get transmitted to the document. Whenever the user loads a temperature file, the load-
ed value should get transmitted to the view so it can display the loaded temperature.

In the document, we need to create a variable that can hold the current Fahren-
heit temperature seen in the view. We also need to create

Set

 and

Get

 functions so the
view can set and get the value of that variable. Whenever the user changes the edit con-
trol, the view needs to set the variable. Whenever the user loads a file, the document
needs to inform the view by using the

UpdateAllViews

 function to call the view’s

On-
Update

 function.
Take the following steps to demonstrate the process:

17.4.1 Step 1—Add a Variable to the Document

Start with the application you created in Section 17.3. Create a variable in the
document class of type LONG and call it

fahrenheit

. Note that we use the type
LONG here, rather than

int

, because the

CArchive

 class’s

>>

 and

<<

 operators do not
know how to serialize

int

s—see the description of the

CArchive

 class in the MFC
documentation for more information.

Also create functions named

SetTemp

 and

GetTemp

 in the document class so
the view has a way to get and set this variable. See Chapter 15 for numerous examples
on how to add functions to a document class. You may wish to call the

SetModified-
Flag

 function in the new

SetTemp

function. When you get done, the F2CDOC.H
file should contain the code shown in Listing 17.4 in its Attributes section.

Listing 17.4
Attributes Section of F2CDOC.H FILE

class CF2cDoc : public CDocument

{
protected: // create from serialization only

CF2cDoc();
DECLARE_DYNCREATE(CF2cDoc)

// Attributes
protected:

LONG fahrenheit;
public:

408

This book is continuously updated. See http://www.iftech.com/mfc

17
C

re
a

tin
g

 a
 F

a
hr

e
nh

e
it-

to
-C

e
ls

iu
s

C
o

nv
e

rte
r

void SetTemp(LONG temp) { fahrenheit = temp; }
LONG GetTemp() { return fahrenheit; }

17.4.2 Step 2—Change the Constructor

Change the document’s constructor so it initializes the fahrenheit variable:
CF2cDoc::CF2cDoc()
{

fahrenheit = 0;
}

17.4.3 Step 3—Serialize the Document

Find the Serialize function in the document class and change it as shown below:
if (ar.IsStoring())
{

ar << fahrenheit;
}
else
{

ar >> fahrenheit;
}

Now when the user saves a file, the file will contain a single value. Note that the
<< and >> operators in the CArchive are not able to serialize variables of type int.
That is why fahrenheit is declared as LONG.

17.4.4 Step—Set the Document's Variable

Now you need to modify the program so that the fahrenheit variable gets set
properly when the user changes the control. Use the ClassWizard to find the
OnChangeFahrenheit function in F2CVIEW.CPP and modify it as shown in Listing
17.5.

Listing 17.5
The OnChangeFahrenheit function

void CF2cView::OnChangeFahrenheit()
{

UpdateData(TRUE);
m_celsius.Format("%d",(m_fahrenheit-32)*5/9);
UpdateData(FALSE);
// Change the document and all other related views
GetDocument()->SetTemp(m_fahrenheit);
GetDocument()->UpdateAllViews(this, 0, NULL);

}

The call to SetTemp causes the temperature variable in the document class to
get modified each time the user changes the temperature. The call to UpdateAllViews

17.4
U

sing
 the

 D
o

c
um

e
nt C

la
ss

This book is continuously updated. See http://www.iftech.com/mfc

409

causes all views attached to the same document to get updated. This mechanism is
completed in the next section.

17.4.5 Step 5—Handle File Opening and Newing

Finally, you need to modify the document and view classes so the application
handles file opening and newing properly. When the user opens a document file, for
example, that action will load a new temperature into the document’s variable. All the
document’s views need to know about the change. The preferred mechanism for han-
dling this sort of thing uses the

UpdateAllViews

 function in combination with an

OnUpdate

 function in the view class. Using the ClassWizard, modify the

OnNew-
Document

 and

OnOpenDocument

 functions in the document class so they appear
as in Listing 17.6.

Listing 17.6
The OnNewDocument and OnOpenDocument functions

BOOL CF2cDoc::OnNewDocument()
{

if (!CDocument::OnNewDocument())
return FALSE;

fahrenheit = 0;
UpdateAllViews(NULL, 0, NULL);

return TRUE;
}

BOOL CF2cDoc::OnOpenDocument(LPCTSTR lpszPathName)
{

if (!CDocument::OnOpenDocument(lpszPathName))
return FALSE;

UpdateAllViews(NULL, 0, NULL);

return TRUE;
}

Then in the view class use the ClassWizard to add a new OnUpdate function,
as shown in Listing 17.7.

Listing 17.7
The OnUpdate function

void CF2cView::OnUpdate(CView* pSender, LPARAM lHint,
CObject* pHint)

{
m_fahrenheit = GetDocument()->GetTemp();
m_celsius.Format("%d",(m_fahrenheit-32)*5/9);

410

This book is continuously updated. See http://www.iftech.com/mfc

17
C

re
a

tin
g

 a
 F

a
hr

e
nh

e
it-

to
-C

e
ls

iu
s

C
o

nv
e

rte
r

UpdateData(FALSE);
}

17.4.6 Step 6—Compile and Run

Now compile and run the application. You will find you can save and load F2C
files. When you save a file, the current value of the Fahrenheit temperature is saved.
When you open the file again that value is restored.

Although this is an extremely simple use of the document class, it shows how
easy it is to use it in your own form applications.

17.4.7 Step 7—Handle Incidentals

If the document contained any variables that needed destruction, you would
handle this action in the document’s DeleteContents function. It is important that
you do it here, rather than in the document’s destructor, because an SDI framework
reuses a single instance of the document class.

You should also update the AssertValid and Dump functions in the document
class, as discussed in Chapters 13 and 15.

17.5 Using Form Views
You will find that form views are extremely useful in a variety of database-type

applications. For example, if you are creating a customer database, you can use a
form view to create a “form” that the user fills in when adding a customer record.
The same form can also act as a customer information browser. Even though the ap-
plication could be implemented instead using dialog boxes to gather information
from the user, the use of a form view allows the user to pull up several records in an
MDI framework at the same time. Form views also automatically scroll if the win-
dow is not large enough, so you can create long or wide forms and let the user scroll
to the different fields rather than having to use multiple dialogs. There is really no
limit to form size when you use a form view, although extremely large forms become
cumbersome from a user standpoint.

To gain an understanding of how forms “feel” to a user, you might want to
create a new application following the instructions in Section 17.1. Create a sample
entry form in the dialog editor in place of the Fahrenheit-to-Celsius converter form.
For example, create a form that allows the user to enter a typical “patient informa-
tion” form that you fill out at a doctor’s office. Or create an employment application
form. Place on the form all the fields that you find on the paper version of the form.
Then try it out by compiling and running the application. If you create the appli-
cation with an MDI framework, you will be able to open and fill in several forms at
once. You will find that these electronic forms are just as easy to use as the paper
equivalents.

17.6
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

411

17.6 Conclusion

In this chapter you have seen how easy it is to create form-based applications in
MFC. In the next chapter, we will use a form view in a slightly different way to create
a complete address list application. Chapter 18 combines many of the different tech-
niques you have learned in this part of the book. See also Chapter 33, where form
views are used for Database access.

413

18CREATING AN ADDRESS LIST

APPLICATION

In this chapter you will create an address list application, combining many of the tech-
niques you have learned in the previous chapters. The purpose of this application is to
help review the process of adding dialogs and new menu options to an AppWizard ap-
plication. You will also have the opportunity to see how to modify the tool bar and status
bar, use the clipboard, and accommodate printing of textual information.

Once you have completed this program you will have implemented a list-based
application with a document class that can load and save an array of address structures.
A custom dialog that you create with the ClassWizard allows you to add new elements
to the list. You will also be able to delete and change elements.

18.1 Creating the Application

Imagine that you want to create an address-list application—the sort of applica-
tion that holds the names and addresses of your friends and business associates. As the
designer and implementer of this application, there are a number of different user in-
terfaces from which to choose. For example, you could create a simple form, as
demonstrated in Chapter 17, and let the user enter and view addresses using that form.
This technique provides an interface that is extremely easy to implement with the
AppWizard. The disadvantage of this approach is that the user can see only one ad-
dress at a time in an SDI application. In an MDI application the user can open several
different views into a single address list file, but the user is still fairly limited in the
number of addresses that can be viewed simultaneously.

An alternative user interface for the application might present the user with a list
of names and addresses. To add a name to the list, the user clicks on an

Add

 menu
option that presents an address entry dialog. The advantage of this approach is that it
may make the interface “feel” better. The user can see a large number of names and
addresses simultaneously and then scroll through them quickly and easily. A more
complicated derivative of this same interface might paint the list into a rolodex-like
graphical device on the screen. You could then leverage the rolodex metaphor to make
the application easier for novice users to understand.

414

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

The address list application implemented in this chapter uses the second ap-
proach. It consists of a resizable

CListBox

 control held in a resizable MDI window. The
list displays names and addresses (here the program stores only the city and state but it
is easy to handle other address or phone information). To add a new element to the list,
a

Data

 menu contains an

Add

 option that presents a dialog with all the address fields.
Other options allow the user to change an existing address record or delete a record. Fig-
ure 18.1 shows a rough view of how the application will look upon completion.

Here’s a road map that shows you where we are headed in the first stage of this
program’s development:

1. Create the framework with the AppWizard. Use a form for the main applica-
tion window.

2. Put a list box in the main window and make it resize properly with the window.
3. Add a new menu named “Data” and a new menu option named “Add” so we

can add data to the list.
4. Create a new data entry dialog containing fields for the address information.
5. Hook in the dialog so it appears when the Add menu option is selected.
6. Modify the document class so it can hold, load, and save address records.

From that starting point we will then add features to turn this program into a
complete application. Many of the techniques described in this chapter are techniques
discussed previously. Where appropriate we will provide pointers back to the earlier
sections.

Figure 18.1

The address list application

File Edit Window Data Help

Bob Smith Tampa FL

John Jones Portland ME

Sally Perkins Atlanta GA

Leigh Clarke Raleigh NC

Bob Snyder Detroit MI

Sam Benson Fresno CA

Rob Ward Bethesda MD

John Woodly Selma WA

Jane Leif New York NY

Add Name

City

State

OK

Cancel

18.1
C

re
a

ting
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

415

18.1.1 Step 1—Create the Framework

Create a new SDI framework with the AppWizard (see Chapter 14). Give the
new project the name “Addr.”

As you go through the AppWizard option screens, select the following options:

• Choose the

Single-Document

 option.
• Enable or disable any application features as you see fit. Add the file extension

“adr” as described in Appendix B.6.3.
• Change the Base Class of the

CAddrView

 class to

CFormView

 as described
in Appendix B.6.4.

18.1.2 Step 2—Add a List

Add a list control onto the main form. The goal is to have the form display a
single list box that resizes with the form. Open the IDR_ADDR_FORM dialog re-
source. Delete the TODO static object. Add a new list box to the dialog by dragging
a list from the dialog palette (See Chapter 15 for a description of adding controls to a
dialog). Place the upper left corner of the list in the upper left corner of the dialog and
make the list control as small as possible. You need to do this because if the list is larger
the application will automatically apply scroll bars to the

form view

 as soon as it is re-
sized smaller than the list. We want the list to automatically resize with the window,
so we do no want those scroll bars to appear.

The ID chosen by the dialog editor (IDC_LIST1) is fine.

Double-click on the list
and in the Styles section of the Property Sheet turn off sorting

. We need to do this so the
document’s data order prevails—we cannot have the document and view data in dif-
ferent orders.

18.1.3 Step 3—Compile and Run

Compile and run the program. You will find the application displays a very small
list box. When you resize the application, it does not handle resizing at all.

18.1.4 Step 4—Add a Control Variable

Add the code so the list box resizes with the window. Use the ClassWizard and
look at the member functions of the View class. First we need to add a member vari-
able to let us access the list control in the view. Click on the

Member Variables

 tab
at the top of the ClassWizard. You will see a list of control IDs, and IDC_LIST1 will
be the only value in the list. Select it and click the

Add Variable

 button. Give the vari-
able the name

m_list1

. In the

Category

 field choose “Control” (see Chapter 22). In
the

Variable Type

 field choose

CListBox

. Click the

OK

 button to create the variable.
The purpose of this variable is to act as the instantiation of the list. We will use it to
control the list. See Section 18.3 for an explanation of this step, as well as an explana-
tion of DDX.

416

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

18.1.5 Step 5—Add Resizing Code

To add the code to resize the list properly, go to the ClassWizard again. Select
the

Message Maps

 tab and look at the view class. Under

Object Ids

 choose the

CAd-
drView

 class itself and double-click on the WM_SIZE message. Click the Edit Code
button for the

OnSize

 function. Add the code in Listing 18.1 to the

OnSize

 function
in place of the TODO comment.

Listing 18.1
The OnSize Function

void CAddrView::OnSize(UINT nType, int cx, int cy)
{

CFormView::OnSize(nType, cx, cy);
CRect r;

// Ignore the first resize message
if (GetDlgItem(IDC_LIST1)==NULL)

return;
UpdateData(FALSE);
GetClientRect(&r);
m_list1.MoveWindow(r);

}

There are two slight problems with the OnSize function that this piece of code
is overcoming. First, the OnSize function gets called initially very early in the win-
dow’s life, long before the list control exists. If the code tries to resize a non-existent
list, it will crash. The if statement solves that problem. Second, when the OnSize
function is next called, the window’s list control exists but the m_list1 variable is not
yet connected to it. The call to UpdateData solves that problem. On this and all sub-
sequent calls, the list resizes appropriately using the MoveWindow function.

18.1.6 Step 6—Compile and Run

Compile and run the code. You will find that the list box is now practically in-
visible because it is resizing properly with the window. To see it we will have to place
some data in it. To do that we are going to add a menu option and a new dialog.

18.1.7 Step 7—Add a Menu

Modify the application’s menu to contain a new “Data” menu with an “Add”
option. Because this is an SDI application at the moment, you do this by opening the
IDR_MAINFRAME menu and then adding the new menu and item in the menu re-
source editor. If this is an MDI application, there would be two menu resources: one
for the application when it has no windows open named IDR_MAINFRAME, and
the other for the application when it has a window open named IDR_ADDRTYPE.
You would want to modify the latter in the MDI case. Open the menu resource. Fol-
low the directions given in the example in Appendix B.5.5 to modify the menu to

18.1
C

re
a

ting
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

417

contain the new elements. The ID chosen by the ClassWizard for the new menu op-
tion is fine.

18.1.8 Step 8—Create a New Dialog

Create a new dialog resource as described in Appendix B.5.6. See also Chapter
6 for a discussion. Add three static controls and three edit controls to the dialog. When
you get done it should look like the dialog shown in Figure 18.2. Change the IDs of
the three edit areas to IDC_NAME, IDC_CITY, and IDC_STATE. The name
IDD_DIALOG1 chosen for the dialog itself is fine.

You may want to adjust the tab order of the dialog once you finish it by selecting
the

Tab Order

 option or toolbar button. Set up the tab order as shown in Figure 18.3
by clicking on each control in the desired tab order.

18.1.9 Step 9—Create a Dialog Class and Member Variables

Now we need to create a dialog class to go with the dialog. See Section 15.5 and
Chapter 6 for a discussion of dialog classes.

With the new dialog visible as the topmost
window in Visual C++

, open the ClassWizard. The ClassWizard will immediately
make the assumption that you want to add a new dialog class for this dialog. In the

Figure 18.2

The Add Data dialog

Figure 18.3

An appropriate tab order

418

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

Class Name

 field, type

CAddDlg

. Everything else will be fine. The ClassWizard will
create two new files for the new dialog class in the current directory. The files will be
named ADDDLG.CPP and ADDDLG.H. The ClassWizard will add AD-
DDLG.CPP to the project for you.

You should next add DDX variables to the dialog class for the three

CEdit

 ob-
jects so you will be able to access their contents. See Appendix B.7.5. Click on
IDC_NAME and name the variable

m_name

. Give it a

Value

 category and a

CString

type. Do the same for IDC_CITY and IDC_STATE, calling their variables

m_city

and

m_state

.

18.1.10 Step 10—Activate the Dialog

Now we need to wire the dialog into the code and make it appear when we
choose the

Add

 menu option.
Consider for a moment where to handle the

Add

 menu option. The ClassWiz-
ard will let you easily handle it in the message map for the application, for the frame
window, or for the document. Clearly you do not want to handle it at the application
level—if this were an MDI application you would want Add dialogs being associated
with specific documents. Because the data that the Add dialog obtains is intended for
the document, you should have the document handle it.

Add a

#include

 statement at the top of the document’s CPP file so that AD-
DDLG.H is included in the document class. Then open the ClassWizard and select
the document class. In the

Object IDs

 list select the ID_DATA_ADD ID. Add in a
COMMAND message map entry for it as described in Appendix B.7.3. The Class-
Wizard will automatically choose the function name

OnDataAdd

, and this name is
fine. Edit the code for the function and add the following two lines in place of the
TODO statement:

CAddDlg addDlg;
addDlg.DoModal();

This code will cause the Add dialog to appear and then disappear when the user
presses its

OK

 or

Cancel

 button.

18.1.11 Step 11—Compile and Run

Compile and run the program. You should see a new

Data

 menu. When you
select its

Add

 option, you should see the dialog and you should be able to type in the
dialog and press the

OK

 button. If you add the following TRACE statements to the
code following the

DoModal

 call in Step 10, you can verify the dialog is working
properly

when you run the program under the debugger

 (see Chapter 13 for more infor-
mation about TRACE statements):

TRACE("Name: %s\n", addDlg.m_name);
TRACE("City: %s\n", addDlg.m_city);
TRACE("State: %s\n", addDlg.m_state);

When you run the program you will notice that the status bar is not being up-
dated properly. Under the debugger, you may also notice the status bar is generating

18.1
C

re
a

ting
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

419

error messages about this problem. See Section 18.4.5.4 for the solution to this
problem.

18.1.12 Step 12—Modify the Document Class

Now we want to modify the document so it encapsulates the data for address
documents. We also want to supply the document class with enough functions so the
view class can access the data it needs. First, we are going to create a

CObject-

derived
class that can hold one address record and then modify the document class as needed
to accommodate an array of these address records. This is the same process we used in
Chapter 15 to store points in the document.

18.1.12.1 Step 12a—Create a Data Class

We need to modify the document
class so it can accept and hold address records. First create the address record class. It
is derived from

CObject

 and has a header and CPP file. This technique was demon-
strated in Chapter 12. Both the header file (ADDRREC.H) and the C++
implementation (ADDRREC.CPP) are shown in Listings 18.2 and 18.3.

Create two new files in Visual C++. Save the files under their appropriate names.

Add an include statement for ADDRREC.H into the document file. Add ADDRREC.CPP
to the project.

Listing 18.2
The header file for the address record class (ADDRREC.H)

// addrrec.h

class CAddrRec : public CObject
{
DECLARE_SERIAL(CAddrRec)
protected:

CString name, city, state;
public:

CAddrRec();
CAddrRec(const CAddrRec &p);
CAddrRec operator=(const CAddrRec& p);
CAddrRec(CString nm, CString ct, CString st);
virtual void Serialize(CArchive &archive);
void GetAddr(CString &nm, CString &ct, CString &st) const;

};

Listing 18.3
The implementation file for the address record class (ADDRREC.CPP)

// addrrec.cpp

#include "stdafx.h"
#include "addrrec.h"

420

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

CAddrRec::CAddrRec()
{

name = "";
city = "";
state = "";

}

CAddrRec::CAddrRec(const CAddrRec &p)
{

name = p.name;
city = p.city;
state = p.state;

}

CAddrRec CAddrRec::operator=(const CAddrRec& p)
{

name = p.name;
city = p.city;
state = p.state;
return *this;

}

CAddrRec::CAddrRec(CString nm, CString ct, CString st)
{

name = nm;
city = ct;
state = st;

}

void CAddrRec::Serialize(CArchive &archive)
{

CObject::Serialize(archive);
if (archive.IsStoring())

archive << name << city << state;
else

archive >> name >> city >> state;
}

void CAddrRec::GetAddr(CString &nm, CString &ct, CString &st) const
{

nm=name;
ct=city;
st=state;

}

IMPLEMENT_SERIAL(CAddrRec, CObject, 0)

Create two new files in Visual C++ to hold the above two listings. Save the files
under their appropriate names. Add an include statement for ADDRREC.H into the doc-
ument file. Add ADDRREC.CPP to the project.

18.1.12.2 Step 12b—Add an Array Let the document hold an array of address
records. In the document header file, in the Attributes section of the document class,
add the following line:

18.1
C

re
a

ting
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

421

CObArray array;

Make this a protected variable. If you choose to, you can instead derive a new
class from

CObArray

.

18.1.12.3 Step 12c—Encapsulate the Array

As first demonstrated in Chapter
15, add three member functions to the document class to allow access to the array.
First add their prototypes as shown in Listing 18.4 as public member functions in the
document header file:

Listing 18.4
Adding prototypes as public member functions

// Attributes
protected:

CObArray array;
public:

void CAddrDoc::AddAddr(CString name, CString city,
CString state);

int CAddrDoc::NumAddrs();
void CAddrDoc::GetAddr(int x, CString &name, CString &city,

CString &state);

Then add the function implementations in Listing 18.5 into the document’s
CPP file:

Listing 18.5
Function implementations

///
// CAddrDoc Attributes

void CAddrDoc::AddAddr(CString name, CString city, CString state)
{

array.Add(new CAddrRec(name, city, state));
SetModifiedFlag();

}

int CAddrDoc::NumAddrs()
{

return array.GetSize();
}

void CAddrDoc::GetAddr(int x, CString &name, CString &city,
CString &state)

{
((CAddrRec *)array.GetAt(x))->GetAddr(name, city, state);

}

See Chapter 15 for details

422

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

18.1.12.4 Step 12d—Modify DeleteContents

Add the

DeleteContents

 func-
tion in Listing 18.6 to the document class using the ClassWizard. The function itself
is identical to the function shown in Section 15.2, Step 5c.

Listing 18.6
The DeleteContents function

void CAddrDoc::DeleteContents()
{

int x;
for (x=0; x<array.GetSize(); x++)

delete(array.GetAt(x));
array.RemoveAll();
CDocument::DeleteContents();

}

This function gets called whenever the user selects the New option and also
when the program exits. It cleans up the array. See Chapter 15 for more information.

18.1.12.5 Step 12e—Serialize the Array Add the following line to the end of
the Serialize function in Listing 18.7 so the document can serialize itself.

Listing 18.7
The Serialize function

void CAddrDoc::Serialize(CArchive& ar)
{

if (ar.IsStoring())
{

// TODO: add storing code here
}
else
{

// TODO: add loading code here
}
array.Serialize(ar);

}

See Chapters 15 and 17 for more information.

18.1.12.6 Step 12f—Update AssertVAlid and Dump Update the
AssertValid and Dump functions as shown in Listing 18.8.

Listing 18.8
The AssertValid and Dump functions

void CAddrDoc::AssertValid() const
{

CDocument::AssertValid();

18.1
C

re
a

ting
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

423

ASSERT_VALID(&array);

}

void CAddrDoc::Dump(CDumpContext& dc) const
{

CDocument::Dump(dc);

dc << array;
}

See Chapter 13 for more information.

18.1.12.7 Step 12g—Update OnDataAdd Update the OnDataAdd function,
first seen in Step 10, as shown in Listing 18.9 so additions are placed into the array.

Listing 18.9
The OnDataAdd function

void CAddrDoc::OnDataAdd()
{

CAddDlg addDlg;
if (addDlg.DoModal()==IDOK)
{

 AddAddr(addDlg.m_name, addDlg.m_city, addDlg.m_state);
 UpdateAllViews(NULL);

}
}

Now the document class should be complete. It is totally self-contained and can
write its data to disk.

18.1.13 Step 13—Handle OnUpdate

Note that in Step 12f the OnDataAdd function calls UpdateAllViews after data
are added. This function calls the OnUpdate virtual function in each view to tell it to
refresh its window (see Section 15.4 for details). Using the ClassWizard, override the
OnUpdate function in the view’s CPP file as in Listing 18.10. Add a prototype for it
into the view’s header file.

Listing 18.10
The OnUpdate function

void CAddrView::OnUpdate(CView* pSender, LPARAM lHint,
CObject* pHint)

{
m_list1.ResetContent();
CAddrDoc *pDoc = GetDocument();
int x;
for (x=0; x<pDoc->NumAddrs(); x++)
{

CString name, city, state;

424

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

pDoc->GetAddr(x,name, city, state);
m_list1.AddString(name);

}
}

Currently this function displays only the name in the list. In a later exercise we
will improve the program so it shows name, city, and state.

18.1.14 Step 14 Compile and Run

Recompile and run the program. You should be able to choose the Add menu
option to add data to the application, and you should be able to see the data in the
window’s list. The Open and Save menu options should work properly.

18.1.15 Step 15—Create an MDI version

Rebuild the program from the beginning, this time using an MDI rather than
an SDI format. You will find that the program now allows you to open multiple ad-
dress lists simultaneously and also to open different views on those lists using the New
Window option in the Window menu. Because the SDI version was built in a way
that correctly uses the document/view paradigm, the MDI functionality works with-
out any modification to the code.

18.2 Understanding the Address List Program
In this address list program, we have used the document and view structure to

effectively handle the storage and viewing of address records. You made a series of
changes to a standard SDI or MDI framework produced by the AppWizard. Let’s start
by summarizing the changes you made to the framework’s code to produce the address
list program:

1. You replaced the standard CView with a CFormView. Onto the form you
placed a list box. This list box resizes with the form because of the addition of a
handler for the OnSize event.

2. You added a new Data menu containing an Add option, and you created a dia-
log that appears in response to the Add option. You created a dialog class to
manage the new dialog. This dialog class contains member variables used by
DDX (See Section 18.3) that move data in and out of the dialog. When the
user enters data on the dialog and presses the OK button, the OnDataAdd
function adds the data to the array and then calls UpdateAllViews so the views
reflect the addition.

3. You implemented a complete CAddrRec class derived from CObject (Step
12a). The reasons for, and advantages of, this step are described in Chapter 12.
The CAddrRec class is designed to hold one address record. You then added an
instance of a CObArray to the document class (Step 5b) to hold the collection
of all addresses added by the user.

18.3
U

nd
e

rsta
nd

ing
 D

D
X

 a
nd

 D
D

V

This book is continuously updated. See http://www.iftech.com/mfc

425

4. You added three functions to the document class (Step 12c) to complete its
encapsulation:

AddAddr

,

GetAddr

, and

NumAddrs

. The

AddAddr

 function
actually adds a record to the document. The view class uses the other two func-
tions when it wants to retrieve data from the document class to update a view.

5. You overrode the document’s

DeleteContents

 member function (Step 12d). By
default this function does nothing. You override it to clear the member vari-
ables you add to the document class—here it clears the array. The function gets
called by the framework during destruction of the document. In an SDI appli-
cation, it is called each time the user opens or creates a document because an
SDI application reuses the same document object throughout the run of the
program. In an MDI application, a new document instance is created each time
the user selects the

New

 or

Open

 options.
6. You modified the document’s

Serialize

 function (Step 12e) by adding one line
to it. This line serializes the array of address records to or from disk automati-
cally. The document’s

Serialize

 function gets called automatically by the frame-
work each time the user chooses the

Save

 or

Save As

 options.
7. You modified the

AssertValid

 and

Dump

 functions of the document (Step
12f) so these functions work properly for your document class. See Chapter 13
for more information on these functions.

8. In Steps 12g and 13, you caused the dialog to appear, accept data, and update
the list control when the user clicks the OK button.
Note that these changes were made to the document and view classes, a new di-

alog class, and to a new class derived from

CObject

.
The goal of the document class is to completely encapsulate the data for one

open document. It knows how to load the data from the disk and save it to the disk.
It also has member functions that the view uses to display the data in the document.
When the user selects the

Add

 option, it handles that.
The view class is responsible for letting the user view the contents of the docu-

ment. In this case the document is a list of address information.
The relationship between the document and view classes is summarized in Fig-

ure 18.4. When you are designing your own applications, you want the document
class to completely encapsulate the data, and you want the view to display information
to the user. There should be a clear and obvious way for the view to interact with the
document through member functions.

18.3 Understanding DDX and DDV

MFC contains two features, called Dialog Data Exchange (DDX) and Dialog
Data Validation (DDV), that help you work with controls held by a dialog box or a
form. DDX handles data movement, while DDV makes it easier to validate the data
held in different dialog fields.

426

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

We have used the DDX feature of MFC in two different ways in this address
list application. First we used it to obtain a variable,

m_list1

, that allows access to the
list control in the main application window. This

m_list1

 variable is called a

control
member variable

. It acts as a synonym for the list itself, allowing us to call functions
such as

MoveWindow

 directly on the control. The program also uses DDX to obtain
data from the dialog box once the user presses the

OK

 button. With DDX, the string
values in the three edit fields are automatically moved from the three

CEdit

 controls
and placed in the

CString

 variables named

m_name

,

m_city

, and

m_state

. These
variables are called

value member variables

 of the dialog.
DDX is nothing magic. It is simply a convenience, implemented by the Class-

Wizard and a set of functions that actually handle the data transfer. See Chapter 22
for information on the transfer functions. If you look at the dialog class, where we used
the ClassWizard to add three member variables, you will see code like that shown in
Listing 18.11.

Listing 18.11
DDX changes

CAddDlg::CAddDlg(CWnd* pParent /*=NULL*/)
: CDialog(CAddDlg::IDD, pParent)

Figure 18.4
The relationship between the document and the view in the address list program

Document

ClassLoad and save

document to

disk

NumAddrs

GetAddr

OnDataAdd

View class

ON_DATA_ADD events from menu

The document class

owns an array that

holds all of the

document's addresses

These four member

functions encapsulate

the array

The user can

see the

address list

through

the view

AddAddr

18.4
Im

p
ro

ving
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

427

{
//{{AFX_DATA_INIT(CAddDlg)
m_city = _T("");
m_name = _T("");
m_state = _T("");
//}}AFX_DATA_INIT

}

void CAddDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);
//{{AFX_DATA_MAP(CAddDlg)
DDX_Text(pDX, IDC_CITY, m_city);
DDX_Text(pDX, IDC_NAME, m_name);
DDX_Text(pDX, IDC_STATE, m_state);
//}}AFX_DATA_MAP

}

You can see in Listing 18.11 that the ClassWizard wrote code to initialize the
three member variables in the dialog’s constructor and then used the DDX_Text
functions to implement the transfer.

When you create value member variables, you have the option of setting up au-
tomatic validation using DDV. For example, if you create a string member variable to
allow data transfer from a CEdit control, you have the option to limit the length of
the string entered by the user. You can also retrieve data from an edit control as an
integer and validate the number within a range.

If MFC did not have DDX and DDV, you would have to implement the fea-
tures yourself. For example, you would use functions like GetDlgItemText and
GetDlgItemInt to do the same thing as a value member variable, using the control’s
ID to tell the functions which control to act on. You would use the GetDlgItem func-
tion to get the pointer to the control, and then use that pointer to accomplish the same
thing that a control member variable does.

In your own applications, you will use DDX just as it is demonstrated here. If
you have controls in a dialog or a form that you want to control directly, create a con-
trol member variable as described in Step 4 of Section 18.1. If you want to extract the
data from a field on a dialog or a form, create a value member variable as described in
Step 9. See Chapter 22 for a complete description of how to use DDX with every type
of field.

18.4 Improving the Application
The purpose of this section is to walk through several different modifications to

the address list program so you can see examples of some more advanced techniques.
Although each change by itself is small, the net effect will be to create a much more
complete application. Here is a list of the changes:

1. Add tabs to the list to display all fields of the addresses properly.
2. Add a Delete option to the data menu.

428

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

3. Add menu enabling and disabling for the delete option.
4. Add a

Change

 option to the data menu and implement its dialog.
5. Modify the tool bar
6. Modify the status bar
7. Add clipboard support.

Before you make these changes, you should start by recreating an MDI version
of this application that has the tool bar and status bar features enabled. This will give
you a chance to try out modifications to the tool bar and status bar. Also add in Print-
ing and Print Preview capabilities so we can add printing in Section 18.5. Figure 18.5
shows the feature summary for the new application. Follow all of the steps in Section
18.1 to create the MDI version of the application.

18.4.1 Add Tabs to the List

The application created in Section 18.1 displays only one of the three fields col-
lected in the dialog. To display all three fields you need to convert the list to a tabbed
list and then draw all three pieces of information into the list. Take the following steps.

18.4.1.1 Step 1—Modify the List Box Properties

Open the resource file and
then open the IDD_ADDR_FORM dialog. Double-click on the list control to view

Figure 18.5

The feature list for the application framework used in this section

18.4
Im

p
ro

ving
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

429

its property sheet. In the

Styles

 section click on the

UseTabstops

 check box to enable
the tab stops in the list. See Chapter 9 for more information on tab stops

18.4.1.2 Step 2—Add an Include File

At the top of the view class’s ADDR-
VIEW.CPP file, add in the STRSTREA.H header file as shown in Listing 18.12.

Listing 18.12
Adding the STRSTREA.H header file

// addrview.cpp : implementation of the CAddrView class
//

#include "stdafx.h"
#include "addr.h"
#include <strstrea.h>

#include "addrdoc.h"
#include "addrview.h"

18.4.1.3 Step 3— Add an OnInitialUpdate Function Using the ClassWizard,
override the view’s OnInitialUpdate function. The modified function should appear
as in Listing 18.13.

Listing 18.13
The OnInitialUpdate function

void CAddrView::OnInitialUpdate()
{

// Set two tab stops at 50 and 100 dialog units
int ta[2] = {50, 100};
m_list1.SetTabStops(2, ta);

CFormView::OnInitialUpdate();
}

The goal of this code is to set the tab positions in the list. See Chapter 9 for de-
tails on tabbing.

18.4.1.4 Step 4—Modify OnUpdate In the view class, modify the OnUpdate
function as shown in Listing 18.14.

Listing 18.14
The OnUpdate function

void CAddrView::OnUpdate(CView* pSender, LPARAM lHint,
CObject* pHint)

{
m_list1.ResetContent();
CAddrDoc *pDoc = GetDocument();

430

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

int x;
char s[100];
ostrstream ostr(s,100);

for (x=0; x<pDoc->NumAddrs(); x++)
{

CString name, city, state;
pDoc->GetAddr(x, name, city, state);

ostr.seekp(ios::beg);
ostr << name << '\t';
ostr << city << '\t';
ostr << state << ends;
m_list1.AddString(s);

}
}

The new code creates a string that contains the name, city, and state separated
by tabs. When inserted into the list with the AddString function, the list displays the
different parts of the string at the proper tab stops.

18.4.1.5 Step 5—Compile and Run Compile and run the program. You
should find that all three parts of every address record are displayed properly.

18.4.2 Add a Delete Option

To delete an item, the user selects the item in the list and then chooses the De-
lete menu option in the Data menu. Adding such an option to this application is
conceptually straightforward. You need to add a new Delete menu item, extract from
the list the index of the currently selected item, and then delete that item from the list
and the document.

The best place to handle the Delete menu option is in the document, but this
presents a problem: The document class does not have any way to know which item
has been selected in the list. There are two ways to solve this problem. In the first tech-
nique, the document can query the view that has focus (remember that an MDI
framework allows multiple views on a single document to be open at the same time)
and ask it for its currently selected item. In the second technique, the view with focus
updates a variable in the document that keeps track of the current selection. In this
second approach, the document class needs a variable to remember which item is se-
lected. The view class also needs a mechanism that keeps this variable updated
properly as the user selects items in the list.

We will implement the second technique here. To use this technique, the doc-
ument class needs to have a variable that holds the currently selected item. The view
class needs to update this variable each time the selection changes. In addition, because
multiple views can be open, there is a need to update the variable when focus changes
from one open view to another. Furthermore, when the selection is canceled, the vari-
able should be set to some value indicative of that state (like LB_ERR). By handling
these different events, the selection variable is guaranteed to contain the correct value

18.4
Im

p
ro

ving
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

431

at all times. The document class can then delete an item simply by referencing this
variable.

18.4.2.1 Add in Current Selection Variable

In the Attributes section of the
document class’s header file (ADDRDOC.H), add a variable to hold the current se-
lection, along with two manipulation functions, as shown in Listing 18.15.

Listing 18.15
Modification of ADDRDOC.H file

// Attributes
protected:

CObArray array;
int currentSelection;

public:
void SetSelection(int sel) { currentSelection = sel; }
UINT GetSelection() { return currentSelection; }
void CAddrDoc::AddAddr(CString name, CString city,

CString state);
int CAddrDoc::NumAddrs();
void CAddrDoc::GetAddr(int x, CString &name, CString &city,

CString &state);

Additionally, you should initialize the value of the currentSelection variable to
LB_ERR in the document’s constructor. Add the same line to DeleteContents for
completeness.

18.4.2.2 Update the Current Selection from the View The view knows which
item in the list the user has selected. It knows this because the list sends an
LBN_SELCHANGE event to it each time the user changes the selection. It also sends
an LBN_SELCANCEL message if the user clears the current selection. It sends an
LBN_SETFOCUS event when the user gives the list focus. By handing these events
in the view and calling the document’s SetSelection function in response, the docu-
ment will always know the current selection

Open the ClassWizard. In the Message Maps section choose the CAddrView
class. Select the IDC_LIST1 control in the Object IDs list. Add message handler
functions for LBN_SELCHANGE, LBN_SELCANCEL and LBN_SETFOCUS.
Edit the code for all three new functions and change them as shown in Listing 18.16.

Listing 18.16
The OnSelchangeList1, OnSetfocusList1, and OnSelcancelList1 functions

void CAddrView::OnSelchangeList1()
{

GetDocument()->SetSelection(m_list1.GetCurSel());
}

void CAddrView::OnSetfocusList1()

432

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

{
GetDocument()->SetSelection(m_list1.GetCurSel());

}

void CAddrView::OnSelcancelList1()
{

GetDocument()->SetSelection(LB_ERR);
}

At this point you have wired in the document’s selection variable so it is always
valid.

18.4.2.3 Add the Delete Item to the Menu Open the resource file and double-
click on the Menu folder. Open the IDR_ADDRTYPE menu resource by double-
clicking on it. Add a new Delete option to the Data menu. The ID
ID_DATA_DELETE chosen by the resource editor is fine.

18.4.2.4 Add an OnDataDelete Function Open the ClassWizard, choose the
Message Maps section, and select the document class. Add in a COMMAND event
handler for the ID_DATA_DELETE menu ID. Since the document knows exactly
which item to delete, this function shown in Listing 18.17 is easy to implement.

Listing 18.17
The OnDataDelete function

void CAddrDoc::OnDataDelete()
{

if (currentSelection != LB_ERR)
{

delete array.GetAt(currentSelection);
array.RemoveAt(currentSelection);
UpdateAllViews(NULL, 0, NULL);
SetModifiedFlag();
currentSelection = LB_ERR;

}
}

The code first checks to make sure there is a valid item to delete. If so, it deletes
the item from the array, tells all the views to update themselves, and then sets the doc-
ument’s modified flag.

18.4.2.5 Compile and Run Compile and run the program. You will find that
it correctly deletes the selected item. If multiple views on the same document are open,
all update correctly.

18.4.3 Enabling and Disabling Menu Options

You may have noticed in the previous section that, if the list is empty, the Delete
menu item does not disable itself as you would expect. You would like the Delete item

18.4
Im

p
ro

ving
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

433

to disable itself whenever the list is empty or there is no selection. To add this func-
tionality, you can make use of the UPDATE_COMMAND_UI message in MFC.
This message gives you an extremely efficient way to enable and disable menu items.
Take the following steps to correctly handle the

Delete

 item’s state.

18.4.3.1 Step 1—Add an UPDATE_COMMAND_UI Message Handler

Open the
ClassWizard, select the

Message Maps

 section and the document class. In the

Object
IDs

 list, choose ID_DATA_DELETE. Then choose the UPDATE_COMMAND_UI
message and create a new function for it. The framework will create a function named

OnUpdateDataDelete.

The framework will call the

OnUpdateDataDelete

 function just before it dis-
plays the menu that contains the

Delete

 item. Therefore, inside this function you
should tell the framework whether to enable or disable the

Delete

 menu item based on
the internal state of the application. In our case, we want to disable the menu option if

currentSelection

 is LB_ERR and enable it otherwise.
To set the enable state, use the code in Listing 18.18 for the

OnUpdateData-
Delete

 function.

Listing 18.18
The OnUpdateDataDelete Function

void CAddrDoc::OnUpdateDataDelete(CCmdUI* pCmdUI)
{

pCmdUI->Enable(currentSelection != LB_ERR);
}

If the Boolean expression resolves to TRUE, the menu option will be enabled.
Otherwise it will be disabled.

18.4.3.2 Step 2—Compile and Run Compile and run the application. You will
find that the Delete menu item correctly enables and disables itself in all situations.

18.4.3.3 Step 3—Understanding Menu Option Updating You can see from the
previous steps that it is extremely easy to add the code to enable and disable menu
items in an MFC program created using the AppWizard. You must do three things:

1. Create a function that handles the UPDATE_COMMAND_UI message for
each menu option.

2. In each function, determine whether the option should be enabled or disabled.
3. Call pCmdUI->Enable to set the enable state of each menu option based on

that determination.
If a menu option has an associated toolbar button (see below), then the toolbar

button is also enabled or disabled at the same time.
MFC implements the UPDATE_COMMAND_UI capability in one of two

different ways. If your program does not contain a tool bar, then
UPDATE_COMMAND_UI is implemented using the same OnInitMenu ap-

434

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

proach that was discussed in Chapter 8. When the

OnInitMenu

 function is called,
MFC handles it by sending a message to trigger the UPDATE_COMMAND_UI
handler for each relevant menu option. When you think about it, this is a tremen-
dous simplifying step. Instead of a single, large handler for

OnInitMenu

 as seen in
Chapter 8, MFC chops it up and calls an individual enabling function for every sin-
gle menu option in the program. That subdivides the task nicely and makes things
much easier to understand. It is also efficient because these functions are called only
if the user pulls down a menu.

If the tool bar is visible, a different and less-efficient mechanism is used. The tool
bar buttons, unlike menu options, are always visible. Therefore, their enable state has to
be updated constantly. This need is met by calling all the UPDATE_COMMAND_UI
handlers in the application’s

OnIdle

 function (see Chapter 10). Because they are called
continuously, you want to be careful to keep the amount of processing that you do in
UPDATE_COMMAND_UI handlers to a minimum.

18.4.4 Adding a Change Option

This application would be more useful if the user had the ability to change items
in the list. This option is now fairly easy to add because the

currentSelection

 variable
we added previously makes changing items straightforward. Take the following steps:

18.4.4.1 Step 1—Add the Change Menu Option

Open the resource file and
double-click on the Menu folder. Open the IDR_ADDRTYPE menu resource by
double clicking on it. Add a new

Change

 option to the

Data

 menu. The ID
ID_DATA_CHANGE chosen by the resource editor is fine.

18.4.4.2 Step 2—Add a Menu Handler

Open the ClassWizard, choose the

Message Maps

 section, and select the document class. Add in a COMMAND event
handler for the ID_DATA_CHANGE menu ID. Because the document knows ex-
actly which item to change through the

currentSelection

 variable, the function
shown in Listing 18.19 is easy to implement.

Listing 18.19
The OnDataChange function

void CAddrDoc::OnDataChange()
{

CAddDlg addDlg;
CAddrRec *temp;
// init the dialog with selected data
temp = (CAddrRec *) array.GetAt(currentSelection);
temp->GetAddr(addDlg.m_name, addDlg.m_city, addDlg.m_state);
// show the dialog
if (addDlg.DoModal()==IDOK)
{

// Store changes back in array
temp = new CAddrRec(addDlg.m_name,

 addDlg.m_city, addDlg.m_state);
delete array.GetAt(currentSelection);

18.4
Im

p
ro

ving
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

435

array.SetAt(currentSelection, temp);
UpdateAllViews(NULL);

}
}

The code here retrieves the selected record from the array, uses it to initialize the
fields of the dialog, presents the dialog to the user, and saves any changes the user
makes back into the array.

18.4.4.3 Step 3—Add an UPDATE_COMMAND_UI Message Handler Open the
ClassWizard and select the Message Maps section and the document class. In the Object
IDs list, choose ID_DATA_CHANGE. Then choose the UPDATE_COMMAND_UI
message and create a new function for it. The framework will create a function named
OnUpdateDataChange.

Change the function as shown in Listing 18.20.

Listing 18.20
The OnUpdateDataChange function

void CAddrDoc::OnUpdateDataChange(CCmdUI* pCmdUI)
{

pCmdUI->Enable(currentSelection != LB_ERR);
}

If the Boolean expression resolves to TRUE, the menu option will be enabled.
Otherwise it will be disabled.

18.4.4.4 Step 4—Compile and Run When you run the program, you will find
that the Change option lets you modify any record in the list.

18.4.5 Modify the Tool Bar

Because the user will select the options in the Data menu frequently, it would
be useful to create buttons in the tool bar for them. To do this, you need to understand
how to create new tool bar buttons and how the buttons on the toolbar are associated
with the different items in the menu.

Adding buttons to the tool bar is easy. The button faces are stored in a bitmap
that is already a part of the application framework. Open the resource file and then
open the IDR_MAINFRAME toolbar. You will see a long narrow bitmap like the one
shown in Figure 18.6. These are the tool bar buttons. Each button is 15 pixels high
and 16 pixels wide. If you click on any of the buttons they will appear in the editable
area and you can modify them.

In this case you would like to add three new buttons to the toolbar, one each for
the Add, Delete and Change options. Take the following steps.

436

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

18.4.5.1 Step 1—Add Bitmaps

The first thing that you need to do is add three
new button faces to the bitmap. Figure 18.7 shows the new button faces. If you are
more artistic you can create buttons that are far more glamorous.

18.4.5.2 Step 2—Modify the Buttons IDs

To wire the new buttons in, you have
to modify each of the new buttons’ IDs. Double click on the button face in the toolbar
image. A property dialog will appear. In the ID field, type or select the ID of the menu
option that you want the button to activate.

To add the three buttons shown in Figure 18.7 to the tool bar, click on each new
button and give it the appropriate ID. Give them the IDs of ID_DATA_ADD, ID_D
ATA_DELETE and ID_DATA_CHANGE respectively.

18.4.5.3 Step 3—Compile and Run

Compile and run the application. Your
new tool bar should appear as shown in Figure 18.8. When you click on the new but-
tons, they should respond as expected. They should also enable and disable themselves
properly.

Figure 18.6

The tool bar

Figure 18.7

Adding new button faces to the end of the bitmap

18.4
Im

p
ro

ving
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

437

18.4.5.4 Step 5—Add in Labels and Status Bar Messages

When you run the
program and let the cursor rest on existing tool bar buttons for several seconds, you
will notice that a helpful label appears to identify the button. You will also notice that
these labels do not appear for the new buttons. In addition, the status bar does not
update properly for the

Add

,

Delete,

 and

Change

 menu options. Both problems can
be repaired by adding prompt strings to the menu items.

Open the resource file and double-click on the IDR_ADDR_TYPE menu.
Double click on the

Add

 menu option to view its property sheet, as shown in Figure
18.9.

You can change the prompt string, as shown in Figure 18.9, and change both
the status line and tool bar behavior of the menu option. The status bar entry appears
in the prompt first, followed by “\n”, followed by the tool bar label.

18.4.5.5 Step 5—Compile and Run

When you rerun the application, you will
find that the status bar updates properly and the tool bar buttons are properly labeled.

Figure 18.8

Adding new buttons to the tool bar

Figure 18.9

The property sheet for the Add menu option

438

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

18.4.6 Adding Fields to the Status Bar

If you look at the status bar for the current application, you will see it currently
is divided into four

panes

. In Figure 18.8 you can see three of those panes. As you have
seen, the first pane displays information about the currently selected menu option.
The next three panes display the status of the caps lock, num lock, and scroll lock keys,
respectively. The leftmost pane is stretchy but has a minimum size. In Figure 18.8, the
width of the window has been reduced to the point where the leftmost pane is at its
limit. In this case, the framework will clip right-hand panes that do not fit.

It is easy for you to customize the status bar in three different ways:

1. You can easily display new status messages in the leftmost pane.
2. You can add new panes to the status bar and display any information that you

choose.
3. You can customize the appearance of panes with the

SetPaneInfo

 function.
In this section we will examine the steps you can take to add a new pane to the

status bar and use it to display information about the currently selected item in the
address list.

The framework generated by the AppWizard uses another array of integers in
the MAINFRAME.CPP file to control the panes in the status bar. It is called the

in-
dicators

 array, and the stock version is shown in Listing 18.21.

Listing 18.21
The indicators array

static UINT BASED_CODE indicators[] =
{

ID_SEPARATOR, // status line indicator
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,

};

The leftmost pane, known as pane 0, is unique. It is always present and it stretch-
es to include all available space on the status bar minus the space required by any other
panes. However, pane 0 has a minimum width and it will always consume at least that
much space regardless of window size. That is why Figure 18.8 shows only three of
the four available panes—the fourth was clipped off because of lack of space.

The array next indicates that the status bar should contain three additional panes
for the caps, num and scroll lock keys. These are automatic panes in the sense that if
you include them, they will work completely automatically with no further coding ef-
fort on your part.

To add a new pane, take the following steps.

18.4.6.1 Step 1—Add an ID to the Indicator Array Adding a new pane to the
status bar is as simple as adding a new ID to the indicators array. As you can see in

18.4
Im

p
ro

ving
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

439

the array shown above, MFC supports three standard panes and their management is
automatic. The easiest way to add a new standard indicator is to add its ID to the

in-
dicators

 array. Look in the string table in resource file and you will find six standard
indicators. The string resource will give you an ID name, a constant value, and a string
value. The string value will determine the width of the new pane.

Look in the application’s string table resource. You will see there is already a val-
ue there for ID_INDICATOR_OVR. Modify the

indicators

 array so that it contains
the entries shown in Listing 18.22.

Listing 18.22
Modification of the indicators array

static UINT BASED_CODE indicators[] =
{

ID_SEPARATOR, // status line indicator
ID_INDICATOR_CAPS,
ID_INDICATOR_NUM,
ID_INDICATOR_SCRL,
ID_INDICATOR_OVR

};

The new pane can be identified as pane 4 or by the ID_INDICATOR_OVR ID.

18.4.6.2 Step 2—Compile and Run Compile and run the program. You will
now see five menu panes. To make the new pane do anything, we need to wire in code
to enable it.

18.4.6.3 Step 3—Update the New Pane To update the new pane, we need to
enable it. Once enabled, it will display its string table string, in this case “OVR”. You
enable and disable the pane using the standard ON_COMMAND_UPDATE_UI
mechanism that you used with menu options. When the status bar is visible, the UI
message gets sent continuously so you can enable and disable the pane whenever you
like. Unlike menu options, however, you will have to wire this handler in by hand be-
cause the ClassWizard will not handle it automatically.

To do this, open the MAINFRM.CPP and MAINFRM.H files and modify the
message map as shown in the following listings (refer to Chapter 4 for an explanation
of the message map modifications we are making). In MAINFRM.H add the changes
shown in Listing 18.23.

Listing 18.23
Modifications to the message map in MAINFRM.H

// Generated message map functions
protected:

//{{AFX_MSG(CMainFrame)
afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
afx_msg void OnUpdateInsert(CCmdUI* pCmdUI);

440

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

//}}AFX_MSG
DECLARE_MESSAGE_MAP()

};

In MAINFRM.CPP add the changes shown in Listing 18.24.

Listing 18.24
Modifications to the message map in MAINFRM.CPP

///
// CMainFrame

IMPLEMENT_DYNAMIC(CMainFrame, CMDIFrameWnd)

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
//{{AFX_MSG_MAP(CMainFrame)
ON_WM_CREATE()
ON_UPDATE_COMMAND_UI(ID_INDICATOR_OVR, OnUpdateInsert)
//}}AFX_MSG_MAP

END_MESSAGE_MAP()

Finally, add the function in Listing 18.25 to the bottom of MAINFRM.CPP.

Listing 18.25
The OnUpdateInsert function

void CMainFrame::OnUpdateInsert(CCmdUI* pCmdUI)
{

pCmdUI->Enable(TRUE);
}

These are the same three steps that the ClassWizard takes whenever it wants to
add a new function to the message map—we have simply done it manually here.

18.4.6.4 Step 4—Compile and Run Compile and run the program and you
will find that the new pane now consistently displays the word “OVR.” If you were
writing a text editor and wanted to display the state of the insert key, you could quite
easily maintain a Boolean variable that toggles with the changes in insertion state. You
could then pass this Boolean to the Enable function to toggle on and off the display
of the word “OVR.”

If you add an entry to the Accelerator portion of resource file that has the ID of
ID_INSERT_KEY (or name the ID whatever you like), Key VK_INSERT, and Type
VIRTKEY, then in your MAINFRM.CPP file you can use the ClassWizard to add a
command handler for ID_INSERT_KEY. This handler will get called every time the
user hits the Insert key, and you can use that signal to toggle a Boolean variable that
controls the status pane.

18.4
Im

p
ro

ving
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

441

18.4.6.5 Step 5—Modify the New Pane

To demonstrate the use of the new
pane for an alternative purpose, we can modify it so that it displays the index of the
currently selected address record. To do this, we can modify the

SetSelection

 function
in the document class so it calls a new function in MAINFRM.CPP to modify the
ID_INDICATOR_OVR pane. This modification function needs to reside in MAIN-
FRM.CPP because the variable pointing to the status bar is protected.

Recall that the

SetSelection

 function, created in Section 18.4.2, is used by the
view class to tell the document which record the user currently has selected. This is a
perfect place to update the status bar. Modify the

SetSelection

 function in the
ADDRDOC.CPP file so it appears as in Listing 18.26.

Listing 18.26
The SetSelection function

void CAddrDoc::SetSelection(int sel)
{

CString s;

currentSelection = sel;
if (sel != LB_ERR)

s.Format("%d/%d",sel,array.GetSize());
else

s="";
CAddrApp *app = (CAddrApp *) AfxGetApp();
CMainFrame *mf = (CMainFrame *) app->m_pMainWnd;
mf->SetRecStatus(s);

}

This function now formats a string with information about the current selection
and the number of address records in the array and then calls the SetRecStatus func-
tion in MAINFRM.CPP. This is a new function added to handle status bar updates.
The new function appears in Listing 18.27.

Listing 18.27
The SetRecStatus function

void CMainFrame::SetRecStatus(CString s)
{

m_wndStatusBar.SetPaneText(
m_wndStatusBar.CommandToIndex(ID_INDICATOR_OVR), s);

}

Add a prototype for MAINFRM.H as well. As you can see, the function calls the
SetPaneText function in the status bar class to change the text displayed in the new
status bar pane. See the documentation for details on this function. You may also want
to look at the SetPaneInfo function and use it to experiment with different styles and
sizes. Note also that if you replace the first parameter passed to SetPaneText with a

442

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

zero, you can place any text you like into the leftmost pane to inform the user of
progress within your program.

18.4.6.6 Step 6—Compile and Run

Compile and run the program. You will
find that now when you select an address record in the list the status bar displays the
index of the selection. There are a variety of ways that you can use the status bar to
display useful information like this for the user.

If you want to create your own status bar pane, rather than modifying the OVR
pane as demonstrated here, create a new string resource and add the ID of that re-
source to the

indicators

 array. Then create a Command UI handler for it in the
manner shown for the OVR UI handler.

18.4.7 Adding Clipboard Support

Every program that we have created in this part of the book has contained an

Edit

 menu, but only the text editor created in Chapter 16 has really used it. In this
section we will look at how you can add

Cut

,

Copy,

 and

Paste

support to an applica-
tion by adding clipboard functionality to this address list program.

One of the nice things about the clipboard is the fact that it is extremely easy to
use. There are two functions in the 32-bit API that manipulate the clipboard:

SetClip-
boardData

 and

GetClipboardData

. These functions either add or retrieve a block of
memory from the clipboard.

To make the clipboard even easier to use, we will create a simple class that can
handle the movement of text to and from the clipboard. Then we will use that new
class when we create the handlers for the

Cut

,

Copy,

 and

Paste

 options. Take the fol-
lowing steps.

18.4.7.1 Step 1—Creating a Clipboard Class

The clipboard class contains the
two functions that let you add text data to or retrieve text data from the clipboard. The
header file for the new class is shown in Listing 18.28.

Listing 18.28
Header file for the clipboard class

// cbtext.h
// CBText class: moves text on and off the clipboard

class CBText
{
public:

CString GetText();
BOOL SetText(CString s);

};

Create a new text file in Visual C++ and add the above information to it. Then
save the file under the name CBTEXT.H. The implementation of the class appears in
Listing 18.29.

18.4
Im

p
ro

ving
 the

 A
p

p
lic

a
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

443

Listing 18.29
Clipboard class implementation

// cbtext.cpp
// CBText class: moves text on and off the clipboard

#include "stdafx.h"
#include "cbtext.h"
#include <memory.h>

CString CBText::GetText()
{

CString s;
 HGLOBAL temp;

LPTSTR str;

// Get the frame wnd for the app
CWinApp *app = AfxGetApp();
CFrameWnd *fw = (CFrameWnd *)app->m_pMainWnd;

// Open the clipboard
if (!::OpenClipboard(fw->m_hWnd))

return s;

// Get the data from the clipboard
temp = GetClipboardData(CF_TEXT);
if (temp == NULL)
{

CloseClipboard();
return s;

}
// Extract the text
str = (char *)GlobalLock(temp);
LPTSTR t = s.GetBuffer(strlen(str) + 1);
memcpy(t, str, strlen(str) + 1);
s.ReleaseBuffer();
GlobalUnlock((void *)temp);

 CloseClipboard();

 return s;
}

BOOL CBText::SetText(CString s)
{
 HGLOBAL temp;

CWinApp *app = AfxGetApp();
CFrameWnd *fw = (CFrameWnd *)app->m_pMainWnd;
LPTSTR str;

// Open and clear the clipboard
if (!::OpenClipboard(fw->m_hWnd))

return FALSE;
::EmptyClipboard();

444

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

// Allocate a block and copy text in
temp = GlobalAlloc(GHND, s.GetLength() + 1);
if (temp == NULL)
{

CloseClipboard();
return FALSE;

}
str = (char *)GlobalLock(temp);
memcpy(str, LPCTSTR(s), s.GetLength() + 1);
GlobalUnlock((void *)temp);

// Send data to clipboard
SetClipboardData(CF_TEXT, temp);

 CloseClipboard();

 return TRUE;
}

Create a new text file in Visual C++ and add this information to it. Then save
the file under the name CBTEXT.CPP. Add the CBTEXT.CPP file to the project. In-
clude the CBTEXT.H file at the beginning of the document class as shown in Listing
18.30.

Listing 18.30
Adding the CBTEXT.H file to the document class

// addrdoc.cpp : implementation of the CAddrDoc class
//

#include "stdafx.h"
#include "addr.h"

#include "addrdoc.h"
#include "adddlg.h"
#include "addrrec.h"
#include "mainfrm.h"
#include "cbtext.h"

#ifdef _DEBUG
...

You will find that the CBText class is a generally useful class whenever you have
any text data to add to or retrieve from the clipboard. If you like, you can also register
your own clipboard classes and use the same techniques shown here to move any sort
of data on or off the clipboard.

18.4.7.2 Step 2—Handle the Copy Option The easiest clipboard option to
handle is the Copy option, and we will use it here to demonstrate the process. Open
the ClassWizard, make sure you are looking at the Message Maps section, and select

18.5
Printing

This book is continuously updated. See http://www.iftech.com/mfc

445

the

CAddrDoc

 class. Choose ID_EDIT_COPY from the

Object IDs

 list, and COM-
MAND from the

Messages

 list. Click on the

Add Function

 button and add a
function with the name

OnEditAdd

. Add the code in Listing 18.31 to that function:

Listing 18.31
The OnEditCopy function

void CAddrDoc::OnEditCopy()
{

if (currentSelection == LB_ERR)
return;CBText t;

CString name, city, state;
char s[1000];
ostrstream ostr(s,1000);
GetAddr(currentSelection, name, city, state);
ostr << name << '\t';
ostr << city << '\t';
ostr << state << ends;
t.SetText(s);

}

This code extracts the currently selected record from the array and formats it
into a text string that it sends to the clipboard.

18.4.7.3 Step 3—Compile and Run Compile and run the program. Because it
has a command message handler, the Copy menu option will now be enabled. If you
select an address record and then select the Copy option in the Edit menu, the cur-
rently selected record will be copied to the clipboard as text. You can then try pasting
it into any other application that accepts text, such as the notepad.

18.4.7.4 Step 4—Handle Incidentals You can now add more detail to the pro-
gram. For example, you want to add a UI handler to the program so the Copy option
is disabled unless one of the items in the address list is currently selected. You can then
implement a Cut option that does exactly the same thing that the Copy option does,
but additionally deletes the current record. To handle the Paste option, you can re-
verse what the Copy option does and add the new record to the list.

18.5 Printing
Section 15.8 explains how the printing process works in an AppWizard frame-

work. It showed how to apply those principles to Chapter 15’s drawing application.
In that example, printing could leverage off of the OnDraw function that we had al-
ready created to handle screen refreshing.

In this chapter, we have created an address list application that uses a list control
to handle viewing. We have totally ignored the OnDraw function because the form
handles all the I/O details for us. Therefore, the printing process will be slightly dif-
ferent in this application. However, the general concerns and process discussed in

446

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

Section 15.8 are still applicable here. We will simply have to do more work in the

On-
Print

 function.
In this address list program, printing and viewing are totally separated. When it

comes time to print the information, a completely separate piece of code needs to for-
mat the page in the

OnPrint

 function. This code will get each record from the
document class, format it onto a sheet of paper, and then eject the page. If multiple
pages are needed, the code can handle it dynamically during the print process.

Let’s start by printing a single page. Take the following steps.

18.5.1 Step 1—Create a Framework

Start with the framework that you created in Section 18.4. This framework
should have its printing capabilities already activated because the first step in Section
18.4 asks you to enable printing when you create the framework. Compile and run
the program and you will find that the menu options

Print

,

Print Preview,

 and

Printer Setup

 are all present in the

File

 menu.

18.5.2 Step 2—Set the Font

To print the address information, it is necessary either to use the default system
font available in the printer DC or specify a font. We will do the latter as a demon-
stration. The best place to put the font creation is in the

OnBeginPrinting

 function
of the view class. Alternatively, you could create a menu option that lets the user select
the font from the standard font dialog. The code is in Listing 18.32.

Listing 18.32
The OnBeginPrinting function

CFont *font=NULL;

void CAddrView::OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo)
{

font = new CFont;
font->CreateFont (16,0,0,0,700,0,0,0,

ANSI_CHARSET,OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS,
DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE,
"Arial");

}

Use the ClassWizard to edit the code for this function. You can declare the font
variable anywhere you like. Placing it as an attribute member of the view class is the
easiest thing to do now, but in the long term you will probably want to make it a mem-
ber of the document (so you can save it with the document) or of the application (so
you save it as an application variable). See Chapter 11 for more information on fonts.

18.5
Printing

This book is continuously updated. See http://www.iftech.com/mfc

447

Now also modify the

OnEndPrinting

 function so it cleans up the allocated font
as in Listing 18.33.

Listing 18.33
The OnEndPrinting function

void CAddrView::OnEndPrinting(CDC* pDC, CPrintInfo* pInfo)
{

delete font;
}

18.5.3 Step 3—Prepare the DC

The OnPrepareDC function prepares the DC before the call to OnPrint is
made. This function needs to set the mapping mode and select the font into the DC.
Use the ClassWizard to find the OnPrepareDC function and modify it as shown in
Listing 18.34.

Listing 18.34
The OnPrepareDC function

void CAddrView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{

CFormView::OnPrepareDC(pDC, pInfo);
if (pInfo)
{

pDC->SetMapMode(MM_LOENGLISH);
pDC->SelectObject(font);

}
}

The if statement checks to make sure the function is being called for a print op-
eration. If it is, the code sets the mapping mode to LOENGLISH. This is done as a
convenience here, because it is easier to think about tab distances and margins in inch-
es rather than pixels. The code then selects the font into the DC. Note the efficiency
of allocating the font only once in OnBeginPrinting and then reusing it over and over
again in OnPrepareDC.

18.5.4 Step 4—Print One Page

To print the list, the code needs to extract all the items from the list, format each
one into a single line, and then print those lines with the proper inter-line spacing.
The code in Listing 18.35 does this.

Listing 18.35
The OnPrint function

448

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

void CAddrView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{

CAddrDoc *pDoc = GetDocument();
int x;
int tab=200;
char s[100];
ostrstream ostr(s,100);

// Figure height of one line
CSize size = pDC->GetTabbedTextExtent("Fg", 2, 1, &tab);
// Set the left margin
pInfo->m_rectDraw.left += 100;

for (x=0; x<pDoc->NumAddrs(); x++)
{

// form the string to print
CString name, city, state;
pDoc->GetAddr(x, name, city, state);

ostr.seekp(ios::beg);
ostr << name << '\t';
ostr << city << '\t';
ostr << state << ends;
// print the string
pDC->TabbedTextOut(pInfo->m_rectDraw.left, -x*(size.cy + 5),

s, strlen(s), 1, &tab, 100);
}

}

Be sure to include STRSTREA.H at the top of the view class.
This code first uses GetTabbedTextExtent to figure out how high a line of text

is in the chosen font. It will use this height plus 5/100ths of an inch for the inter-line
spacing. It also gives the page a one-inch left-hand margin by modifying the
m_rectDraw member. Then it is a simple matter of painting all the lines onto the
page using the TabbedTextOut function. If the document is longer than one page,
the excess will simply get clipped and ignored.

18.5.5 Step 5—Compile and Run

Compile and run the program. Enter some address information into the list. If
you select the Print Preview menu option, it will work correctly. If you select the
Print option, you will find that the output appears on the printer in a 16-point Arial
font. Feel free to adjust the font size to something larger or smaller and see what
happens.

18.5.6 Step 6—Add in Pagination

To add in pagination, follow the same sort of plan seen in Section 15.8. First,
we need a Boolean that can control the m_bContinuePrinting flag. It is initialized in
OnBeginPrinting. Declare the continuePrinting variable anywhere appropriate to
your code structure. See Listing 18.36.

18.5
Printing

This book is continuously updated. See http://www.iftech.com/mfc

449

Listing 18.36
The continuePrinting variable

CFont *font=NULL;
BOOL continuePrinting = TRUE;

void CAddrView::OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo)
{

font = new CFont;
 font->CreateFont (16,0,0,0,700,0,0,0,

ANSI_CHARSET,OUT_DEFAULT_PRECIS,
CLIP_DEFAULT_PRECIS,

 DEFAULT_QUALITY,
DEFAULT_PITCH|FF_DONTCARE,
"Arial");

continuePrinting = TRUE;
}

Next, modify the OnPrepareDC function, as shown in Listing 18.37 and dis-
cussed in Section 15.8, so it can halt printing during an actual Print operation.

Listing 18.37
The OnPrepareDC function

void CAddrView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{

CFormView::OnPrepareDC(pDC, pInfo);
if (pInfo)
{

pDC->SetMapMode(MM_LOENGLISH);
pDC->SelectObject(font);
if (!pInfo->m_bPreview)

pInfo->m_bContinuePrinting = continuePrinting;
}

}

Finally, modify the OnPrint function as shown in Listing 18.38 so it calculates
the number of lines per page and space lines appropriately on each page.

Listing 18.38
The OnPrint function

void CAddrView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{

CAddrDoc *pDoc = GetDocument();
int tab=200;
char s[100];
ostrstream ostr(s,100);

450

This book is continuously updated. See http://www.iftech.com/mfc

18
C

re
a

tin
g

 a
n

A
d

d
re

ss
 L

is
t A

p
p

lic
a

tio
n

// Figure heigh of one line
CSize size = pDC->GetTabbedTextExtent("Fg", 2, 1, &tab);
// Set the left margin
pInfo->m_rectDraw.left += 100;

// calc max number of pages and lines per page
int linesPerPage =

abs(pInfo->m_rectDraw.Height()) / size.cy - 1;
int maxPage = pDoc->NumAddrs() / linesPerPage;
if (pDoc->NumAddrs() % linesPerPage)

maxPage++;
pInfo->SetMaxPage(maxPage);

int i, x;
for (i=0; i < linesPerPage; i++)
{

x = (pInfo->m_nCurPage - 1) * linesPerPage + i;
if (x >= pDoc->NumAddrs())
{

continuePrinting = FALSE;
break;

}

// form the string to print
CString name, city, state;
pDoc->GetAddr(x, name, city, state);

ostr.seekp(ios::beg);
ostr << name << '\t';
ostr << city << '\t';
ostr << state << ends;
// print the string
pDC->TabbedTextOut(pInfo->m_rectDraw.left, -

i

*(size.cy + 5),
s, strlen(s), 1, &tab, 100);

}
}

This code uses the line height to calculate the number of lines per page and from
that is able to calculate the number of pages necessary to print the document. This step
allows the Print Preview screen to manage the Next and Previous buttons correctly.
The code also sets continuePrinting correctly so the OnPrepareDC can stop print
operations appropriately.

As mentioned in Chapter 15, there are many ways to handle printing. See the
MFC Encyclopedia in Books, On-Line as well as the Check Book sample for more
information.

18.6 Conclusion
In this chapter we have combined a number of different techniques discussed in

previous chapters to create a complete application that successfully uses the document
and view classes in a standard AppWizard framework. We have also had a chance to
discuss some of the more subtle design issues that arise in creating a complete
application.

18.6
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

451

There are a number of ways in which you can extend this application to further
experiment with the application framework. For example, you might try adding a sec-
ond view type to the application so the user can view lists

or

 forms in the MDI
framework. This can be accomplished by creating a new view class and adding a new
document template for it as discussed in Chapter 16.

You might also work with the updating mechanism currently used in this appli-
cation. As implemented now, each addition to the list causes the list control to be
completely reloaded. This is obviously wasteful when there is a large number of
records in the list. There are a variety of ways you can use

UpdateAllViews

 to improve
the updating mechanism so each insertion and deletion takes minimal CPU effort.

You might also try adding more fields to the dialog and the display so you can
make the application more useful. For example, you could add full address and/or
phone number information. You might also extend the document class to give the ap-
plication the ability to re-sort the list in different ways, check for duplicates, and so on.

You might also want to check on the database handling classes in MFC, as de-
scribed in Chapter 33. You may find it useful to convert this application to a database
approach so you can experiment with the ODBC classes.

453

19CONTEXT-SENSITIVE HELP

One of the greatest achievements of the Windows line of operating systems is the con-
sistent and uniform help facility that it offers. This facility can handle everything from
simple two-page help files to help files that contain many thousands of fully indexed
pages.

Help files are created by the Help Compiler, a specialized tool that is able to read
help source files and produce normal Windows help files. Like any compiler, you
could spend quite a bit of time understanding its every nuance. If you wish to do this,
see the “Help Compiler User’s Guide” in the on-line documentation. In this chapter,
the goal is to cover the essentials so you can create simple help files without a great deal
of effort. You are aided in this endeavor by features that you can automatically add to
an application using the AppWizard.

19.1 Understanding the AppWizard’s Help Framework

The AppWizard has the ability when it is creating a new application to add help
source files, a help project file, and context sensitive help features to its standard frame-
work. The best way to begin understanding these features is to activate them and try
them out. To do this, create a new application framework by taking the following
steps.

19.1.1 Step 1—Create the Framework

Create a new MDI framework with the AppWizard (see Appendix B.6.1 for an
introduction). Give the new project the name “Samp.” Select the location for the new
application directory and rename the directory if necessary. Click the

Create

 button.
As you go through the AppWizard option screens, select the following options:
• Enable all application features, including the tool bar, status bar, printing,

and

Context-Sensitive Help

.
• Leave all file and class names as chosen by the AppWizard.

454

This book is continuously updated. See http://www.iftech.com/mfc

19
C

o
nt

e
xt

-S
e

ns
iti

ve
 H

e
lp

If you examine the files that the AppWizard creates, you will find some new ti-
tles. First, there is a completely new HLP directory that contains two RTF files and a
lot of bitmaps. In the project’s main directory, you will also find a help project file
named SAMP.HPJ, along with a batch file named MAKEHELP.BAT. The batch file
compiles the help project and help source files in the HLP directory to create a stan-
dard HLP file. MAKEHELP.BAT is automatically executed by the project file when
you build the project, or you can run it manually from a command line.

19.1.2 Step 2—Compile and Run

Compile the application by selecting the

Build

 option in the

Build

 menu. The
project should automatically run MAKEHELP.BAT.

When you run the application, you will find that the

Help

 menu now contains a
new option: It opens a help window that contains information about this application.
You will notice a number of “blanks” in this help file that you eventually will want to
change to customize the help file for your application. You will also notice that every
menu option in the program already has an entry in the help file. In addition, the help
buttons on the various dialogs that appear in the framework work correctly.

The tool bar now has a new button for help. This button lets you select menu
options and get help on them directly. You can click the button (or press the Shift-F1
key) and then select any menu option to get help on it.

The F1 and Shift-F1 keys provide

context-sensitive help

. This is the most ad-
vanced feature of the help system that the AppWizard built for you. If you press F1,
the help system will give you information about the current document. As you add
new menu options, dialogs, document templates, and so on, you can add additional
context-sensitive help pages for each one. If a dialog box is open, F1 will give you help
on that dialog, equivalent to pressing the dialog’s

Help

 button.

19.2 Understanding and Modifying the Help Files

 Help files are simply text files written in a specific format and then compiled
through the help compiler. The source code for a typical help file for an application
consists of a “project” file that identifies the components and their names and one or
more “code” files that contain the actual help information. In the framework created
in the previous section, the project file is called SAMP.HPJ, and the code files are in
the HLP directory under the names AFXCORE.RTF and AFXPRINT.RTF. The
AFXPRINT.RTF file handles all the printing options and dialogs in the

File

 menu,
while the AFXCORE.RTF file handles everything else. The pair of files helps to dem-
onstrate how easy it is to subdivide a large help file into separate RTF (Rich Text
Format) files.

An HLP file generated by the help compiler contains a number of components.
In particular it contains help topic pages from RTF files, as well as bitmaps. The
project file tells the help compiler about the relationships between these components.
Listing 19.1 shows the project file that the AppWizard created.

19.2
U

nd
e

rsta
nd

ing
 a

nd
 M

o
d

ifying
 the

 H
e

lp
 File

s

This book is continuously updated. See http://www.iftech.com/mfc

455

Listing 19.1
The help project file

[OPTIONS]
CONTENTS=main_index
TITLE=SAMP Application Help
COMPRESS=true
WARNING=2
BMROOT= ..,.
ROOT= ..,.

[FILES]
afxcore.rtf
afxprint.rtf

[ALIAS]
HIDR_MAINFRAME = main_index
HIDR_SAMPTYPE = HIDR_DOC1TYPE
HIDD_ABOUTBOX = HID_APP_ABOUT

HID_HT_SIZE = HID_SC_SIZE
HID_HT_HSCROLL = scrollbars
HID_HT_VSCROLL = scrollbars
HID_HT_MINBUTTON = HID_SC_MINIMIZE
HID_HT_MAXBUTTON = HID_SC_MAXIMIZE
AFX_HIDP_INVALID_FILENAME = AFX_HIDP_default
AFX_HIDP_FAILED_TO_OPEN_DOC = AFX_HIDP_default
AFX_HIDP_FAILED_TO_SAVE_DOC = AFX_HIDP_default
AFX_HIDP_ASK_TO_SAVE = AFX_HIDP_default
AFX_HIDP_FAILED_TO_CREATE_DOC = AFX_HIDP_default
AFX_HIDP_FILE_TOO_LARGE = AFX_HIDP_default
AFX_HIDP_FAILED_TO_START_PRINT = AFX_HIDP_default
AFX_HIDP_FAILED_TO_LAUNCH_HELP = AFX_HIDP_default
AFX_HIDP_INTERNAL_FAILURE = AFX_HIDP_default
AFX_HIDP_COMMAND_FAILURE = AFX_HIDP_default
AFX_HIDP_PARSE_INT = AFX_HIDP_default
AFX_HIDP_PARSE_REAL = AFX_HIDP_default
AFX_HIDP_PARSE_INT_RANGE = AFX_HIDP_default
AFX_HIDP_PARSE_REAL_RANGE = AFX_HIDP_default
AFX_HIDP_PARSE_STRING_SIZE = AFX_HIDP_default
AFX_HIDP_FAILED_INVALID_FORMAT = AFX_HIDP_default
AFX_HIDP_FAILED_INVALID_PATH = AFX_HIDP_default
AFX_HIDP_FAILED_DISK_FULL = AFX_HIDP_default
AFX_HIDP_FAILED_ACCESS_READ = AFX_HIDP_default
AFX_HIDP_FAILED_ACCESS_WRITE = AFX_HIDP_default
AFX_HIDP_FAILED_IO_ERROR_READ = AFX_HIDP_default

456

This book is continuously updated. See http://www.iftech.com/mfc

19
C

o
nt

e
xt

-S
e

ns
iti

ve
 H

e
lp

AFX_HIDP_FAILED_IO_ERROR_WRITE = AFX_HIDP_default
AFX_HIDP_STATIC_OBJECT = AFX_HIDP_default
AFX_HIDP_FAILED_TO_CONNECT = AFX_HIDP_default
AFX_HIDP_SERVER_BUSY = AFX_HIDP_default
AFX_HIDP_BAD_VERB = AFX_HIDP_default
AFX_HIDP_FAILED_MEMORY_ALLOC = AFX_HIDP_default
AFX_HIDP_FAILED_TO_NOTIFY = AFX_HIDP_default
AFX_HIDP_FAILED_TO_LAUNCH = AFX_HIDP_default
AFX_HIDP_ASK_TO_UPDATE = AFX_HIDP_default
AFX_HIDP_FAILED_TO_UPDATE = AFX_HIDP_default
AFX_HIDP_FAILED_TO_REGISTER = AFX_HIDP_default
AFX_HIDP_FAILED_TO_AUTO_REGISTER = AFX_HIDP_default

[MAP]
#include <C:\local\MSDEV\MFC\include\afxhelp.hm>
#include <samp.hm>

You can see in Listing 19.1 that the project file contains several standard sec-
tions: [OPTIONS], [FILES], [BITMAPS], [ALIAS], and [MAP] are the sections seen
in this file. These sections are explained in more detail below. However, just a quick
scan reveals that the [FILES] section contains a list of all the help source files and the
[BITMAPS] section lists all the bitmaps in the HLP directory.

A help source file uses the RTF text description language for its “programming
language.” Because the help compiler reads RTF, it is possible to create and edit help
code files using any RTF-compatible editor (Microsoft Word, Word Perfect, etc.).
Once you know a few things about formatting with the RTF syntax, it is easy to create
massive help files very quickly.

To change or add new help information to the RTF files that the AppWizard
provides, you need to edit the RTF files in the HLP directory for your project. The
main file is named AFXCORE.RTF. Use any editor that understands RTF files to
open this file. When you load a help file as shown in Figure 19.1, you will notice sev-
eral conventions. The editor shown in Figure 19.1 happens to be Microsoft Word
version 6.0, and it has been adjusted so that it shows footnotes, hidden text, and for-
matting characters like tab keys and paragraph symbols. You may find that the file
looks slightly different depending on the editor that you use to open it.

Here are some of the conventions you will find as you browse through a help
RTF file:

1. Any text you need to modify has “<<...>>” around it. You can modify any text
you find, but these particular pieces must be changed to customize the files for
your application.

2. Each topic, or page, in the help file is specified by a specific page break in the
RTF file.

19.2
U

nd
e

rsta
nd

ing
 a

nd
 M

o
d

ifying
 the

 H
e

lp
 File

s

This book is continuously updated. See http://www.iftech.com/mfc

457

3. Hypertext links have double underlining for the tag, followed by hidden text
that points to a new help topic page. The hidden text is called a

context string

 and
references another help topic. To create hidden text, type in the string, drag over
it to select it, and then choose the

hidden

 style in whatever editor you are using.
4. The “footnote” specifier from RTF has been borrowed to specify topic titles

and key words. Using “#” as a footnote mark creates a context string for a help
topic. This string is used in links (and in the mapping table in the help project
file—see below) to allow the system to jump to a specific topic. In general,
every topic should have a context string. In Figure 19.1 the context string for

Figure 19.1

Loading a help file into Microsoft Word. By putting Word into Page Layout mode for
the file, you can actually see and edit the footnotes at the bottom of each page

458

This book is continuously updated. See http://www.iftech.com/mfc

19
C

o
nt

e
xt

-S
e

ns
iti

ve
 H

e
lp

the displayed topic is set to “menu_index”. Using “$” as a footnote mark
allows you to give the topic a title. The title is used in the help system’s Search
and History dialogs to name the topic for the user. Using “K” as a footnote
mark allows you to associate key words with the topic. These are the key words
displayed in the help system’s Search dialog. A topic can have more than one
key word—they are separated by semicolons. Different topics can also share
the same key words.

5. Big groupings of items can be placed in tables.
6. All standard fonts, formatting, and so on that the editor supports are handled

normally when the help source file is compiled and eventually displayed in the
help window.
To try your hand at modifying a help file, open AFXCORE.RTF yourself and

try the following steps.

19.2.1 Step 1—Change Several <<...>> Items

Open the AFXCORE.RTF file with an editor capable of handling RTF files. Put
the editor into Page View mode if possible and turn on viewing for hidden text. Page
through the file to get the lay of the land and then return to the first page.

At the top of the file, find the string “<<YourApp>>” and replace it with your
application’s name. Then, below that find the string “<<add your application-specific
‘how to’ topics here>>” and replace it with some descriptive text.

19.2.2 Step 2—Save, Compile, and Run

Save the RTF file to disk (being sure that when you save it it remains in RTF
format rather than being converted to the editor’s native format). Rerun the MAKE-
HELP batch file as described earlier in the chapter. Then run the sample application
and select the option in the

Help

 menu. When you see the opening page of the help
file you will find that it contains the title and description that you added.

19.2.3 Step 3—Add New Key Words

Adding key words to a help topic allows the user to look up the topic with the

Search

 button. Many of the topics already have key words, and in those examples you
can see that you can have multiple key words associated with any topic, with the dif-
ferent words or phrases separated by semicolons.

To add key words to the first help topic in AFXCORE.RTF, position the cursor
so it is just to the right of the “#” symbol on the first line of the help topic. Use your
editor’s “Insert Footnote” feature to add a footnote. Set the reference character to “K”.
In the text of the footnote, add your key words or phrases, separated by semicolons.

Reposition the cursor next to the “K” on the first line of the file and then insert
a second footnote. Set the reference character on this one to “$”. The “$” reference
specifies the title of the topic, and it is the string that appears in the bottom part of the

Search

 dialog when you select a key word. Type a title into the footnote text.

19.2
U

nd
e

rsta
nd

ing
 a

nd
 M

o
d

ifying
 the

 H
e

lp
 File

s

This book is continuously updated. See http://www.iftech.com/mfc

459

Make sure that, in the actual footnote, there is only one blank separating the “K”
and the “$” from their associated strings.

19.2.4 Step 4—Save, Compile, and Run

Save the RTF file to disk (being sure that when you save it it remains in RTF
format rather than being converted to the editor’s native format). Rerun the MAKE-
HELP batch file as described earlier in the chapter. Then run the sample application
and select the option in the

Help

 menu. You will find the key words and when you
select one of them it makes the proper topic page appear.

19.2.5 Step 5—Add a New Hypertext Link

In the first page of the file, create a new hypertext link. To do this, you have to
add a piece of text for the reference that the user sees, along with a context string that
tells the system what topic to jump to when the user clicks on the text. Recall that the
context string for a help topic is specified by the topic’s “#” footnote. As you can see
throughout the RTF file, the text that the user sees for the hypertext link is formatted
with double underlining, while the context string is formatted as hidden text. Create
a new hypertext link somewhere on the first page.

19.2.6 Step 6—Save, Compile, and Run

Save the RTF file to disk (being sure that when you save it it remains in RTF
format rather than being converted to the editor’s native format). Rerun the MAKE-
HELP batch file as described earlier in the chapter. Then run the sample application
and select the option in the

Help

 menu. Once you see the opening page of the help
file, find your new hypertext link and click on it to try it out.

19.2.7 Step 7—Add Topics

The RTF file contains one page for each help topic and the AppWizard created
a stock set of topics for the application framework it generated. You will frequently
want to add your own new material to this starter set.

Adding a new topic to a help file is easy. First, at the bottom of the RTF file, add
a page break. Then create the new topic by adding a title and some body text. Use the
pages already in the RTF file as examples when you create your new page.

Now add a context string, a title, and key words to the topic. Click at the begin-
ning of the title line for the topic page. Add a footnote with the reference character
“#” associated with it. This is the context string for the page. In the footnote text, add
the string “new_topic”. Then add key words and a title as described in Section 19.2.3.

To get to the new page, you will have to add a hypertext link to it elsewhere in
the help file. Do that using the instructions in Section 19.2.5.

19.2.8 Step 8—Save, Compile, and Run

Save the RTF file to disk (being sure that when you save it it remains in RTF
format rather than being converted to the editor’s native format). Rerun the MAKE-

460

This book is continuously updated. See http://www.iftech.com/mfc

19
C

o
nt

e
xt

-S
e

ns
iti

ve
 H

e
lp

HELP batch file as described earlier in the chapter. Then run the sample application
and select the option in the

Help

 menu. Once you see the opening page of the help
file, find your new hypertext link and click on it to try out the new topic page.

19.2.9 Step 9—Add a New Bitmap

It is easy to add a new bitmap to your new page. Use the Paintbrush application
or some other bitmap editor to create a new bitmap. Save the new bitmap to the HLP
directory of your project under the name NEW.BMP. Edit the SAMP.HPJ file and
add the bitmap name to the list of bitmaps.

If you add a string like the one below anywhere on any topic page, the bitmap
will appear at that point:

{bmc hlp\new.bmp}

That string can exist by itself on a line of its own or embedded within text.

19.2.10 Step 10—Save, Compile, and Run

Save the RTF file to disk (being sure that when you save it it remains in RTF
format rather than being converted to the editor’s native format). Rerun the MAKE-
HELP batch file as described earlier in the chapter. Then run the sample application
and select the option in the

Help

 menu. Once you see the opening page of the help
file, find your new bitmap.

19.3 Context-Sensitive Help

The help system uses an ID-driven mechanism to allow context-sensitive help
for menu options and dialog boxes. Tech Note 28 describes the mechanism in detail.
You can activate context-sensitive help for new menu options and dialogs very easily
using a tool called MAKEHM, which is already called by MAKEHELP.BAT.

The help project file contains a section called the [MAP] section. This section
maps integer values to help context strings. To get a better idea of how the map section
works, try the following example.

19.3.1 Step 1—Add a Menu Option

Start with the example application that you generated in Section 19.2. Open the
resource file, open the IDR_SAMPTYPE menu, and add a new menu option to the
bottom of the

Edit

 menu. Call the new menu option

Test

. The ID_EDIT_TEST ID
that the resource editor chooses for the new option is fine. Close the menu editor
window.

19.3.2 Step 2—Add a Menu Handler

Open the ClassWizard. Select the

CSampApp

 class and the

Message Maps

 sec-
tion. Add a COMMAND function for ID_EDIT_TEST. Edit the function so it
appears as in Listing 19.2.

19.3
C

o
nte

xt-Se
nsitive

 H
e

lp

This book is continuously updated. See http://www.iftech.com/mfc

461

Listing 19.2
The OnEditTest function

void CSampApp::OnEditTest()
{

WinHelp(2500);
}

This code tells the application to open the help system and to pass it the value
2,500 as a help context when it opens it. This value is a completely arbitrary choice.

19.3.3 Step 3—Add a Topic

Add a new topic to the AFXCORE.RTF file, as discussed in Section 19.2.7.
Give it the context string HID_TEST by adding a footnote with the reference char-
acter “#” and the text HID_TEST.

19.3.4 Step 4—Modify the MAP Section

To the bottom of the MAP section in the help project file SAMP.HPJ, add the
following line:

HID_TEST 2500

This line tells the help system to associate the value 2500 with the HID_TEST
help context.

19.3.5 Step 5—Compile and Run

Save the RTF file to disk (being sure that when you save it it remains in RTF
format rather than being converted to the editor’s native format). Rerun the MAKE-
HELP batch file as described earlier in the chapter. Choose the Build option in the
Build menu to build the application. Run the application and select its new Test op-
tion in the Edit menu. The help window should open and the topic shown should be
the one with the HID_TEST context ID.

The previous steps demonstrate that it is possible, from within an application,
to activate the help system and cause it to produce a specific help page when it appears.
This technique is the basis of the context-sensitive help system created by the App-
Wizard. When you press the F1 key in a dialog, or when you click on a menu option
with the cursor in the arrow-question state (activated by Shift-F1), the framework re-
sponds to the keystroke or mouse click by calling WinHelp and passing it an integer.
The integer is the sum of the ID for the menu item or the dialog and a constant (the
constants are defined in on-line documents in Tech Note 28). For example, if the user
has pressed F1 while inside a dialog, the integer passed to WinHelp by the framework
is the sum of the dialog’s ID and the constant 0x200000.

The help system can respond to that ID if it has an association, in the help
project file’s MAP section, between the integer and a help context. You can type the
line in by hand as demonstrated in Section 19.3.4, but this practice is discouraged.

462

This book is continuously updated. See http://www.iftech.com/mfc

19
C

o
nt

e
xt

-S
e

ns
iti

ve
 H

e
lp

Instead you should allow a tool called MAKEHM, which is called automatically by
MAKEHELP.BAT, to modify the SAMP.HM file in the project’s HLP directory.
SAMP.HM is a help mapping file, and you can see it being included into the MAP
section of the help project file at the bottom of Listing 19.1.

The MAKEHM tool simply looks at the IDs in the RESOURCE.H file (the file
that contains the integer IDs for all the resource constants you define) and uses them
to create help mappings between help IDs and help context strings. This is best seen
through an example, so take the following steps.

19.3.6 Step 6—Prepare Yourself

Search the on-line documentation for pages containing MAKEHM in the title.
These pages will explain that the tool can create help mapping files from resource
header files.

19.3.7 Step 7—Look at MAKEHELP.BAT

If you look in MAKEHELP.BAT in your project’s directory, you will find that
this batch file automatically calls MAKEHM on all different standard IDs and creates
the file HLP/SAMP.HM each time you run MAKEHELP.BAT.

19.3.8 Step 8—Look at SAMP.HM

Run MAKEHELP.BAT. Open the file SAMP.HM. You will find the following
mapping entries as shown in Listing 19.3.

Listing 19.3
SAMP.HM file

// MAKEHELP.BAT generated Help Map file. Used by SAMP.HPJ.

// Commands (ID_* and IDM_*)
HID_EDIT_TEST 0x18003

// Prompts (IDP_*)

// Resources (IDR_*)
HIDR_MAINFRAME 0x20080
HIDR_SAMPTYPE 0x20081

// Dialogs (IDD_*)
HIDD_ABOUTBOX 0x20064

Note that the MAKEHELP.BAT batch file system automatically has translated
ID_EDIT_TEST into the context string HID_EDIT_TEST and given it a constant.
This constant is the value that the application framework is going to emit to the help
system when the user requests context-sensitive help on the Test option in the Edit
menu.

19.4
A

lia
se

s

This book is continuously updated. See http://www.iftech.com/mfc

463

19.3.9 Step 9—Look at SAMP.HM

In the AFXCORE.RTF file, create a new help topic and give it the context string
HID_EDIT_TEST. See Section 19.2.7.

19.3.10 Step 10—Compile and Run

Save the RTF file to disk (being sure that when you save it it remains in RTF
format rather than being converted to the editor’s native format). Rerun the MAKE-
HELP batch file as described earlier in the chapter. Run the application, press Shift-
F1, and select the new

Test

 option in the

Edit

 menu. The help window should open
and the topic shown should be the one with the HID_EDIT_TEST context ID.

As you can see, the AppWizard framework has done everything possible to make
the creation of context-sensitive help pages straightforward. All that you have to do,
essentially, is add topics with the proper help IDs for menu items and dialogs to the
RTF file and recompile the help file.

19.4 Aliases

A big part of the help project file is the [ALIAS] section. This section allows you
to point multiple help contexts to the same topic page in a help file. You might do
this, for example, because you have multiple dialogs that do approximately the same
thing, but each one is different enough to have its own ID. In this case you can create
a single help topic and map all of the IDs to that topic.

AFX also predefines a number of help IDs and, in the ALIAS section, maps them
to a default page. Many of these IDs are associated with dialogs that the application
framework presents automatically. For example, the “Save Changes” dialog appears
when you try to close a file that has not yet been changed. The framework generates
this dialog automatically. The help ID associated with that dialog is
AFX_HIDP_ASK_TO_SAVE, and this ID is currently aliased to the help ID
AFX_HIPD_Default. You can write separate help pages for these different dialogs in
one of two ways.

One way is to create a new help topic (see Section 19.2.9) and set its context
string to one of the help IDs in the ALIAS section. For example, you could create a
new help topic in the RTF file with the context string AFX_HIDP_ASK_TO_SAVE.
Then, if you remove that entry from the ALIAS section and recompile, your new help
topic will appear if the user presses the F1 key while the “Save Changes” dialog is on
the screen.

Another way to handle the new topic is to create a new topic page and give it a
new, unique help context. Then, in the ALIAS section, replace the AFX_HIPD_Default
alias for AFX_HIDP_ASK_TO_SAVE with your new help context.

19.5 Conclusion

As mentioned at the beginning of the chapter, the help system and the help com-
piler are a world unto themselves. If you want to exploit the system completely you

464

This book is continuously updated. See http://www.iftech.com/mfc

19
C

o
nt

e
xt

-S
e

ns
iti

ve
 H

e
lp

need to become intimately familiar with the compiler and its capabilities. Tech Note
28 and the Help Compiler User’s Manual are good places to start the process.

In this chapter, you have seen that creating a straightforward help system with
hypertext links, text, and bitmaps is easy. You can modify the help topics that the
AppWizard created for you and add your own new pages. Using these techniques, you
can obtain basic help functionality for any AppWizard application very quickly.

465

20COMMON CONTROLS

In Windows 3.1 and earlier versions of Windows NT, Windows supports six different
controls. These controls are available in the dialog editor, and can also be created in
code using MFC classes for each of the controls. With Windows 95 came a whole new
set of controls that add better appearance and functionality to dialogs that use them.
The new common controls are supported in the following environments:

• Windows 95
• Windows NT, version 3.51 or later
• Win32s, version 1.3 or later

The different controls available are listed below:
• CListCtrl - List control (also called list view control)
• CTreeCtrl - Tree control (also called tree view control)
• CSpinButtonCtrl - Spin button control (also called up-down control)
• CImageList - Image list
• CRichEditCtrl - Rich edit control
• CSliderCtrl - Slider control (also called a trackbar)
• CProgressCtrl - Progress control
• CAnimateCtrl - Animation control
• CHeaderCtrl - Header control
• CHotKeyCtrl - Hot key control

These controls already exist within MFC and are rarely used outside of MFC:
• CStatusBarCtrl - Status window (CStatusBar)
• CTabCtrl - Tab control (Property Sheets)
• CToolBarCtrl - Toolbar control
• CToolTipCtrl - Tool tip control
Most of these controls are demonstrated in a huge and extensive MFC example

program called CMNCTRLS, available from the developer’ network CD.

20.1 A Simple Example Using the Spin Button, List, and Tree Controls

Most of these controls are remarkably easy to use once you see a bit of example
code. You could spend a week studying each control in detail, but for normal use there

466

This book is continuously updated. See http://www.iftech.com/mfc

20
C

o
m

m
o

n
C

o
nt

ro
ls

is not a lot of complexity. In this example we will create a simple application that dem-
onstrates how to use the spin control, the new list control and the tree control. Create
a new SDI application framework with a form view. On the form, replace the existing
static control with a Tree control, List control (not the list box), Spin control, and an
Edit box. Change the properties for the following controls:

• Change the list control View style to Report
• Enable the tree control styles Has buttons, Has lines, and Lines at root
• Enable the spin control styles Auto buddy and Set buddy integer
In order for the Auto buddy style of the spin control to know which control is

its “buddy” you must change the Tab Order so the edit box and the spin control are
in sequential order with the edit box first.

20.2 CSpinButtonCtrl

If you compile and run the application now you will notice that the spin button
control is fully functional. Its buddy edit box contains the value zero and when you
press the down arrow the value increases and when you press the up arrow the value
decreases. This somewhat odd behavior occurs because the default range for the spin
button has the maximum set to zero and the minimum set to 100. Since the maximum
value is less than the minimum value the function of the arrow buttons is reversed. We
will use the control’s

SetRange

 method to change these values to achieve the desired
functionality.

Use the ClassWizard to add Control member variables for each control in the
view class. Also add the

OnInitialUpdate

 handler to the class and add a call to the
spin button’s

SetRange

:

void CMyView::OnInitialUpdate()
{

CFormView::OnInitialUpdate();

m_ctlSpinButtonCtrl.SetRange(-10, 10);

}

Now the spin button control will allow you to change the edit control’s value
from -10 to 10. You can use other methods of the spin button control to change other
properties such as the base (decimal or hex) and the adjustment rate (acceleration).

20.3 CListCtrl

The new list control is more complex than the standard list box. Because the list
control has four different ways to display itself, it has much more functionality. For
this example we will demonstrate the Report view mode of the list control. In this
mode, the list control looks a lot like a standard list box, except it more easily supports
multiple columns which can be sorted and resized.

First we will fill the list control with three rows and three columns. Each row is
made up of an item and two subitems. The subitems are only visible in Report mode.

20.3
C

ListC
trl

This book is continuously updated. See http://www.iftech.com/mfc

467

The other three modes only show the item label for each element in the list. To add a
column to the list use the

InsertColumn

 method. Call it once for each column you
want in the list. Inserting items and subitems is a two part process. First call

Inser-
tItem

 to insert an item in the list. Once there is an item in the list you use

SetItemText

 to set the text for each subitem.

void CMyView::OnInitialUpdate()
{

CFormView::OnInitialUpdate();

m_ctlSpinButtonCtrl.SetRange(-10, 10);

m_ctlList.InsertColumn(0, "Item");
m_ctlList.InsertColumn(1, "Subitem 1");
m_ctlList.InsertColumn(2, "Subitem 2");

int nItem;

nItem = m_ctlList.InsertItem(0, "Item A");
m_ctlList.SetItemText(nItem, 1, "Subitem A1");
m_ctlList.SetItemText(nItem, 2, "Subitem A2");

nItem = m_ctlList.InsertItem(0, "Item B");
m_ctlList.SetItemText(nItem, 1, "Subitem B1");
m_ctlList.SetItemText(nItem, 2, "Subitem B2");

nItem = m_ctlList.InsertItem(0, "Item C");
m_ctlList.SetItemText(nItem, 1, "Subitem C1");
m_ctlList.SetItemText(nItem, 2, "Subitem C2");

}

Now you can run the application and see that the list has three rows and three
columns. The columns can be resized by dragging the column dividers in the list head-
er. Double-clicking the divider resizes the column so it exactly fits the column’s
contents.

 A common thing to do with the list control is to allow the user to sort each col-
umn when the column header is clicked. To add this functionality to our example we
have to do three things. First we have to know when a list column header is clicked.
We can do this by adding a handler for the

LVN_COLUMNCLICK

 message. When
a column is clicked, we can sort the list on the selected column.

void CMyView::OnColumnclickList1(NMHDR* pNMHDR, LRESULT* pResult)
{

NM_LISTVIEW* pNMListView = (NM_LISTVIEW*)pNMHDR;

int nColumn = pNMListView->iSubItem;
ASSERT((nColumn >= 0) && (nColumn <= 2));
m_ctlList.SortItems(CompareFunc, nColumn);

*pResult = 0;
}

468

This book is continuously updated. See http://www.iftech.com/mfc

20
C

o
m

m
o

n
C

o
nt

ro
ls

This code tells the list control to call the

CompareFunc

 function for each item
in the list and to sort the items based on the result of the function. The arguments to
the function are the item data for each item in the list and the second argument to

SortItems

. We can use this sort data to tell the sort function which column to base
the sorting on. The only thing missing is the item data for each item in the list. Cur-
rently our items don’t have any associated item data. Change

OnInitialUpdate

 to call

SetItemData

 for each item:

void CMyView::OnInitialUpdate()
{

...
nItem = m_ctlList.InsertItem(0, "Item A");
m_ctlList.SetItemText(nItem, 1, "Subitem A1");
m_ctlList.SetItemText(nItem, 2, "Subitem A2");

m_ctlList.SetItemData(nItem, 0);

...
m_ctlList.SetItemText(nItem, 2, "Subitem B2");

m_ctlList.SetItemData(nItem, 1);

...
m_ctlList.SetItemText(nItem, 2, "Subitem C2");

m_ctlList.SetItemData(nItem, 2);

}

Add the sort function as a member of the view class:

static int CALLBACK CompareFunc(LPARAM, LPARAM, LPARAM);

int CALLBACK CMyView::CompareFunc(LPARAM lParam1, LPARAM lParam2,
LPARAM lParamSort)

{
switch(lParamSort)
{
case 0: // First column, sort A, B, C

return lParam1 - lParam2;
break;

case 1: // Second column, sort C, B, A
return lParam2 - lParam1;
break;

case 2: // Third column, no change
return 0;
break;

default: // Invalid column
ASSERT(FALSE);
return 0;

}
}

Notice that this function is defined as a static member function. This is because
this function will be called as a callback from system, which expects the function to
behave like a normal C callback function. For this compare function we have hard

20.4
C

Tre
e

C
trl

This book is continuously updated. See http://www.iftech.com/mfc

469

wired the function to sort the first column in the order of the item data elements (A,
B, C), the second column sorts in reverse order (C, B, A) and the third column will
not change the sorting of the list. If you wanted to make the sorting more intelligent
you could make the item data a pointer to a structure that describes each item. Then
you could sort based on the column text or a currency.

20.4 CTreeCtrl

The list control organized items and subitems in a linear form. The tree control
organizes items and subitems in a hierarchical tree structure. Each item becomes a par-
ent with subitems as its children. The most common example of a tree structure is the
file system. Each directory is a parent which can contain other directories and files as
children. If a parent has children, it can be expanded to show its children or collapsed
to hide its children. As with the list control, you insert items into a tree control using
its

InsertItem

 method. There are many overloaded versions of this method. The most
simple version of the method has arguments for the item label text and its position in
the tree.

InsertItem

 returns a handle to the new item. You can use this handle in other

InsertItem

 calls to add children to a parent.

void CMyView::OnInitialUpdate()
{

CFormView::OnInitialUpdate();
...

HTREEITEM hRoot;
HTREEITEM hChild;

hRoot = m_ctlTree.InsertItem("Root1");
m_ctlTree.InsertItem("Child1 of Root1", hRoot);
hChild = m_ctlTree.InsertItem("Child2 of Root1", hRoot);
m_ctlTree.InsertItem("Child1 of Child2 of Root1", hChild);
m_ctlTree.InsertItem("Child3 of Root1", hRoot);

hRoot = m_ctlTree.InsertItem("Root2");
m_ctlTree.InsertItem("Child1 of Root2", hRoot);
hChild = m_ctlTree.InsertItem("Child2 of Root2", hRoot);
m_ctlTree.InsertItem("Child1 of Child2 of Root2", hChild);
m_ctlTree.InsertItem("Child3 of Root2", hRoot);

hRoot = m_ctlTree.InsertItem("Root3");
m_ctlTree.InsertItem("Child1 of Root3", hRoot);
hChild = m_ctlTree.InsertItem("Child2 of Root3", hRoot);
m_ctlTree.InsertItem("Child1 of Child2 of Root3", hChild);
m_ctlTree.InsertItem("Child3 of Root3", hRoot);

}

In this example, all the items in the tree are kept in the order they are added. The
tree controls can also be sorted alphabetically or by a custom algorithm. If we wanted

470

This book is continuously updated. See http://www.iftech.com/mfc

20
C

o
m

m
o

n
C

o
nt

ro
ls

to sort the items in the list we could add the

TVI_SORT

 flag as another argument to
the InsertItem calls:

hChild = m_ctlTree.InsertItem("Child2 of Root3", hRoot, TVI_SORT);

20.5 Property Sheets

Property sheets help you create a single dialog containing numerous controls
that share a common theme. For example, in a complicated application there can be
hundreds of user-selectable options that control the behavior of the application. To
display all these options without property sheets, applications were forced to create
large complicated dialogs overpopulated with controls or a dialog-hierarchy that re-
quired multiple dialogs showing different options. Property sheets give applications a
way to create a single dialog that contains multiple “pages” of options having the same
theme. By selecting the tab at the top of each page you are able to view the different
options.

MFC contains two classes that help you create property sheets and property pag-
es. The

CPropertySheet

 class, which is derived directly from

CWnd

, encapsulates the
behavior of the property sheet itself and acts like a new version of the

CDialog

 class.
For example, it contains

DoModal

 and

EndDialog

 functions just like the dialog class
does. The

CPropertyPage

 class derives its behavior from

CDialog

 and is used to cre-
ate the pages in a property sheet. You derive a new class from

CPropertyPage

 class for
each page in a property sheet. This process mimics the creation of a new dialog class
for each dialog in your application.

You create the property pages in exactly the same way you create a normal dia-
log. You use the dialog editor to create the controls and then use the ClassWizard to
create a new class derived from

CPropertyPage

 to handle the dialog resource. DDX
and DDV let you access the controls on the property page just like you do with a
dialog.

To create a property sheet, you either use the

CPropertySheet

 class directly or
use the ClassWizard to create a new class derived from

CPropertySheet

. You tell the
instance of

CPropertySheet

 about all its pages using its

AddPage

 function.
The example in the next section shows how to create a new property sheet and

its property pages and will help you to see how the whole system works.

20.6 A Property Sheet Example

It is remarkably easy to create a property sheet using principles you have already
learned in this book. In this example we will create a simple modal property sheet di-
alog that contains two pages. Each page in a property sheet is a separate

CPropertyPage

 object. The pages are actually based on dialog templates, which is the
reason

CPropertyPage

 is derived from the

CDialog

 class. All you have to do is create
a separate dialog template resource for each page.

Create two new dialog templates and change their Captions to the text you want
to appear in the tab for this page. Also, set the Style to Child, set the Border to Thin,
and enable the Disabled, Visible and Titlebar styles. If you don’t set these options you

20.7
The

 C
Pro

p
e

rtyShe
e

t C
la

ss

This book is continuously updated. See http://www.iftech.com/mfc

471

will get an assertion failure when the page is created. Then some controls to the prop-
erty page.

When creating a set of property pages, you will want to try to make the size and
layout of each page consistent. When the property sheet is created, the size of the first
property page in the sheet is used to determine how large the property sheet should
be, so if your dialog template resources have different sizes, make sure the largest one
is the first page.

When you create dialogs in MFC, you create a new dialog class that is derived
from

CDialog

. The same concept applies to the

CPropertyPage

 class. This allows
each page to have its own member variables that can store the information from its
controls. You will use DDX and DDV with property pages in the same way that you
use them with normal dialogs. Use the ClassWizard to derive two new classes from

CPropertyPage

, one for each dialog template, named

CPage1

 and

CPage2

.

20.7 The CPropertySheet Class

The

CPropertySheet

 class is used to manage a group of property pages. Creat-
ing and displaying a modal property sheet dialog is simple using this class. To create
and display a property sheet is done the following way:

void CMyApp::OnSomeCommand()
{

 // Create the property sheet
 CPropertySheet propSheet("Information");

 // Create and initialize page one
 CPage1 page1;
 page1.m_name = "Name";
 page1.m_phone = "Phone";
 page1.m_address = "Address";

 // Create and initialize page two
 CPage2 page2;
 page2.m_city = "City";
 page2.m_state = "State";

 // Add the pages to the sheet
 propSheet.AddPage(&page1);
 propSheet.AddPage(&page2);

 if(propSheet.DoModal() == IDOK)
 {

 TRACE("Name: %s\nPhone: %s\nAddress: %s\n",
 (LPCSTR)page1.m_name,
 (LPCSTR)page1.m_phone,
 (LPCSTR)page1.m_address);

 TRACE("City: %s\nState: %s\n",
 (LPCSTR)page2.m_city,
 (LPCSTR)page2.m_state);
 }

}

472

This book is continuously updated. See http://www.iftech.com/mfc

20
C

o
m

m
o

n
C

o
nt

ro
ls

The code first creates a property sheet object, passing the constructor the title of
the property sheet. Then it creates and initializes an object for each property page.
DDX takes care of initializing the controls on the page with the values of the member
variables. Each page is added to the property sheet with

AddPage

. As with normal di-
alogs,

DoModal

 is used to display the property sheet dialog and will not return until
the user selects either the OK or Cancel buttons.

Now that we have created a simple property sheet, we will explore how to better
use these two classes. The property sheet above was created in two steps. First, the
property sheet object was created and then its pages were created and added. Another,
more object-oriented approach to creating a property sheet is to create a new class de-
rived from

CPropertySheet

. The new class would contain a member variable for each
property page and the constructor for the class would call

AddPage

 for each page. You
can use the ClassWizard to derive a class from

CPropertySheet

 and then modify the
new class as necessary.

class CMyPropertySheet : public CPropertySheet
{
public:

CPage1 m_page1;
CPage2 m_page2;

CMyPropertySheet();
};

CMyPropertySheet::CMyPropertySheet() :
CPropertySheet("Information")

{

AddPage(&m_page1);
AddPage(&m_page2);

}

The main reason to derive a class from

CPropertySheet

 is to enhance it. With
your own class you can add buttons or modify the default buttons. Or you can create
a modeless property sheet dialog. If you wish to create a modeless property sheet dia-
log, you can use the class’s

Create

 member function. In this case, you must create your
own

CPropertySheet

-derived class because the default buttons, OK, Cancel, and Ap-
ply are not created for modeless property sheets. You must also provide a way in the
new class to close and destroy the modeless property sheet dialog, which is the purpose
of

EndDialog

. This function is used to destroy the property sheet dialog when OK,
Cancel or Close is selected.

There are also several page management functions in the

CPropertySheet

 class.

RemovePage

 performs the opposite of

AddPage

 and removes the specified page from
the property sheet. Only the property page’s window is destroyed. The actual

CProp-
ertyPage

-derived object is not destroyed until its property sheet is.

GetPage

 will
return a pointer to the page specified by an index between 0 and the value of

GetPage-
Count

. These can be used to iterate through the property sheet’s pages.

20.8
O

C
X

 C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

473

As with normal dialogs, you override the virtual functions

OnCancel

 and

OnOK

 to handle the Cancel and OK buttons. The

OnCancel

 function is called when
the Cancel button is selected (it will be labeled Close instead of Cancel if it has been
renamed with

CancelToClose

). The

OnOK

 function is called for two different ac-
tions. It’s called when the user chooses either the OK or Apply button. The difference
is that the Apply button does not call

EndDialog

 to dismiss the property sheet. If you
need to handle the Apply button in a separate function, you can manually provide a
message map entry for

ID_APPLY_NOW

in the page’s parent

CPropertySheet

-de-
rived class.

Two other virtual functions can be overriden to allow more control over the

CPropertyPage

 class.

OnSetActive

 is called when the page is chosen by the user and
becomes the active page. The default action is to create the window for the page, if not
previously created, and to make the page the active page. You can override this func-
tion to perform tasks that need to be done when a page is activated, such as custom
initialization. Note that the controls for a property page are not created until the page
itself is created, so make sure you call the base class

OnSetActive

 to create the page
before referencing any of the page’s controls.

OnKillActive

 is the opposite of

On-
SetActive

 and is called when the page is no longer to be the active page. The property
page’s

OnOK

 function is only called if this function returns successfully. The default
action is to call the DDX function

UpdateData

 to copy settings from the controls in
the property page to the member variables of the property page. If the data was not
updated successfully because of a DDV error, the page retains focus. You can override
this function to perform special data validation tasks that should be done before the
active page loses focus. Note that the data is transferred from the controls to the mem-
ber variables in

OnKillActive

, not in

OnOK

. Note that all these functions are page-
dependent. That is, each property page class has its own

OnOK

,

OnCancel

,

On-
SetActive

, and

OnKillActive

.
Some other useful functions are

CancelToClose

 and

SetModified

. You can use
the

CancelToClose

 function to notify the user that he has made an unrecoverable
change to the data in a page. This function will change the text of the Cancel button
to read Close. This alerts the user that they have made a permanent change that cannot
be cancelled. Note that the

CancelToClose

 member function does nothing in a mod-
eless property sheet because a modeless property sheet does not have a Cancel button
by default.

The

SetModified

 function is used to enable or disable the Apply button. Each
page has a flag that marks the page as being “dirty.” When the data for a page has been
changed you can call

SetModified

 with TRUE to enable the button. The Apply but-
ton will become disabled again only when none of the property pages is “dirty.” Note
that each page has its own “dirty” flag independent of the other pages.

20.8 OCX Controls

As we have discussed in this chapter and Part 2, Windows and MFC have a
number of native controls. It is also possible to place custom controls, also known as

474

This book is continuously updated. See http://www.iftech.com/mfc

20
C

o
m

m
o

n
C

o
nt

ro
ls

OCX controls, into your dialogs and form views. See Appendix B.8.4 and Section
34.8 for details on using and creating OCX controls.

20.9 Conclusion

You can see from the control examples that the simple use of common controls
is extremely straightforward. You can learn about more complicated aspects of each
control either through the documentation or the CMNCTRLS example mentioned
above.

Property sheets are very useful, but you should be careful about exploiting them.
Used to excess, or used in inconsistent ways, they can become quite confusing to the
user. For another approach of arranging options in a dialog, take a look at Chapter 28
on expanding dialogs.

475

21CREATING EXPLORERS

Windows 95 has established in the minds of most users the concept of an “explorer”.
An explorer typically consists of a split window with a tree control on the left side and
a list control on the right. Figure 21.1 demonstrates a typical explorer-style applica-
tion, this one called View IT! For Web Logs from Interface Technologies (you can
download this application by visiting http://www.iftech.com/products/viewit/vie-
wit.htm).

Figure 21.1

View IT! For Web Logs

In this chapter we will explore the steps necessary to create an explorer-style in-
terface and see just how simple the basic application framework is.

21.1 Creating the basic framework

To create a basic explorer-style interface, take the following steps.

476

This book is continuously updated. See http://www.iftech.com/mfc

21
C

re
a

tin
g

 E
xp

lo
re

rs

21.1.1 Step 1 - Create the Application Framework

Use the AppWizard to create a new application framework as described in Ap-
pendix B.6.1. Name the framework “Exp.” Give it an MDI style and turn on the split
window feature as described in Appendix B.6.5. Change the base class of the view to
a tree view as described in Appendix B.6.4. Change the name of the view class to

CExpTreeView

 and change the file names as appropriate. Create the framework.

21.1.2 Step 2 - Add a List View Class

Use the ClassWizard to add a new class to the application as described in Ap-
pendix B.7.6. The class name should be

CExpListView

 and the base class should be

CListView

.

21.1.3 Step 3 - Change the Child Frame

Use the ClassWizard to override the

OnCreateClient

 virtual function in the

CChildFrame

 class of the framework (see Appendix B.7.2). Add the following code:

BOOL CChildFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/,
CCreateContext* pContext)

{
if (!m_wndSplitter.CreateStatic(this, 1, 2))
{

TRACE0(“Failed to Create Static Splitter\n”);
return FALSE;

}

if (!m_wndSplitter.CreateView(0, 0,
RUNTIME_CLASS(CExpTreeView), CSize(215, 0), pContext))

{
TRACE0(“Failed to create first pane\n”);
return FALSE;

}

if (!m_wndSplitter.CreateView(0, 1,
RUNTIME_CLASS(CExpListView), CSize(0, 0), pContext))

{
TRACE0(“Failed to create second pane\n”);
return FALSE;

}

// activate the input view
SetActiveView((CView*)m_wndSplitter.GetPane(0,0));

return TRUE;
}

Also, add the following include files to the

CChildFrame

 class:

#include “ExpDoc.h”

21.1
C

re
a

ting
 the

 b
a

sic
 fra

m
e

w
o

rk

This book is continuously updated. See http://www.iftech.com/mfc

477

#include “ExpTreeView.h”
#include “ExpListView.h”

21.1.4 Step 4 - Compile and Run

If you run the program at this point, you will find that you have an MDI appli-
cation that displays a split MDI child window.

21.1.5 Step 5 - Change the PreCreateWindow Functions

In the

CExpTreeView

 class change the

PreCreateWindow

 function to look like
this:

BOOL CExpTreeView::PreCreateWindow(CREATESTRUCT& cs)
{

cs.style |= TVS_HASLINES | TVS_LINESATROOT |
TVS_HASBUTTONS;

return CTreeView::PreCreateWindow(cs);
}

In the

CExpListView

 class override the

PreCreateWindow

 function with the
ClassWizard (see Appendix B.7.2) and modify it to look like this:

BOOL CExpListView::PreCreateWindow(CREATESTRUCT& cs)
{

cs.style |= LVS_REPORT;

return CListView::PreCreateWindow(cs);
}

These changes tell the Tree and List views to change their embedded controls to
the proper style. See Chapter 20 for details on these controls.

21.1.6 Step 6 - Initialize the Tree Control

To demonstrate the “look” of the application we will load some data into the
tree and list views. Modify the

OnInitialUpdate

 function in

CExpTreeView

 so that
it contains the following code:

void CExpTreeView::OnInitialUpdate()
{

CTreeView::OnInitialUpdate();

HTREEITEM hTreeRoot;
HTREEITEM hTreeChild;
CTreeCtrl& m_ctlTreeCtrl=GetTreeCtrl();

hTreeRoot = m_ctlTreeCtrl.InsertItem(“Root1”);
m_ctlTreeCtrl.InsertItem(“Child1 of Root1”, hTreeRoot);
hTreeChild=m_ctlTreeCtrl.InsertItem(“Child2 of Root1”,hTreeRoot);
m_ctlTreeCtrl.InsertItem(“Child1 of Child2 of Root1”,hTreeChild);
m_ctlTreeCtrl.InsertItem(“Child3 of Root1”, hTreeRoot);

478

This book is continuously updated. See http://www.iftech.com/mfc

21
C

re
a

tin
g

 E
xp

lo
re

rs

hTreeRoot = m_ctlTreeCtrl.InsertItem(“Root2”);
m_ctlTreeCtrl.InsertItem(“Child1 of Root2”, hTreeRoot);
hTreeChild=m_ctlTreeCtrl.InsertItem(“Child2 of Root2”,hTreeRoot);
m_ctlTreeCtrl.InsertItem(“Child1 of Child2 of Root2”,hTreeChild);
m_ctlTreeCtrl.InsertItem(“Child3 of Root2”, hTreeRoot);

hTreeRoot=m_ctlTreeCtrl.InsertItem(“Root3”);
m_ctlTreeCtrl.InsertItem(“Child1 of Root3”, hTreeRoot);
hTreeChild=m_ctlTreeCtrl.InsertItem(“Child2 of Root3”,hTreeRoot);
m_ctlTreeCtrl.InsertItem(“Child1 of Child2 of Root3”,hTreeChild);
m_ctlTreeCtrl.InsertItem(“Child3 of Root3”,hTreeRoot);

}

This places several entries in the tree control, as described in Chapter 20.

21.1.7 Step 7 - Compile and Run

If you now execute the application you will find that the tree control on the left
side of the window contains the tree structure that you created in Section 21.1.6. Ob-
viously you could fill the tree control with any information that you like.

21.1.8 Step 8 - Adding List Updating

We would now like to modify the application so that when the user clicks on an
entry in the tree control something gets loaded into the list control. First use the
ClassWizard to add a =TVN_SELCHANGED event handler in the

CExpTreeView

class. Add the following code to the resulting function:

void CExpTreeView::OnSelchanged(NMHDR* pNMHDR, LRESULT* pResult)
{

NM_TREEVIEW* pNMTreeView = (NM_TREEVIEW*)pNMHDR;

CExpDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
pDoc->UpdateAllViews(this, 0, NULL);

*pResult = 0;
}

This modification uses the

UpdateAllViews

 facility seen in Chapter 15 to send
a signal to the list view. Therefore, you need to use the ClassWizard to add an

OnIni-
tialUpdate

 function to the

CExpListView

 class (see Appendix B.7.2). Modify its code
as shown here:

void CMyListView::OnInitialUpdate()
{

// CListView::OnInitialUpdate();

CListCtrl& m_ctlListCtrl = GetListCtrl();
m_ctlListCtrl.InsertColumn(0, “Item”);
m_ctlListCtrl.InsertColumn(1, “Subitem 1”);
m_ctlListCtrl.InsertColumn(2, “Subitem 2”);

}

21.1
C

re
a

ting
 the

 b
a

sic
 fra

m
e

w
o

rk

This book is continuously updated. See http://www.iftech.com/mfc

479

This code is similar to code seen in Chapter 20. It creates column headings. Fi-
nally, use the ClassWizard to add an

OnUpdate

 function to the

CExpListView

 class
and modify it as shown here:

void CExpListView::OnUpdate(CView* pSender, LPARAM lHint,
CObject* pHint)

{
CListCtrl& m_ctlListCtrl = GetListCtrl();

int nItem;

nItem = m_ctlListCtrl.InsertItem(0, “Item A”);
m_ctlListCtrl.SetItemText(nItem, 1, “Subitem A1”);
m_ctlListCtrl.SetItemText(nItem, 2, “Subitem A2”);

nItem = m_ctlListCtrl.InsertItem(0, “Item B”);
m_ctlListCtrl.SetItemText(nItem, 1, “Subitem B1”);
m_ctlListCtrl.SetItemText(nItem, 2, “Subitem B2”);

nItem = m_ctlListCtrl.InsertItem(0, “Item C”);
m_ctlListCtrl.SetItemText(nItem, 1, “Subitem C1”);
m_ctlListCtrl.SetItemText(nItem, 2, “Subitem C2”);

}

This code adds data to the list each time the user selects an item in the tree. Ob-
viously you would engineer this section to add useful data into the list depending on
what is clicked in the tree.

21.1.9 Step 9 - Compile and Run

Run the program and select any item in the tree. You will find that the list up-
dates by growing slightly. Figure 21.2 shows a typical run of the application.

Figure 21.2

A typical run of the application

480

This book is continuously updated. See http://www.iftech.com/mfc

21
C

re
a

tin
g

 E
xp

lo
re

rs

21.2 Conclusion

As you can see, the creation of this explorer-style framework is extremely simple
and leverages a number of the different concepts that we have learned throughout the
rest of Part 3. It is extremely easy to modify this framework to create explorer-style ap-
plications of any type.

Part 4

A

D
V

A
N

C
ED

 F

EA
TU

RES

Using the tools described in Part 3, you can create any sort of application you can
imagine. However, there are a wide variety of additional features, both inside and out-
side of MFC, that are frequently useful when creating advanced applications. Here are
some examples:

• In Part 3 we saw several examples that demonstrate how to create standard di-
alogs that move data in and out of edit boxes using DDX. However, what if
you want an intricate dialog containing lists, check boxes, and combo boxes?

• All of the examples in Part 3 open properly, but none of them announce their
coming with a splash screen. What if you want to add splash screens to your
own applications to make them more exciting?

• Many Windows applications can “float” above other windows so they are al-
ways on top. How can you make your own applications float?

• It is common to find list boxes that contain icons along with text. The normal
File Open dialog uses this technique in its directory list. How can you add
icons to your own lists?

None of these features are essential. However, they help to mark the difference
between ordinary and extraordinary applications. Part 4 describes all these techniques,
along with many others.

483

22DIALOG DATA
EXCHANGE AND VALIDATION

Dialog Data Exchange (DDX) and Dialog Data Validation (DDV) are two very sim-
ple yet very powerful concepts. Their availability in MFC makes the insertion and ex-
traction of data from the fields of a dialog box, or any other

CWnd

 derived class such
as views, much easier. You first saw DDX and DDV in Part 3 of this book. In this
chapter you will learn about DDX and DDV in detail. The chapter first explains the
general principles and functions that drive DDX and DDV, and then works through
a detailed example that shows how to set up and use most of the DDX and DDV rou-
tines. In the end we will design our own custom routines that deal with dates.

Every dialog has some assortment of controls in it. A simple message box has a
static text control that displays information to the user along with one or more but-
tons. Most other dialogs are far more complicated, containing editable text areas,
scrolling lists, combo boxes, and so on. The purpose of each control is to let the user
manipulate data that the application uses. Once the data has been entered into the di-
alog, the application needs to check the data to make sure it meets certain criteria. For
example, it might be the case that a number entered into an edit box should be posi-
tive, or within a range of values. Another field might need to accept no more than 20
characters. Together DDX and DDV help to simplify the process of gathering the da-
ta. DDX makes it easy to extract the data from the different entry fields in the dialog.
Each control in a dialog has a corresponding member variable in the dialog’s class, and
this variable holds the field’s data once the dialog is closed. DDX handles the transfer
of data between the control and its member variable. DDV follows DDX, and handles
the validation of the data in the member variable.

If a dialog contains an edit box, and if you want to restrict the input to a maxi-
mum string length of 5 characters in that edit box, then, as demonstrated in Part 3, it
is very easy to set up and use DDX and DDV. The code below shows what is required
to load the edit box with an initial value, display the dialog, and then extract the new
value entered by the user, assuming that the variable

m_szText

 has already been es-
tablished as the DDX variable with the ClassWizard and DDV is set up to limit the
field’s length to 5 characters:

484

This book is continuously updated. See http://www.iftech.com/mfc

22
D

ia
lo

g
 D

a
ta

 E
xc

ha
ng

e
 a

nd
 V

a
lid

a
tio

n

CMyDialog dlg;
dlg.m_szText = "Hello World";
dlg.DoModal();
TRACE("String input was %s\n", dlg.m_szText);

As you can see in this code, DDX and DDV are completely invisible. When the
dialog is created, the initial text in the edit box control associated with the

m_szText

member variable will be “Hello World”. When the user closes the dialog with the OK
button, the string printed by the

TRACE

 statement will contain the value the user en-
tered in the edit box. With DDV in place, the string will have a maximum length of
five characters—if the user enters more than five characters they are notified of the
problem and given a chance to fix the error. The advantage of DDX and DDV is that
you, as the programmer, don’t have to do any work. The framework takes care of ev-
erything associated with DDX and DDV automatically.

22.1 Understanding DDX

In the previous example, the initial text in the edit box control was “Hello
World”. How did the string get into the edit box? The answer lies behind the scenes,
in the code that makes up the application framework and the classes it uses. The string
“Hello World” was copied from the

m_szText

 member variable to the edit box con-
trol in the call to

DoModal

 through an overridden virtual function. In every class that
handles DDX and DDV, this virtual function, called

DoDataExchange

, handles the
data transfer. A standard

DoDataExchange

 function looks like this:

void CMyDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CMyDialog)

 ClassWizard edits this area...

 //}}AFX_DATA_MAP
}

The ClassWizard fills the middle of the function with code to exchange and val-
idate the data in the dialog’s member variables. As a programmer using a dialog class,
you never call the

DoDataExchange

 function directly. Instead, it is called automati-
cally by

CWnd::UpdateData

. By default,

UpdateData

 is called by

CDialog::OnInitDialog

 and

CDialog::OnOK

. When

UpdateData

 is called by

On-
InitDialog

, it initializes each control with the data in its associated member variable.
When

UpdateData

 is called by

OnOK

, it reverses the process and initializes the mem-
ber variables with the data in its associated control. In this way,

 m_szText

 is used to
initialize the edit box on creation, and contains the user’s input string on closure. A
Boolean parameter passed to

UpdateData

 tells it whether to load or save data.

22.2
Exc

ha
ng

e
 Ro

utine
s

This book is continuously updated. See http://www.iftech.com/mfc

485

22.2 Exchange Routines

The ClassWizard helps manage the association between the controls and the
member variables. The table below shows some of the different DDX methods that
ClassWizard uses. A DDX method is simply a function that manages data transfer be-
tween a control and its associated member variable. The table shows the control class
the method is used with, the routines normally used with that control, and the value
that is transferred by the routine. There are two sets of DDX methods. The first set,
with the DDX_ prefix, is used for normal dialog exchange. The second set, with the
DDX_Field prefix, is used for transferring the field data members of the CRecordset
and CDaoRecordset classes. This chapter only discusses the first set, although the
recordset methods work the same way.

Table 22.1

DDX methods available for the different controls

There are multiple overloaded versions of the

DDX_Text

 routine, one for each
data type that can be transferred. Each overloaded version handles a different variable
type.

DDX_Text

 handles the conversion between the string in the edit box and the
appropriate member variable type. You could also use the

DDX_Text

 routines with
a

CStatic

 control to display a variable’s value. All of the data types are not available

Control Routine(s) What is Transferred

CEdit DDX_Text
DDX_FieldText

Values such as BOOL, BYTE, short, int,
UINT, long, DWORD, CString, float,
double, COleCurrency, COleDateTime

CListBox DDX_LBIndex
DDX_FieldLBIndex

Index of the selected item

DDX_LBString
DDX_FieldLBString

String value of the selected item

DDX_LBStringExact
DDX_FieldLBStringExact

Exact string value of the selected item

CComboBox DDX_CBIndex
DDX_FieldCBIndex

Index of the selected item

DDX_CBString
DDX_FieldCBString

String value of the selected item

DDX_CBStringExact
DDX_FieldCBStringExact

Exact string value of the selected item

CButton DDX_Check
DDX_FieldCheck

Check box state

DDX_Radio
DDX_FieldRadio

Selected radio button index

CScrollBar DDX_Scroll
DDX_FieldScroll

Scroll bar position

CWnd DDX_Control Associates a CWnd object with a control

486

This book is continuously updated. See http://www.iftech.com/mfc

22
D

ia
lo

g
 D

a
ta

 E
xc

ha
ng

e
 a

nd
 V

a
lid

a
tio

n

for every DDX routine. For example, the

DDX_FieldText

 routine is only overloaded
to transfer a

COleCurrency

 between a

CDaoRecordset

 and not a

CRecordset

.

DDX_LBIndex

 and

DDX_CBIndex

 use the index of the selected item as the
data, while

DDX_LBString

 and

DDX_CBString

 transfer the string value of the se-
lected item between the member variable and control.

DDX_LBStringExact

 and

DDX_CBStringExact

 are the same as the DDX_String routines, except they use the
exact string for item selection as opposed to the string prefix. For example, using a
DDX_String routine with the string

help

will match both

helps

and

helping

whereas
with DDX_StringExact it only matches

help

.
The

DDX_Check

 routine exchanges the value of check buttons (on/off), and

DDX_Radio

 exchanges the index of the currently selected button in a group. The

DDX_Scroll

 routine exchanges data with the current scroll bar position. The last ex-
change routine is

DDX_Control

. It associates a dialog control with a

CWnd

 object.
See Chapter 23 for a description on how DDX_Control performs this association.

22.3 Transfer Direction

How does the DDX routine know which way to transfer the data? It needs to
know whether to get the values from the dialog or set the values into the dialog. This
is accomplished with the BOOL parameter to

UpdateData

 called

bSaveAndVali-
date

. If

UpdateData(FALSE)

 is called, the controls are initialized with the member
variables’ data. This is the case for

OnInitDialog

. If

UpdateData(TRUE)

 is called,
the member variables are initialized with the control contents. This is the case for

On-
OK

. Notice that the

bSaveAndValidate

 parameter is not passed to each individual
DDX routine. The DDX and DDV routines communicate through a

CDataEx-
change

 object, the

pDX

 parameter to the routines. Using this

CDataExchange

object, each routine can determine what

bSaveAndValidate

 is. Then based on its val-
ue, it might do something as simple as the following:

if (pDX->m_bSaveAndValidate)
{
 member variable = dialog control value
}
else
{
 set control value to member variable
}

The

CDataExchange

 object also contains the handle of the control the DDX
and DDV routines affect, along with some member functions that can be used when
creating custom routines.

22.4 Understanding DDV

Dialog Data Validation is very similar to Dialog Data Exchange. The DDV rou-
tines check the data in a dialog’s member variables to make sure the data meets certain
criteria. Shown below are some validation routines. The MinMax routines constrain

22.5
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

487

a value between a minimum and maximum value. Each data type has a different rou-
tine because function overloading in this case is not desirable.

DDV_MinMaxByte
DDV_MinMaxInt
DDV_MinMaxLong
DDV_MinMaxUInt
DDV_MinMaxDWord
DDV_MinMaxFloat
DDV_MinMaxDouble

Another validation routine used with strings allows you to restrict the length of the
string.

DDV_MaxChars

Each of these validation routines perform something similar to the following:

if (pDX->m_bSaveAndValidate && member variable out of range)
{
 notify the user with a message box
 reset the focus to the offending control
 AfxThrowUserException()
}

DDV routines are only activated when you are getting data from controls, when

m_bSaveAndValidate

 is TRUE. If the data is out of range, first a message box is dis-
played that describes the problem to the user. After the dialog is dismissed, the focus
is automatically set to the control in question so the user can easily change it. This is
the reason that the DDV routine is called immediately after the DDX routine for each
control. The

CDataExchange

 object keeps track of the last control that was used for
an exchange. It assumes that the last control DDX used is the control with the invalid
data. Last, DDV throws a user exception with

AfxThrowUserException

. By han-
dling this exception,

UpdateData

 can determine if any DDV routines failed during
the call to

DoDataExchange

. No other exchange or validation routines are called af-
ter an exception is thrown from a DDV routine. This is the reason that member
variables are guaranteed to be valid only after

DoModal

 returns from

OnOK

. If

Do-
Modal

 returns from

OnCancel

 the member variables could contain invalid data
because only half of the DDX routines may have been called.

22.5 An Example

It is easier to understand the mechanisms of DDX and DDV for each of the dif-
ferent field types if you are looking at an actual example. In this section we will create
a dialog to demonstrate some of the DDX and DDV routines, using the framework
techniques discussed in Part 3.

Create a project and add the following controls to a dialog so it looks like the
figure below. The dialog contains eight edit boxes, five radio buttons, five check boxes,

488

This book is continuously updated. See http://www.iftech.com/mfc

22
D

ia
lo

g
 D

a
ta

 E
xc

ha
ng

e
 a

nd
 V

a
lid

a
tio

n

three list boxes, three combo boxes, and a scroll bar. The scroll bar in this example will
not be functional because we have not provided a handler for it.

Figure 22.1

Demonstration dialog that contains every control type

To demonstrate the difference between the String and StringExact functions, it
is necessary to turn off the Sort flag for all the list boxes and combo boxes. Also make
sure the tab order is set correctly. The tab order is vital to the creation of a radio button
group. The necessary tab order is shown below.

Figure 22.2

The required tab order

22.5
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

489

Notice that all the buttons in the radio button group have sequential numbers.
Select the first radio button in the group (control 17), and set its Group and Tabstyle
style flags. Make sure the Group flag is cleared for the other radio buttons (controls
18–21). Then set the Group flag for the control after the last radio button control
(control 22). All the radio buttons between the first radio button and the next control
in the tab order with the Group flag set will be a single group.

Now that we have created our dialog, we need to associate each control with a
member variable. These are the variables that will be used for the data exchange and
validation. Use the ClassWizard to create a dialog class (e.g.

CMyDialog

) and estab-
lish DDX and DDV connections with each of the modifiable controls in the dialog
box. Add a Value member variable for each edit box control as shown below:

Table 22.2

Notice that with each integral type (

BYTE

,

int

, and so on) we can specify range
validation. We can specify a maximum and minimum value for each variable. Note
also that each integral type inherently has its own boundaries. For example, a

BYTE

must be between 0 and 255, a

UINT

 cannot be negative, and so on. With edit boxes
that use a string type, the variable has length validation. Assign some boundaries to
the edit variables so you can test them.

The next control is the radio button group. The only object ID in the ClassWiz-
ard list is for the first radio button in the group. This occurs because the variable we
assign will be an integer value (0-based) that contains the index of the selected radio
button. For example, if the first button in our group is selected, the value will be 0. If
the last button is selected the value will be 4. Because only one button can be selected
at a time, all we need is one variable per group. Add a value member variable named

m_nRadio

 for this control.
Next, select one of the check boxes in the Control IDs list. Because this is a sim-

ple check box, there are only two values it can have: TRUE or FALSE. For this reason,
the variable that is associated with each check box is of type

BOOL

. If the check box
was tri-state, the variable would be of type int. Create a member variable for each
check box control named

m_bCheck1

,

m_bCheck2

, to

 m_bCheck5

.
Next, add a

CString

 value member variable named

m_combo1

,

m_combo2

,
and

m_combo3

 for the combo boxes. The only value we can assign to a combo box
with the ClassWizard is of type

CString

. By default this will use the

DDX_CBString

routine. We will change this later to include the other two combo box exchange rou-
tines. Notice that with the combo box

CString

 type we can have length validation.

Variable Name Type Variable Name Type

m_edit1 BYTE m_edit5 DWORD

m_edit2 int m_edit6 CString

m_edit3 UINT m_edit7 float

m_edit4 long m_edit8 double

490

This book is continuously updated. See http://www.iftech.com/mfc

22
D

ia
lo

g
 D

a
ta

 E
xc

ha
ng

e
 a

nd
 V

a
lid

a
tio

n

After the variable is added we can then set the “Maximum Characters” allowed in the
string.

Now add a value member variables for each list box. The first list box,

m_list1

will have the type

int

. The other two,

m_list2

 and

m_list3

 will have the type

CString

.
Because the user cannot change the strings in a list box, we don’t have the option of
string length validation as we did with the combo boxes. Next, add an

int

 value mem-
ber variable with the name

m_nScrollPos

 for the scroll bar. If you now take a look at
the

DoDataExchange

 function for the dialog, you will notice that the ClassWizard
has made quite a few changes.

The ClassWizard allowed us to add only one type of exchange for the list boxes
and combo boxes. We must manually change two of the routines so we can demon-
strate their use. Take a look at the member variable definitions in the dialog class
definition. There are three variables for combo boxes. Change the first member vari-
able to be of the type

int

.

int m_combo1;

CString m_combo2;
CString m_combo3;

Next we must change the exchange routines used for these controls. Look at the
dialog’s

DoDataExchange

 function. The exchange routine for the first list and com-
bo box controls should be of the type

DDX_LBIndex

 and

DDX_CBIndex

. The
exchange routine for the second list and combo box controls should be

DDX_LBString

 and

DDX_CBString

. The exchange routine for the third list and
combo box controls should be

DDX_LBStringExact

 and

DDX_CBStringExact

.

DDX_CBIndex(pDX, IDC_COMBO1, m_combo1);

DDX_CBString(pDX, IDC_COMBO2, m_combo2);

DDX_CBStringExact(pDX, IDC_COMBO3, m_combo3);

DDX_LBIndex(pDX, IDC_LIST1, m_list1);
DDX_LBString(pDX, IDC_LIST2, m_list2);

DDX_LBStringExact(pDX, IDC_LIST3, m_list3);

In the class constructor, where the variables are initialized, make sure each vari-
able has an initial value that is valid. If the initial values for the dialog cannot be
validated with the appropriate DDV function (if one is assigned), MFC will output
warning messages notifying you. Initial values that you could use for this example are
shown below.

m_edit1 = 1;
m_edit2 = 1;
m_edit3 = 1;
m_edit4 = 1;
m_edit5 = 1;
m_edit6 = _T("");
m_edit7 = 1.0f;
m_edit8 = 1.0;
m_nRadio = -1;

22.5
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

491

m_bCheck1 = FALSE;
m_bCheck2 = FALSE;
m_bCheck3 = FALSE;
m_bCheck4 = FALSE;
m_bCheck5 = FALSE;
m_combo1 = 2;
m_combo2 = _T("help");
m_combo3 = _T("help");
m_list1 = 2;
m_list2 = _T("help");
m_list3 = _T("help");
m_nScrollPos = 0;

Initially there are no radio buttons or check buttons selected. The code above
selects the third (0-based) element in the list and combo boxes. The other strings
(“help”) for the list and combo boxes will be explained shortly.

The last thing we must do before we run the application is initialize the list and
combo boxes with some strings. The place to do this is in the dialog’s

OnInitDialog

message handler.

BOOL CMyDialog::OnInitDialog()
{

 int i;

 /* Initialize the list boxes. */
 int nListID[] = {IDC_LIST1, IDC_LIST2, IDC_LIST3};
 for(i=0; i < 3; i++)
 {
 CListBox *pListBox =
 (CListBox *)GetDlgItem(nListID[i]);
 ASSERT(pListBox != NULL);

 pListBox->AddString("helping");
 pListBox->AddString("help");
 pListBox->AddString("helpful");
 pListBox->AddString("helper");
 }

 /* Initialize the combo boxes. */
 int nComboID[] = {IDC_COMBO1, IDC_COMBO2, IDC_COMBO3};
 for(i=0; i < 3; i++)
 {
 CComboBox *pComboBox =
 (CComboBox *)GetDlgItem(nComboID[i]);
 ASSERT(pComboBox != NULL);

 pComboBox->AddString("helping");
 pComboBox->AddString("help");
 pComboBox->AddString("helpful");
 pComboBox->AddString("helper");
 }

 CDialog::OnInitDialog();

492

This book is continuously updated. See http://www.iftech.com/mfc

22
D

ia
lo

g
 D

a
ta

 E
xc

ha
ng

e
 a

nd
 V

a
lid

a
tio

n

 return TRUE;
}

Make sure

CDialog::OnInitDialog

 is called last. If it is called before the list and
combo boxes are initialized, MFC will warn you that no items can be selected because
the lists are empty. If you wanted to use control member variables instead of using

GetDlgItem

, you would need to call

OnInitDialog

 first, then call

UpdateDa-
ta(FALSE)

 after filling the controls.

OnInitDialog

 would perform the control
associations and then the

UpdateData

 would select the items in the controls.
Now if you compile and run the application, all the exchanges and validations

should work. It might be helpful to print out some of the member variables after

Do-
Modal

 returns using

TRACE

 statements. This allows you to monitor the results of
each exchange.

void CMyApp::OnDialog()
{
 CMyDialog dlg;

 // Set initial values here...

 dlg.DoModal();

 // Use new values here...

 TRACE("m_nRadio = %d\n", dlg.m_nRadio);

 TRACE("m_nScrollPos = %d\n", dlg.m_nScrollPos);

 TRACE("m_bCheck1=%d, 2=%d, 3=%d, 4=%d, 5=%d\n",
 dlg.m_bCheck1, dlg.m_bCheck2, dlg.m_bCheck3,
 dlg.m_bCheck4,dlg.m_bCheck5);

 TRACE("m_combo1=%d, m_combo2=%s, m_combo3=%s\n",
 dlg.m_combo1, (LPCTSTR)dlg.m_combo2,
 (LPCTSTR)dlg.m_combo3);

 TRACE("m_list1=%d, m_list2=%s, m_list3=%s\n",
 dlg.m_list1, (LPCTSTR)dlg.m_list2,
 (LPCTSTR)dlg.m_list3);

 TRACE("m_edit1=%d, m_edit=%d, m_edit3=%d, m_edit4=%d\n",
 dlg.m_edit1, dlg.m_edit2, dlg.m_edit3, dlg.m_edit4);
 TRACE("m_edit5 = %ld, m_edit6 = '%s', m_edit7 = %f\n",
 dlg.m_edit5,(LPCTSTR)dlg.m_edit6,dlg.m_edit7);
 TRACE("m_edit8 = %lf\n\n", dlg.m_edit8);

}

If you want to modify the initial contents of the dialog, it would be done before

DoModal

 is called. The values in the member variables at the time

DoModal

 is called
are the values used for the exchange. In the list and combo boxes, the order in which
we added the strings allows us to show the difference between the DDX_String and
DDX_StringExact routines. When the string is

help

 and the function is DDX_String,

22.6
C

usto
m

 Ro
utine

s

This book is continuously updated. See http://www.iftech.com/mfc

493

the first item in the list that begins with

help

 will be selected. Therefore, in the second
combo and list box, the first item

helping

 is selected. When the string is

help

 and the
function is DDX_StringExact, the first item in the list that matches the entire string
(case insensitive) is selected. Therefore, in the third combo and list box, the first item

helping

 is skipped and the second item

help

 is selected. The

DDX_Index

 routines for
the combo and list boxes always selects based on an index value.

22.6 Custom Routines

What if you have a custom or not supported data type? If the routines provided
by the framework don’t suit your needs, you may want to create another set of ex-
change and validation routines. In this section we will demonstrate how to create
simple DDX and DDV routines that will work with dates. We will use the standard
time structure

struct tm

 as the data type. The exchange routine is shown below.

void DDX_Time(CDataExchange* pDX, int nIDC, struct tm& tm)
{
 char sz[32];
 HWND hWndCtrl = pDX->PrepareEditCtrl(nIDC);

 if (pDX->m_bSaveAndValidate)
 {
 ::GetWindowText(hWndCtrl, sz, sizeof(sz));
 sscanf(sz, "%d-%d-%d",
 &(tm.tm_mon),
 &(tm.tm_mday),
 &(tm.tm_year));
 // Adjust values
 tm.tm_mon -= 1;
 tm.tm_year -= 1900;
 }
 else
 {
 sprintf(sz, "%d-%d-%d",
 tm.tm_mon + 1,
 tm.tm_mday,
 tm.tm_year + 1900);
 ::SetWindowText(hWndCtrl, sz);
 }
}

The exchange routine begins by calling the

CDataExchange

 member function

PrepareEditCtrl

. Another member function

PrepareCtrl

 would have been used if
the control specified by

nIDC

 was not an edit control. The purpose of these functions
is to get the HWND of the specified control. This value is stored in the

CDataEx-
change

 object so that it can be used by the DDV routine. The only difference between
the

PrepareEditCtrl

 and

PrepareCtrl

 routine is the way the focus change is handled
when validation fails. When a control prepared with

PrepareEditCtrl

 fails validation,
not only does it receive the focus, but all the text in the control is selected. The next
step in the code depends on whether we are exchanging data to the control or from

494

This book is continuously updated. See http://www.iftech.com/mfc

22
D

ia
lo

g
 D

a
ta

 E
xc

ha
ng

e
 a

nd
 V

a
lid

a
tio

n

the control. If we are getting data from the control we must retrieve the text from the
edit control and convert the string into values we can store in the tm structure. If we
are setting the text in the control we create a string from the values in the tm structure
and set the edit control text. The validation function makes sure the values in the

tm

structure have the valid ranges of a

CTime

 object.

Day: 1 thru 31
Month: 0 thru 11, where January is 0
Year: 1970 to 2038, with a base of 1900

You may want to add far more stringent checks, but these comparisons are used
here to demonstrate the process.

void DDV_Time(CDataExchange* pDX, struct tm& tm)
{
 if (pDX->m_bSaveAndValidate &&
 !(tm.tm_year >= 70 && tm.tm_year <= 138) ||
 !(tm.tm_mon >= 0 && tm.tm_mon <= 11) ||
 !(tm.tm_mday >= 1 && tm.tm_mday <= 31))
 {
 CString str;
 str.Format("The date %d-%d-%d is invalid.",
 tm.tm_mon + 1,
 tm.tm_mday,
 tm.tm_year + 1900);
 AfxMessageBox(str, MB_ICONEXCLAMATION);
 pDX->Fail();
 }
}

This check only occurs if we are getting values from the edit control. If any of
the values are invalid the user is notified and we call another

CDataExchange

 member
function named

Fail

. The

Fail

 routine takes care of the focus change and throws an
exception. If you want to extend the DDX and DDV capabilities of the Microsoft De-
veloper Studio take a look at Technical Note 26 on DDX and DDV Routines for a
description of how to add ClassWizard support for your new routines.

22.7 Conclusion

Using dialog data exchange and validation can accelerate your application devel-
opment process. Just by overriding

DoDataExchange

 you can save quite a bit of
programming effort when requesting input of any type from the user. This is just an-
other example of the way MFC helps simplify tasks for the programmer.

495

23UNDERSTANDING MFC

Do you know the answers to the following questions:

1. Have you ever gotten an assertion because you called a

CWnd

 member func-
tion and

m_hWnd

 was NULL? Do you know why?
2. Do you know why you can’t use device contexts in a view’s constructor?

3. Do you know why you can’t add strings to a list box control in a dialog box
until the dialog’s

WM_INITDIALOG

 message?

4. Do you know what window handles are and how messages work?

5. Have you been programming Windows using the C API and are trying to fig-
ure out how the MFC framework integrates with it?

In this chapter we will answer these questions and explore briefly how MFC
works with the underlying C level API for Windows. This chapter is by no means a
complete explanation—that would require another book. Instead, the purpose here is
to give you some insight into how MFC does its job. Having this knowledge gives you
better insight into how your application works. This is useful both when trying to
debug and when it is necessary to go outside of the MFC boundaries.

23.1 What Are Window Handles?

Frames, views, dialogs, edit controls, buttons, list boxes, and so on are all win-
dows. Every window in Windows has a unique handle associated with it. This
handle, of type

HWND

, must be used whenever the window is referenced. Every op-
eration on a window, such as setting the window text or sending the window a
message, requires a handle to that window.

In an MFC application you rarely need to deal with window handles. You can
create

CFrameWnd

 and

CDialog

 objects and never see an

HWND

. Does this mean
that window handles are not used in MFC? No. MFC is simply hiding them from us
and managing all of the details transparently. Almost everything MFC does to a win-
dow is eventually translated into the same C API call that would be made in a normal

496

This book is continuously updated. See http://www.iftech.com/mfc

23
U

nd
e

rs
ta

nd
in

g
 M

FC

C application. For example, if you take a look at AFXWIN1.INL and
AFXWIN2.INL you will see how that translation occurs.

To get an idea of the type of activity that occurs behind the scenes in MFC, let’s
look at an example. To get the state of a button with the C API, you would normally
send the button a

BBM_GETSTATE

 message by making the following call:

LRESULT lState = SendMessage(hButton, BM_GETSTATE, 0, 0);

With MFC you instead call the

CButton

 member function

GetState

:

UINT nState = ctlButton.GetState();

Here’s how

CButton::GetState

 is defined:

_AFXWIN_INLINE UINT CButton::GetState() const
{
 ASSERT(::IsWindow(m_hWnd));
 return (UINT)::SendMessage(m_hWnd, BM_GETSTATE, 0, 0);
}

Look familiar? MFC uses the

CWnd

 member variable

m_hWnd

 as the window
handle to make the same API call. The

CWnd::Create

 and

CWnd::CreateEx

 mem-
ber functions create a window with the API

CreateWindowEx

 function. The
returned

HWND

 is stored in the

CWnd

 member variable

m_hWnd

 so MFC knows
the window the

CWnd

 object refers to. For instance, the

CEdit

 object is a C++ class
wrapping the windows EDIT control, so when you create a

CEdit

 object something
similar to the following occurs:

BOOL CEdit::Create(...)
{
 m_hWnd = ::CreateWindowEx(..., "EDIT", ...);
}

Keep in mind that every control you create in MFC is an instance of some class,
like

CButton

 or

CEdit

. Each instance of the class keeps track of its own

HWND

 us-
ing the

m_hWnd

 member variable. What this allows you to do, if you so choose, is
to manipulate every MFC control by sending messages to it in the standard C style.
Each member function is doing exactly that. The member functions simply give you
a cleaner, easier way to send messages to a control via its window handle. You can use
the

CWnd

’s

GetSafeHwnd

 function to access the

m_hWnd

 of a

CWnd

 object.
Take a look at the first line in the

CButton::GetState

 function above. It makes
sure that

m_hWnd

 is a valid window (i.e. it has been created and it is not NULL) us-
ing

IsWindow

. This is the answer to the first question. When you get this assertion,
you are trying to send messages to a window that has not been created or one that has
been destroyed. To understand how you can still have an object, such as a

CView

 or

CDialog

, but why you can’t use certain member functions, you must understand the
creation and destruction of windows and objects.

23.2
The

 Life
 o

f W
ind

o
w

s a
nd

 O
b

je
c

ts

This book is continuously updated. See http://www.iftech.com/mfc

497

23.2 The Life of Windows and Objects

To help illustrate the difference between object creation and window creation
we will use an example. Say you have a frame window,

CMyFrame

, that is derived
from

CFrameWnd

, and that this frame window has a single

CStatic

 member variable
named

m_static

. The following three lines of code create the frame window and its
static control.

CMyFrame frame;

frame.Create(NULL, “My Frame”, WS_OVERLAPPEDWINDOW,

 CRect(0,0,100,100));

frame.m_static.Create(“Some Text Here”,

 WS_CHILD|WS_VISIBLE|SS_CENTER,

 CRect(10,10,50,50), this);

The first line instantiates a

CMyFrame

 object. This creates the frame object,
calling its constructor, and it creates all of the frame objects’ member variables, in this
case

m_static

, and their constructors are called. At this point in time, we have two

CWnd

 objects,

frame

 and

m_static

. However, the window handles (

m_hWnd

) for
both of these objects are NULL. What if you wanted to set the static’s text in the
frame’s constructor:

CMyFrame::CMyFrame()

{

 m_static.SetWindowText(“Some Other Text”);

}

This won’t work, you will get an assertion in

SetWindowText

. Why? Because
we have an object (

m_static

) that does not have a window yet. The window for the
object is not created until you call the object’s

Create

 function.
The second line calls the frame object’s

Create

 function. This is where the frame
window is created. Now the frame’s

m_hWnd

 is valid. The static window still does
not exist. The third line calls the static’s

Create

 function. Now the frame’s static win-
dow has been created, the static’s

m_hWnd

 is valid, and we can call

SetWindowText

for the static control. You can move the static’s

Create

 call to the frame’s constructor,
this would be a more object-oriented approach. Just make sure you don’t call any win-
dow oriented member functions on an object until the object has been

Create

’d.
What if you need to create or manage windows or window objects when the

CWnd

 object is created? If you can’t use the constructor, how do you do this? For
example, say you have a view that you draw in and you need to initialize a variable to
the height of the current font. You cannot do this in the view’s constructor:

CMyView::CMyView()

{

 CClientDC dc(this);

 CSize size = dc.GetTextExtent(“XXX”, 3);

}

498

This book is continuously updated. See http://www.iftech.com/mfc

23
U

nd
e

rs
ta

nd
in

g
 M

FC

The reason is that the view window has not been created yet, and a device con-
text is related to a particular window. We have to wait until the view’s window is
created. If we had called the view’s

Create

 function, we could do this after

Create

 was
called. For views however, the

Create

 for the view is done by the framework when
the frame is created. The solution to this is that when a window is created, but before
it becomes visible, it receives a

WM_CREATE

 message. In this message handler the
window has been created and

 m_hWnd

 is valid. So, we can move the above code into
the view’s

WM_CREATE

 message handler:

int CMyView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if(CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 CClientDC dc(this);
 CSize size = dc.GetTextExtent(“XXX”, 3);

 return 0;
}

You can use the return value of

OnCreate

 to keep the window from being cre-
ated, in which case the

Create

 function will return NULL.
The opposite of the

WM_CREATE

 message is the

WM_DESTROY

 message.
This message is sent to the window after the window is removed from the screen, but
before any of its children are destroyed. Therefore, any cleanup code you have that
requires the use of windows can be done in

OnDestroy

.
In short, the constructor and destructor for a

CWnd

 object should initialize and
destroy any member variables that do not deal with windows, tasks such as initializing
pointers to NULL. Tasks that involve windows, such as initializing controls, should
be done in

OnCreate

 and

OnDestroy

.

23.3 Initializing Dialogs

Dialogs are a bit different. As an example, say you have a dialog with a list box
control in it and you want to initialize the list before the dialog is displayed. The fol-
lowing will not work:

CMyDialog dlg;
dlg.m_list.AddString(“1”);
dlg.m_list.AddString(“2”);
dlg.DoModal();

Again, this is because when the

CMyDialog

 object is created, it does not have a
window, or any children windows. You may also be tempted to do the following:

int CMyDialog::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CDialog::OnCreate(lpCreateStruct) == -1)
 return -1;

23.4
Fro

m
 H

W
N

D
 to

 C
W

nd

This book is continuously updated. See http://www.iftech.com/mfc

499

 m_list.AddString(“1”);
 m_list.AddString(“2”);

 return 0;
}

This will not work either. The reason is because for dialogs, the dialog controls
are not created by the time

OnCreate

 is called. For dialogs, its controls do not exist
until it receives the

WM_INITDIALOG

 message. The solution to this problem is to
initialize the list in

OnInitDialog

:

BOOL CMyDialog::OnInitDialog()
{
 CDialog::OnInitDialog();

 m_list.AddString(“1”);
 m_list.AddString(“2”);

 return TRUE;
}

Notice that

AddString

 is called after the base class

OnInitDialog

. This is be-
cause

m_list

 is a Control member variable of the type

CListBox

. This variable is not
associated with the dialog’s list box window until

CDialog::OnInitDialog

 is called.
If you are using DDX to select items in the list box you will have to add a call to

Up-
dateData

 after calling

AddString

:

BOOL CMyDialog::OnInitDialog()
{
 CDialog::OnInitDialog();

 m_list.AddString(“1”);
 m_list.AddString(“2”);

 UpdateData(FALSE);

 return TRUE;
}

When

 CDialog::OnInitDialog

 calls

UpdateData

, the list box does not contain
any items so there is nothing that can be selected. When we call

UpdateData

 the list
contains items that can be selected. You could also call

AddString

 before

OnInitDi-
alog

 if you did not use Control member variables (i.e. by using

GetDlgItem

 as shown
in Chapter 22). In this case we would not need to call

UpdateData

.
For dialogs, you can still perform any dialog cleanup in

OnDestroy

.

23.4 From HWND to CWnd

The

CWnd

 functions

Create

 and

CreateEx

 create a Windows window and as-
sociate the window with the

CWnd

 object. But what if the window has already been

500

This book is continuously updated. See http://www.iftech.com/mfc

23
U

nd
e

rs
ta

nd
in

g
 M

FC

created and we want to associate the window with a

CWnd

 object? How do you con-
vert an

HWND

 into a

CWnd

 object? This is the case for dialogs. Because dialogs are
created from resource files, the controls (windows) on the dialog are not

CWnd

 ob-
jects but Windows windows. Most of the time you want to manipulate the controls
in a dialog using the functions offered by

CWnd

. There are two

CWnd

 functions that
solve this problem:

Attach

 and

Detach

. (For dialogs you can also use the DDX rou-
tine

DDX_Control

 to perform this association. This routine also subclasses the
control and is discussed below). These two functions create and destroy a permanent
association between an

HWND

 and a new

CWnd

 object. After a window has been
attached to a

CWnd

 object, the window can be referenced through the standard

CWnd

 member functions. For example, if we had the handle to a button on a dialog
and wanted to change the button text to “Hello” and disable it, we could do the fol-
lowing using the C API:

EnableWindow(hButtonWnd, FALSE);

SetWindowText(hButtonWnd, "Hello");

(The easiest way to obtain the window handle for a control is to use the C API

GetDlgItem

 function. This function accepts the handle for a dialog, along with a con-
trol ID, and returns the HWND for the control.) To use the

CWnd

 member
functions to perform the same task, you could use

Attach

 to associate a permanent

CWnd

 object with the control:

CButton button;

button.Attach(hButtonWnd);

button.EnableWindow(FALSE);

button.SetWindowText("Hello");

button.Detach();

Make sure to call

Detach

 before the

CWnd

 object is destroyed. Otherwise the
associated window (the dialog button in this case) will be destroyed when the

CWnd

object is destroyed. You could also use one of the following methods to associate a
temporary

CWnd

 object with the button control:

CWnd* pWnd = CWnd::FromHandle(hButtonWnd);

pWnd->EnableWindow(FALSE);

pWnd->SetWindowText(“Hello”);

- or -

CWnd* pWnd = GetDlgItem(IDC_BUTTON);

pWnd->EnableWindow(FALSE);

pWnd->SetWindowText(“Hello”);

None of these methods allow the

CWnd

 object to handle any of the window’s
messages. For this you need to subclass the window. This process is described below.

23.5
Pe

rm
a

ne
nt a

nd
 Te

m
p

o
ra

ry A
sso

c
ia

tio
ns

This book is continuously updated. See http://www.iftech.com/mfc

501

23.5 Permanent and Temporary Associations

The purpose of the

FromHandle

 member function in classes such as

CWnd

 and

CGdiObject

 is to return a valid MFC object from any given Windows handle. If the
specified handle already has an associated object,

FromHandle

 will return that object.
Otherwise it will create a temporary object and associate it with the handle. In the ex-
ample above, if

hButtonWnd

 was the handle of an existing

CButton

 object,

FromHandle

 would return a pointer to that object.
The difference between a permanent and temporary association is that when a

temporary object is created, the object is stored in a temporary map. This map allows
MFC to keep track of temporary objects so they can be cleaned up after they are used.
Cleanup of this temporary map occurs in

DeleteTempMap

 when the application be-
comes idle. Managing associations in this fashion allows you to create these
associations during function calls without taking up a lot of resources. Because tem-
porary associations are temporary, any objects obtained from

FromHandle

 (or

GetDlgItem

) should not be cached or used between function calls.

23.6 Handles to Other Objects

Window handles aren’t the only handles used in Windows. There are also han-
dles to device contexts, menus, and the GDI objects: pens, brushes, fonts, bitmaps,
palettes, and regions. The MFC classes for these objects, such as

CDC

,

CMenu

,

CPen

, and so on, work with handles in much the same way that the window class
does.

If you look at the MFC hierarchy chart, you will find that all GDI objects share
the same superclass:

CGdiObject

. The

CGdiObject

 class has the member functions

GetSafeHandle

,

Attach

, and

Detach

 that work in the same manner as the equivalent

CWnd

 functions. Whenever you use one of these objects, the framework handles all
the details for you so you can completely ignore the

HANDLE

 types in your own
code.

23.7 How Messages Work

When an event occurs in Windows, such as a window being created or the
mouse moves, the system notifies the appropriate window through messages. For ex-
ample, as the cursor moves across the screen, the window the cursor is in receives

WM_MOUSEMOVE

 messages. When a window needs to paint itself it receives a

WM_PAINT

 message. This leads to two questions: How does a window process
events, and where do

CWnd

 objects fit into the picture?
Every window in Windows has a function called a window procedure associated

with it. When a message needs to be sent to a window, Windows finds what window
procedure is associated with that window and calls it. This window procedure usually
has a form similar to the following:

502

This book is continuously updated. See http://www.iftech.com/mfc

23
U

nd
e

rs
ta

nd
in

g
 M

FC

LRESULT WindowProc(hWnd, message, wParam, lParam)
{
 switch (message)
 {
 case WM_MOUSEMOVE:
 Do Something
 break;
 case WM_PAINT:
 Paint Something
 break;
 default:
 return DefWindowProc(...);
 }
}

The switch statement allows the window to perform different actions based on
the message. For example, when the mouse moves the application might draw a line.
If the window does not want to process a message, it can send the message along to a
default window procedure that will perform the default action for it. Only windows
can handle messages.

If only windows can handle message, where do

CWnd

 objects fit in? Your

CWnd

 objects use message maps to handle messages, not window procedures. Does
that mean MFC doesn’t use window procedures? Again, no. MFC simply hides them
from us. In fact, the message map is the window procedure. Entries in the message
map are used to route messages to pre-defined message handling functions. The mes-
sage map, at the simplest level, simply automates the act of creating the switch
statement.

When

 WM_MOUSEMOVE

 messages are being sent to your frame window,
how do they get to your

CMyFrame

 message handlers? Here are the steps MFC must
take to get a message to a

CWnd

 object’s message handler:

1. Determine what

CWnd

 object the message is destined for.
2. Determine what member function is associated with the message.
3. Call the member function.

To make message maps possible, two things happen to every

CWnd

 object you
create in your application. First, the

CWnd

 object is associated with the window cre-
ated through

Attach

. We already know

Attach

 saves the window’s

HWND

 in

m_hWnd

, but it also performs another important operation: Attach adds the

CWnd

object to a permanent table that maps window handles (

HWND

) to

CWnd

 objects.
Second, the window procedure for the

CWnd

’s window is set to the function

Afx-
WndProc

. All windows in an MFC application have the same window procedure.
When a message is sent to any window that was created by MFC, it is sent to the

window’s window procedure,

AfxWndProc

.

AfxWndProc

 can then use the

HWND

of the destination window to look up its associated

CWnd

 object. This is done by

CWnd::FromHandlePermanent

. This function uses the permanent window map to
match an

HWND

 with a

CWnd

 object. Once it has the

CWnd

 object, it can look
up the message in the object’s message map to find the member function to call. If

23.8
Sub

c
la

ssing

This book is continuously updated. See http://www.iftech.com/mfc

503

there is no entry for the message in the message map, the message is sent to a default
message handler.

23.8 Subclassing

The act of replacing one window procedure with another is called subclassing.
This is not subclassing in the C++ sense, but subclassing in the Windows sense. For
example, when MFC replaces the window procedure for every window created by a

CWnd

 object with

AfxWndProc

, MFC is actually subclassing each window. This
process lets

AfxWndProc

 get the messages destined for the window before its original
window procedure does.

You, as an MFC programmer, can subclass windows as well. You would do this
because subclassing can save a great deal of time and effort when you are trying to add
functionality to an existing MFC class. Take the edit control for example. If you need
an edit control that accepts only numbers, it is much more productive to use the ca-
pabilities of the standard edit control than it is to design your own from scratch. To
create the new behavior, all we need to do is monitor the keys pressed and make sure
all of them are numbers. The rest of the functionality, like painting and control ma-
nipulation, can be left to the standard control. This technique is demonstrated in the
next chapter.

Earlier we mentioned that

Attach

 doesn’t allow the

CWnd

 object to process the
messages destined for the attached window. The reason now should be obvious.

At-
tach

 does not change a window’s window procedure. The window procedure for the
attached window is not

AfxWndProc

. Because of this, messages have no way of being
mapped to

CWnd

 member functions. To route the messages for the attached window
through the

CWnd

’s message map, we must subclass the attached window. There are
two functions that do just that. The

CWnd::SubclassWindow

 function takes an

HWND

 as a parameter and does two things to the window:

1. Performs an Attach to associate the CWnd with the window.
2. Replaces the window’s window procedure with AfxWndProc.

The companion function

CWnd::SubclassDlgItem

 does the same thing, except
it takes a dialog control ID as a parameter. Therefore, if we created a new class

CMy-
Edit

, and if we wanted to route messages from an edit control through the

CMyEdit

message map, we could do the following:

CMyEdit edit;

edit.SubclassWindow(hEditWnd);

Then any messages in the

CMyEdit

 message map would be rerouted until the

CMyEdit

 object was destroyed or until

UnsubclassWindow

 is called.
What you may be noticing is that this is exactly what is happening when you

create a Control member variable for a dialog control in the ClassWizard. A Control
variable is a variable that lets you access all the member functions and handle the mes-
sages for a specific type of control in a dialog box. When you create a Control member

504

This book is continuously updated. See http://www.iftech.com/mfc

23
U

nd
e

rs
ta

nd
in

g
 M

FC

variable, the dialog data exchange function

DDX_Control

 is added to the

DoDa-
taExchange

 function of the dialog. The first time

DoDataExchange

 is called, the
framework goes to all the trouble of getting the handle of the control, attaching it to
the

CWnd

 object, and then subclassing it. Then, using the Control variable, you can
call all the standard member functions appropriate for the control. You can also han-
dle any of the messages for the control. The ClassWizard is not doing anything
mysterious—it is simply taking a standard technique and making it easier to use. You
could just as well do it by hand, but it would take a lot more code.

23.9 Conclusion

You may have already realized that the MFC framework classes do not replace
the original C API. They simply form a C++ interface to it. The tremendous advan-
tage of this approach is that you can seamlessly call any of the C API functions from
within an MFC application. MFC doesn’t try to redefine any of the Windows para-
digms familiar to C programmers. Instead, it makes those paradigms transparent, and
easier to use, with member functions and message maps. The advantage of this ap-
proach, especially if you are used to programming to the Windows API in C, is that
you don’t have to learn any new concepts. The way MFC interacts with the Windows
API is in most cases straightforward. However, if you ever have a problem or question
about how MFC works, the source code is the best place to look for the reason behind
the problem.

505

24ENHANCING THE EDIT CONTROL

In the previous chapter we discussed how subclassing can be used to change the be-
havior of a window. In this chapter we will use subclassing to demonstrate how to
change the

CEdit

 control. The

CEdit

 control is used in a variety of ways: It is useful
as an edit field for simple text input in a dialog box and also as the basis of a complete
text editor. Subclassing

CEdit

 allows you to gain much greater control over the data
accepted by an instance of the

CEdit

 class. Using subclassing you can, for example,
limit the characters accepted by an edit control to digits.

Edit controls are most commonly used as simple data entry devices in dialog
boxes. Frequently the type of data entered in a dialog requires some sort of validity
checking. For example, you may want to request a number from the user. In that case,
you want to make sure that the user can enter only digits into the field. You may want
to request a name from the user and guarantee that the user enters no digits in the
field. One approach to validating the data in an input field is to wait until the user has
performed an action such as when they tab to another control. Or you could wait until
they pressed the OK button on a dialog using DDX and DDV. On this action you
could retrieve the string from the edit control and then check it for validity. If there is
a problem with the input, you can then display an error message.

Another approach is to monitor the input from the user and validate the string
in real-time, as they type. This technique gives the user instant feedback. In this ex-
ample we will implement the latter approach and create an edit control that accepts
only numbers. If the user tries to type something that isn’t a number, the new control
will beep and ignore the input.

24.1 An Example

We want to create a new class that has all the functionality of a

CEdit

 control,
but we also want the new control to monitor its input and reject input that is not a
digit. To do this, we need to derive a class from

CEdit

 and handle some of the

CEdit

506

This book is continuously updated. See http://www.iftech.com/mfc

24
En

ha
nc

in
g

 T
he

 E
d

it
C

o
nt

ro
l

messages in that new class. You can use the ClassWizard to create a new class that is
derived from

CEdit

.
The

CEdit

 control receives a

WM_CHAR

 message when it needs to handle a
keyboard event. This is the message that we need to monitor to intercept characters.
You can use the ClassWizard to add

WM_CHAR

 to the edit control’s message map.
Then our new class can capture characters before they reach the edit control. The
checks that we need to make in

OnChar

 are shown below:

void CMyEdit::OnChar(UINT nChar, UINT nRepCnt, UINT nFlags)
{

 // Always allow control characters
 if((nChar < 0x20) || ((nChar >= '0') && (nChar <= '9')))
 {
 CEdit::OnChar(nChar, nRepCnt, nFlags);
 }
 else
 {
 ::MessageBeep(0xFFFFFFFF);
 }

}

This code checks to make sure

nChar

 is a number or a control character such as
the delete key. If it is, then we call the

CEdit

’s

OnChar

 function so it can handle the
character in the standard way and display it in the edit box. If the character is invalid
we beep and ignore the input. This way the user knows invalid input as they fill in the
edit box.

Now that we have an enhanced edit class, we need a way to test it. Create a di-
alog that contains an edit control. We have to subclass this edit control so it is wired
to an object of our new edit control. This is how we get the messages from the dialog
edit control through our new edit control’s message map.

There are two ways to perform this subclassing. We could do it by hand and add
an explicit call to the

SubclassDlgItem

 function in the dialog’s

OnInitDialog

 func-
tion. However, a simpler way to perform this subclassing is through member variables
using DDX. Use the ClassWizard to add a Control member variable of your class type
(not

CEdit

) for the edit control in the dialog. If the ClassWizard doesn’t let you select
your edit control class when creating the member variable, you may have to do it
manually.

Now you will find that you can type numbers into the edit control, but when
you type letters the control rejects them and beeps.

24.2 Understanding the Process

Let’s examine the process. When the dialog is created, the dialog’s

DoDataEx-
change

 is called. The

DDX_Control

 function associates the dialog’s edit control (i.e.

IDC_EDIT1

) with the dialog’s member variable (i.e.

m_edit

) using the

Subclass-
Window

 function. Now all messages for the dialog’s edit control will be re-routed

24.3
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

507

through the

m_edit

 object. Note that if the enhanced edit control was created with its

Create

 function, the

DDX_Control

 function would not have been necessary.

24.3 Conclusion

You can use the same technique demonstrated here to create any sort of modi-
fied edit control. For example, you might create an edit control that handles

WM_KEYUP

 and

WM_KEYDOWN

 messages or that handles

WM_VSCROLL

messages. Other controls can also be customized. You can create a

CStatic

, for exam-
ple, and handle its

WM_PAINT

 message to draw pictures. Subclassing is relatively
simple to implement when you use DDX. You can also use this same technique to
subclass controls in a

CFormView

.

509

25SELF-MANAGING CONTROLS

In an object oriented world, each object should be self contained. Objects should be
able to handle all their functionality themselves. For example your

CDocument

 class
knows how to serialize itself and your

CView

 class knows how to display itself. Nei-
ther class tells the other how to manage itself. With Windows controls though, things
are different. When you click a button, the button’s parent handles the button’s

BN_CLICKED

 notification. When you select an item in a list view control, its parent
handles the

NM_CLICK

 notification. Sometimes this is the desired functionality. For
example, in a dialog you want the dialog to handle the OK button notification so it
can close itself. But what if you want to do something special when the user clicks an
item in a special type of list view control? If you handle this special case in the list
view’s parent, what happens when you want to use this list in ten different places.
With the current model you would have to copy the implementation ten times. In this
chapter we will examine the MFC solution to this type of problem. The first solution
relates to self-drawing controls. Next is a general solution for making controls manage
themselves using a process called message reflection.

The list box and combo box controls are useful when you need to present the
user with a list of choices. One limitation of these controls is that they can only display
a list of strings. There are many cases, however, where you would like to have more
control over the appearance of the items in the list. In such cases, a graphical list or
combo box is often appropriate. For example, you might want to create a list that dis-
plays a set of icons. Or you may need to create a list having items containing bitmaps
that represent disk drives or font types. You might want to display a combo box of
colors. To create these different custom lists, you need the ability to draw the items in
the list yourself.

510

This book is continuously updated. See http://www.iftech.com/mfc

25
Se

lf-
M

a
na

g
in

g
 C

o
nt

ro
ls

The example in this chapter shows you how to enhance the standard combo box
to display items containing a bitmap. You can also create custom list boxes, menus,
buttons, and most other controls in a similar manner.

25.1 Owner-Drawing vs. Self-Drawing

If you have done any Windows programming previous to your exposure to
MFC, you have probably heard of or used owner-drawn controls. With this type of
control, the parent, or “owner,” of a control draws whatever is necessary in the client
area of the control. An owner-drawn button, for example, signals its parent whenever
it needs repainting. The parent then draws whatever it likes on the face of the button.

This method of customizing controls makes poor use of the OOD philosophy.
If you want to have the same custom control in several dialog boxes, using owner-
drawn controls forces you to duplicate the code among all the potential parents. Each
dialog needs to update all its custom controls itself. Another problem is more sublime:
If a dialog has 20 owner-drawn lists, the dialog must take care of drawing each of those
lists individually. Code management in these cases becomes a lot of work.

A self-drawing control is the object-oriented approach to owner-drawn controls.
With self-drawing controls, the control itself, rather than its parent, is responsible for
any customized drawing operations.

25.2 Owner-Drawn Messages

There are four messages associated with owner-drawn controls. The core mes-
sage is the

WM_DRAWITEM

 message. It is sent when a visual aspect of the control
has changed. This may be due to refreshing or because an item’s focus or selected state
has changed. Three other messages are used with particular controls such as lists and
combo boxes. The

WM_MEASUREITEM

 message is sent when Windows needs to
know the dimensions of an item. The

WM_COMPAREITEM

 message is used dur-
ing sorting to compare two items. For example, a sorted list box will call out to its
parent with

WM_COMPAREITEM

 messages so it can determine the correct order-
ing. The

WM_DELETEITEM

 message is used to delete an item from a control and
should take care of freeing any resources associated with items.

25.3 The Self-Drawing Framework

All that is necessary to make a control self-drawing is to override one of the vir-
tual functions that handle these messages. The table below shows the relationship
between the messages and the virtual

CWnd

 member functions.
As you can see, not all the messages are used for every control. The list and com-

bo box use all four but the status bar and button only uses the

WM_DRAWITEM

message. For the list and combo box, all the messages must be handled except the

WM_DELETEITEM

 message. Handling this message is only necessary when the list
or combo box has special cleanup actions to perform when deleting an item.

25.4
Be

hind
 the

 Sc
e

ne
s

This book is continuously updated. See http://www.iftech.com/mfc

511

Table 25.1

Owner-drawing messages

25.4 Behind the Scenes

MFC takes the owner-drawn capability and reworks it to create self-drawing
controls. It is interesting to understand how the translation takes place. You can skip
over this section if the details don’t interest you.

In Windows, when an owner-drawn control needs to be updated, the system
sends messages to its parent. Then the parent proceeds to update the specified control.
In MFC, the process is the same except the parent has the control update itself. This
is done using the

CWnd::OnChildNotify

 function. This function allows the control
to determine if it wants to process the message itself. For example, if an owner-drawn

CListBox

 in a

CDialog

 needs to be drawn, the system sends the dialog a

WM_DRAWITEM

 message. The

CWnd::OnDrawItem

 function in the dialog (the
parent) handles the message.

OnDrawItem

 then sends the message to the

CList-
Box::OnChildNotify

 function. In any self-drawing control,

OnChildNotify

determines if it wants to process the message and calls the appropriate function—in
this case

CListBox::DrawItem

 is called. After the item is drawn,

OnChildNotify

 tells
the dialog that the message has been processed. In other words, the owner-drawn mes-
sage issued by the system gets sent to the dialog, which immediately routes it to the
list so the list can handle it itself. Notice that the self-drawing control doesn’t require
any changes to its message map. All the messages are handled by the control’s parent,
which communicates with the control through virtual functions.

Although self-drawn controls are better than owner-drawn controls because they
offer better encapsulation, you can still create owner-drawn controls in MFC. For ex-
ample, to have a

CDialog

 object handle the messages for its owner-drawn controls,
just add

ON_WM_DRAWITEM

 to the dialog’s message map and implement its

OnDrawItem

 function.

25.5 A General Solution

Overriding the previous four virtual functions is a special case solution for the
self-drawing control problem. MFC also provides a way to handle the more general
cases for having controls manage themselves. For example, if you want a specialized

Windows Message CWnd Function Classes

WM_DRAWITEM DrawItem CStatusBar, CListView, CBitmapButton,
CButton, CListBox, CComboBox,
CStatusBarCtrl, CListCtrl, CHeaderCtrl,
CTabCtrl, CCheckListBox, CMenu

WM_MEASUREITEM MeasureItem CListBox, CComboBox, CMenu,
CCheckListBox

WM_COMPAREITEM CompareItem CListBox, CComboBox

WM_DELETEITEM DeleteItem CListBox, CComboBox

512

This book is continuously updated. See http://www.iftech.com/mfc

25
Se

lf-
M

a
na

g
in

g
 C

o
nt

ro
ls

CListCtrl

 that handles item selection different, you can have the list control object
handle the

NM_CLICK

 that the list control’s parent would normally take care of.
This process is called message reflection. Messages are reflected from the parent back
to the control. The message the control receives is the original message the parent re-
ceived (e.g.

WM_COMMAND

) plus the constant

WM_REFLECT

. So, in the case
of the special

CListCtrl

, the list would receive the message

WM_NOTIFY +
WM_REFLECT

. The message map entry necessary to handle this message is

ON_NOTIFY_REFLECT

. The ClassWizard will put an equal symbol (=) next to
any reflected message a control can handle. Any message a control sends to its parent
such as

WM_COMMAND

,

WM_NOTIFY

, the

WM_CTLCOLOR

 family,

WM_HSCROLL

,

WM_VSCROLL

 and

WM_PARENTNOTIFY

 are reflected to
controls.

For an example, if we wanted to make a

CMyButton

 class that would handle its
own

BN_CLICKED

notification, all we have to do is use the ClassWizard to create
a new

CButton

 derived class and add a message handler for the

=BN_CLICKED

 no-
tification. The message map entry for the button would look like this:

BEGIN_MESSAGE_MAP(CMyButton, CButton)
 //{{AFX_MSG_MAP(CMyButton)

 ON_CONTROL_REFLECT(BN_CLICKED, OnClicked)

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

void CMyButton::OnClicked()
{

 ::AfxMessageBox("Hello");

}

Now when you click a

CMyButton

 button, the dialog receives a

WM_COMMAND

 message with a

BN_CLICKED

 notification and reflects that
back to the button so it can display a message box.

You can also use message reflection for self-drawing controls that do not support
the virtual function solution. All you need to do is add a message map entry such as

ON_WM_DRAWITEM_REFLECT

 to the control. Some of the reflection message
map entries and their function prototypes are shown below:

Table 25.2

Reflection message map entries

ON_CONTROL_REFLECT(wNotifyCode, memberFxn)
 afx_msg void memberFxn ();

ON_NOTIFY_REFLECT(wNotifyCode, memberFxn)
 afx_msg void memberFxn (NMHDR * pNotifyStruct, LRESULT* result);

ON_UPDATE_COMMAND_UI_REFLECT()
 afx_msg void memberFxn (CCmdUI* pCmdUI);

ON_WM_CTLCOLOR_REFLECT()
 afx_msg HBRUSH CtlColor (CDC* pDC, UINT nCtlColor);

25.6
A

 Se
lf-D

ra
w

ing
 C

o
m

b
o

 Bo
x

This book is continuously updated. See http://www.iftech.com/mfc

513

25.6 A Self-Drawing Combo Box

In this example we will create a self-drawing combo box that displays a list of
bitmaps instead of strings.

Create an application framework using the AppWizard. Create a dialog and add
a combo-box control to the dialog. To make the combo-box a self-drawing control
change the following combo-box styles: Change the Type to Drop List and Owner
draw to Variable. The Owner draw style cannot be Fixed because of some limitations
of MFC. Also, pay attention to the Has Strings checkbox. When checked, it indicates
that the combo box should hold strings for each item in the list, even though it may
not display them (if it is owner-drawn, it will not display the strings). If this option is
not checked you cannot use the string functions such as AddString to manage strings.
Here, because the list displays only bitmaps, there is no need for it to manage any
strings. You may also have to resize the combo box drop down size in order to see the
bitmaps when you expand the combo box drop down list.

Create three bitmaps,

IDB_BITMAP1

,

IDB_BITMAP2

, and

IDB_BITMAP3

. These will be the items we put in the list so you can draw anything
you like on them.

Now we need a new class that is derived from

CComboBox

 that can handle the
messages required to perform the drawing operations needed to display the bitmaps
in the control. Use the ClassWizard to create a

CMyComboBox

 that is derived from

CComboBox

. Then use the ClassWizard to override

DrawItem

,

MeasureItem

, and

ON_WM_DRAWITEM_REFLECT()
 afx_msg void DrawItem (LPDRAWITEMSTRUCT);

ON_WM_MEASUREITEM_REFLECT()
 afx_msg void MeasureItem (LPMEASUREITEMSTRUCT);

ON_WM_DELETEITEM_REFLECT()
 afx_msg void DeleteItem (LPDELETEITEMSTRUCT);

ON_WM_COMPAREITEM_REFLECT()
 afx_msg int CompareItem (LPCOMPAREITEMSTRUCT);

ON_WM_CHARTOITEM_REFLECT()
 afx_msg int CharToItem (UINT nKey, UINT nIndex);

ON_WM_VKEYTOITEM_REFLECT()
 afx_msg int VKeyToItem (UINT nKey, UINT nIndex);

ON_WM_HSCROLL_REFLECT()
 afx_msg void HScroll (UINT nSBCode, UINT nPos);

ON_WM_VSCROLL_REFLECT()
 afx_msg void VScroll (UINT nSBCode, UINT nPos);

ON_WM_PARENTNOTIFY_REFLECT()
 afx_msg void ParentNotify (UINT message, LPARAM lParam);

ON_NOTIFY_REFLECT_EX(wNotifyCode, memberFxn)
 afx_msg BOOL memberFxn ();

ON_COMMAND_REFLECT_EX(wNotifyCode, memberFxn)
 afx_msg BOOL memberFxn (NMHDR * pNotifyStruct, LRESULT* result);

514

This book is continuously updated. See http://www.iftech.com/mfc

25
Se

lf-
M

a
na

g
in

g
 C

o
nt

ro
ls

CompareItem

. We could also override the

DeleteItem

 function, but it is only neces-
sary when the items in the control have special memory requirements and need extra
cleanup code. If you do not override these three functions in your new class, you will
get an assertion when the base class functions are called.

The

CompareItem

 function is shown below. This function is only used if we
create a combo box that is sorted. Since we are drawing arbitrary bitmaps, the order is
not important, and we return 0 so all the items are considered equal.

int CMyComboBox::CompareItem(LPCOMPAREITEMSTRUCT
 lpCompareItemStruct)
{
 return 0;
}

Next is the

MeasureItem

 function. Its purpose is to return the height of a specified
item.

void CMyComboBox::MeasureItem(LPMEASUREITEMSTRUCT
 lpMeasureItemStruct)
{

 static int cyItem = (-1);

 // Have we already set the height?
 if(cyItem < 0)
 {
 // Load one of the bitmaps to retrieve
 // its height.
 BITMAP bm;
 CBitmap cBitmap;
 VERIFY(cBitmap.LoadBitmap(IDB_BITMAP1));
 VERIFY(cBitmap.GetObject(sizeof(BITMAP), &bm));
 VERIFY(cBitmap.DeleteObject());

 cyItem = bm.bmHeight;
 }

 ASSERT(cyItem > 0);
 VERIFY(SetItemHeight(0, cyItem + 8) != CB_ERR);
 VERIFY(SetItemHeight(-1, cyItem + 8) != CB_ERR);

 lpMeasureItemStruct->itemHeight = cyItem;

}

The

MeasureItem

 function takes as a parameter a pointer to a

MEASURE-
ITEMSTRUCT

 structure. Among other things, this structure contains the ID of the
requested item and a variable in which to return the height of the item. All items in
our combo box are of fixed size, but because of MFC restrictions we must use

CBS_OWNERDRAWVARIABLE

 for our derived class (see MFC Technical Note
14). Because our items are all the same height, it is sufficient to determine the height
of a single item and to always return the same value. This step is performed by loading
one of the bitmaps for the list and finding its height. After the initial call, this same

25.6
A

 Se
lf-D

ra
w

ing
 C

o
m

b
o

 Bo
x

This book is continuously updated. See http://www.iftech.com/mfc

515

height value will always be returned. The calls to the

SetItemHeight

 function deter-
mine how high the combo box edit area is. A pad of eight pixels is added to the height
to space out the items. This helps solve the deficiency of not being able to use a Fixed
style which would let us use the No Integral Height style instead of using

SetItemHeight

.
The rest of the functionality is in the

DrawItem

 function. This is the function
that will determine what item the control needs to draw, where it needs to draw it,
and what state to give it on the screen.

void CMyComboBox::DrawItem(LPDRAWITEMSTRUCT
 lpDrawItemStruct)
{

 if(lpDrawItemStruct->itemID < 0)
 return;

 // Create a temporary CDC object.
 CDC* pDC = CDC::FromHandle(lpDrawItemStruct->hDC);

 if(lpDrawItemStruct->itemAction &
 (ODA_DRAWENTIRE | ODA_SELECT))
 {
 CBitmap cBitmap;
 COLORREF crOldText;
 COLORREF crOldBack;

 // If the item is selected then highlight it.
 if(lpDrawItemStruct->itemState & ODS_SELECTED)
 {
 crOldText = pDC->SetTextColor(
 ::GetSysColor(COLOR_HIGHLIGHTTEXT));
 crOldBack = pDC->SetBkColor(
 ::GetSysColor(COLOR_HIGHLIGHT));
 }

 // Erase the entire area.
 pDC->ExtTextOut(lpDrawItemStruct->rcItem.left,
 lpDrawItemStruct->rcItem.top,
 ETO_OPAQUE, &(lpDrawItemStruct->rcItem),
 "", 0, NULL);

 // Load the appropriate bitmap
 switch(lpDrawItemStruct->itemID)
 {
 case 0: VERIFY(cBitmap.LoadBitmap(IDB_BITMAP1));
 break;
 case 1: VERIFY(cBitmap.LoadBitmap(IDB_BITMAP2));
 break;
 case 2: VERIFY(cBitmap.LoadBitmap(IDB_BITMAP3));
 break;
 default:VERIFY(cBitmap.LoadBitmap(IDB_BITMAP1));
 break;
 }

 // Get the dimensions of the bitmap to draw.

516

This book is continuously updated. See http://www.iftech.com/mfc

25
Se

lf-
M

a
na

g
in

g
 C

o
nt

ro
ls

 BITMAP bm;
 VERIFY(cBitmap.GetObject(sizeof(BITMAP), &bm));

 // Draw the bitmap using TransBitBlt.
 TransBitBlt(pDC,
 lpDrawItemStruct->rcItem.left,
 lpDrawItemStruct->rcItem.top,
 cBitmap, RGB(255,255,255));

 // Delete the bitmap.
 VERIFY(cBitmap.DeleteObject());

 // Draw the focus state.
 if(lpDrawItemStruct->itemState & ODA_FOCUS)
 {
 pDC->DrawFocusRect(
 &(lpDrawItemStruct->rcItem));
 }

 // Return the DC to its original state.
 if(lpDrawItemStruct->itemState & ODS_SELECTED)
 {
 pDC->SetTextColor(crOldText);
 pDC->SetBkColor(crOldBack);
 }
 }

 if(lpDrawItemStruct->itemAction & ODA_FOCUS)
 {
 pDC->DrawFocusRect(&(lpDrawItemStruct->rcItem));
 }

}

The only argument to this function is a pointer to a

DRAWITEMSTRUCT

.
This structure contains a variety of information about the object to be drawn. Inside
the function, the code needs to know the ID of the item to draw, the coordinates at
which to draw the item, the device context, and whether the item is selected or has the
current focus. The code extracts all this information from the

DRAWITEM-
STRUCT

 structure.
We start the process by getting a device context. We must use the device context

that is in the

lpDrawItemStruct

. Use the

FromHandle

 function to create a tempo-
rary

CDC

 object from the raw

DC

. Remember that this object is temporary, so we
must create the object each time

DrawItem

 is called. Next we check the

itemAction

value to determine if the entire item is being redrawn (

ODA_DRAWENTIRE

) or if
the item is being selected (

ODA_SELECT

). The

itemAction

 member tells us what
drawing action is required. Both branches perform the same action because the only
difference is the item’s background color. The

itemState

 member tells us what visual
state the item should be in. If the item is selected we change the text and background
colors to the default highlight colors. The entire area is then erased with the back-
ground color by

ExtTextOut

. We could have used

FillRect

, but

ExtTextOut

 is
usually faster and easier to use. Then based on the requested

itemID

 we load the bit-

25.7
D

ra
w

ing
 Tra

nsp
a

re
nt Bitm

a
p

s

This book is continuously updated. See http://www.iftech.com/mfc

517

map that needs to be drawn. The bitmap is drawn transparently using the

TransBitBlt

 function described below. Then we check to see if we need to draw a fo-
cus rectangle around the item (

ODA_FOCUS

).

DrawFocusRect

 will draw a dotted
rectangle around the item using an XOR function. Before returning, we must make
sure the device context is restored to its original state, so we restore the foreground and
background colors if they were changed.

25.7 Drawing Transparent Bitmaps

Drawing the item bitmaps could be easy, but there is a catch. The bitmaps
drawn are usually odd-shaped. If they were just drawn on the screen using

BitBlt

, the
bitmap would overwrite the current background in the combo box and the result
would look incorrect. The proper way to perform this action, therefore, is to draw the
bitmap “transparently” onto the existing image, leaving the background intact. In this
case, we want to draw only the black parts of the image. We want the white part of
the bitmap to become the same as the background. There are a few different ways to
implement transparent blitting. Here I will briefly describe the theory and then de-
scribe the technique seen in

TransBitBlt

.
There are three images involved with the transparent

BitBlt

: the source image
(the face), the destination (screen), and the mask. The key to the process is the mask.
We want to create a mask so we can “paint through” the mask and only affect the parts
of the destination that the mask defines. The mask is a simple monochrome (black and
white) bitmap. Only the parts of the mask that are black affect the destination
(screen). Once all three bitmaps exist, three steps are necessary to paint the source onto
the destination. Here are the steps involved when using individual

BitBlt

 calls.

BitBlt(Destination, ..., Source, ..., SRCINVERT);
BitBlt(Destination, ..., Mask, ..., SRCAND);
BitBlt(Destination, ..., Source, ..., SRCINVERT);

The three steps in the process are as follows:

1. The first step XORs the source bitmap onto the destination. This has the effect
of copying the bitmap onto the destination without destroying the destination
pixels. We use the fact that a second XOR will restore the destination to its
original state.

2. The second step performs the masking. When the mask is ANDed to the desti-
nation, all the pixels that are white (the parts we want to be transparent) leave
the destination pixels unchanged, while the pixels that are black (the parts of
the image we want to paint) set the destination to black.

3. The third step XORs the source to the destination again. The parts that were
not blacked out by the mask are restored to their original state (two XORs
restore the original). Where the mask produced black, the pixels are copied
directly from the source to the destination because value XOR black = value.

518

This book is continuously updated. See http://www.iftech.com/mfc

25
Se

lf-
M

a
na

g
in

g
 C

o
nt

ro
ls

The

TransBitBlt

 function performs the same operations as above, but it does
them in a single step. Because we will be painting our bitmap image over a background
color and not another bitmap (or complex image) we can use this second process to
accomplish the three steps more quickly. In

TransBitBlt

 we will use a custom ternary
raster operation (ROP). The most common ROPs are ones like

SRCCOPY

,

SRC-
PAINT

,

SRCAND

, and

SRCINVERT

. There are 15 pre-defined ROPs in
WINDOWS.H, but there are 256 in all. (Search for “ternary raster operations” in
books on-line for a complete list.) The 226th ROP performs the same operations as
the three steps above, except it uses a source, destination, and pattern (brush):

ROP_DSPDxax = 0x00E20746

The constant for this Boolean function is written in reverse Polish notation
(D=Destination, P=Pattern, S=Source, x=XOR, and a=AND). It translates to the
following:

1. XOR the pattern with the destination (

SRCINVERT

).
2. AND the result with the source (

SRCAND

).
3. XOR the previous result with the destination (

SRCINVERT

).

Here is the complete

TransBitBlt

 function:

BOOL TransBitBlt(CDC* pdcScreen, UINT x, UINT y,
 CBitmap& cImageBitmap, COLORREF crTransparent)
{
 ASSERT(pdcScreen != NULL);

 // Get the dimensions of the bitmap image.
 BITMAP bm;
 VERIFY(cImageBitmap.GetObject(sizeof(BITMAP), &bm));

 // Create a DC for the image bitmap.
 CDC dcImage;
 VERIFY(dcImage.CreateCompatibleDC(pdcScreen));
 CBitmap* pOldImageBitmap =
 dcImage.SelectObject(&cImageBitmap);

 // Create a DC and monochrome bitmap for the mask.
 CDC dcMask;
 CBitmap cMaskBitmap;
 VERIFY(dcMask.CreateCompatibleDC(pdcScreen));
 VERIFY(cMaskBitmap.CreateBitmap(bm.bmWidth,
 bm.bmHeight, 1, 1, NULL));
 CBitmap* pOldMaskBitmap =
 dcMask.SelectObject(&cMaskBitmap);

 // Create a memory DC and bitmap to work on.
 CDC dcMem;
 CBitmap cMemBitmap;
 VERIFY(dcMem.CreateCompatibleDC(pdcScreen));
 VERIFY(cMemBitmap.CreateCompatibleBitmap(pdcScreen,

25.7
D

ra
w

ing
 Tra

nsp
a

re
nt Bitm

a
p

s

This book is continuously updated. See http://www.iftech.com/mfc

519

 bm.bmWidth, bm.bmHeight));
 CBitmap* pOldMemBitmap =
 dcMem.SelectObject(&cMemBitmap);

 // Create a monochrome mask of the image.
 COLORREF crBack = dcImage.SetBkColor(crTransparent);
 dcMask.BitBlt(0, 0, bm.bmWidth, bm.bmHeight,
 &dcImage, 0, 0, SRCCOPY);
 dcImage.SetBkColor(crBack);

 // Create and select a brush of the background color.
 CBrush cBrush;
 cBrush.CreateSolidBrush(pdcScreen->GetBkColor());
 CBrush *cOldBrush = dcMem.SelectObject(&cBrush);

 // Copy the unmodified image in the temporary bitmap.
 dcMem.BitBlt(0, 0, bm.bmWidth, bm.bmHeight,
 &dcImage, 0, 0, SRCCOPY);

 // Force conversion of the monochrome to stay B&W.
 COLORREF crText = dcMem.SetTextColor(0L);
 crBack = dcMem.SetBkColor(RGB(255,255,255));

 // Perform the masking copy.
 dcMem.BitBlt(0, 0, bm.bmWidth, bm.bmHeight,
 &dcMask, 0, 0,
 0x00E20746 /* ROP_DSPDxax */);

 // Copy the final image to the screen.
 pdcScreen->BitBlt(x, y, bm.bmWidth, bm.bmHeight,
 &dcMem, 0, 0, SRCCOPY);

 // Restore the original device context.
 dcMem.SetTextColor(crText);
 dcMem.SetBkColor(crBack);
 dcMem.SelectObject(cOldBrush);

 // Select the bitmaps out of the DCs.
 dcImage.SelectObject(pOldImageBitmap);
 dcMask.SelectObject(pOldMaskBitmap);
 dcMem.SelectObject(pOldMemBitmap);

 // Delete all the objects we CREATEd.
 VERIFY(dcImage.DeleteDC());
 VERIFY(dcMask.DeleteDC());
 VERIFY(dcMem.DeleteDC());

 VERIFY(cBrush.DeleteObject());
 VERIFY(cMemBitmap.DeleteObject());
 VERIFY(cMaskBitmap.DeleteObject());

 return(TRUE);
}

The

TransBitBlt

 function takes as arguments the screen device context, the des-
tination coordinates, the bitmap image to draw, and the color in the image to make

520

This book is continuously updated. See http://www.iftech.com/mfc

25
Se

lf-
M

a
na

g
in

g
 C

o
nt

ro
ls

transparent. We want the white parts of the bitmap to be transparent (only draw the
black portions) so

crTransparent

 will be

RGB(255, 255, 255)

.
The code first retrieves the dimensions of the bitmap. Then it creates three de-

vice contexts. The first is associated with the image bitmap. The second DC contains
a monochrome bitmap (1 plane, 1 bit-per-pixel) that will be used as the mask. All
drawing operations will be performed on the third DC so there is no flicker on the
screen.

Next we create the monochrome mask of the image bitmap.

dcImage.SetBkColor(crTransparent);
dcMask.BitBlt(0, 0, bm.bmWidth, bm.bmHeight,
 &dcImage, 0, 0, SRCCOPY);

Because

dcImage

 is a color (multi-plane) bitmap, while

dcMask

 is mono-
chrome, the

BitBlt

 converts the color bitmap in

dcImage

 to a monochrome bitmap
before copying it to the bitmap in

dcMask

. The

SetBkColor

 function tells

BitBlt

which color in

dcImage

 (the source DC) should be converted to white pixels. All oth-
er pixels will be converted to black. The result is a black and white image of the source.
Then we create a brush that has the color of the background and copy the bitmap im-
age to the temporary image. Before we use

BitBlt

 with the custom ROP, we make sure
the foreground and background colors in

dcMem

 (the destination DC) are black and
white. This step is important because

dcMask

 is monochrome and

dcMem

 is color.
In this case

BitBlt

 will try to perform another conversion between monochrome and
color.

BitBlt

 will convert the black pixels of the monochrome bitmap to the destina-
tion’s foreground color and the white pixels to its background color. We want the
conversion to stay black and white so we explicitly set the background and foreground
colors of the destination to black and white. The next call to

BitBlt

 performs the three
necessary steps:

1. The current background pattern is XORd with the bitmap image in

dcMem

.
2. That result is ANDed with the monochrome mask of the bitmap image in

dcMask

.
3. The final result is XORd with the bitmap image in

dcMem

 again, leaving the
bitmap image with a background of the pattern color.
Now the image in

dcMem

 contains our face with the same background as the
screen so we can copy the final image to the screen without overwriting anything. The
remaining code handles cleanup.

25.8 Subclassing the Combo Box

Now that we have the

CMyComboBox

 class, we need to associate it with the
combo box we created in the dialog. When we subclassed the

CEdit

 control to handle
numbers in Chapter 24 we used

DDX_Control

 to simplify the process. In this exam-
ple we will use

SubclassDlgItem

 instead.

SubclassDlgItem

 is a convenience function
for

SubclassWindow

 that takes a dialog control ID instead of a window handle.

25.9
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

521

The place to call

SubclassDlgItem

 is in the dialog’s

OnInitDialog

 function.
Use the ClassWizard to add a handler for the

WM_INITDIALOG

 message. Then
manually add a

CMyComboBox

 member variable to the dialog class as shown in
below.

// Member variables
public:

 CMyComboBox m_combo;

Remember also to include the

CMyComboBox

 header file where necessary. Here’s the

OnInitDialog

 function:

BOOL CMyDialog::OnInitDialog()
{
 CDialog::OnInitDialog();

 m_combo.SubclassDlgItem(IDC_COMBO1, this);

 /* Add the items to the combo box. */
 m_combo.AddString(NULL);
 m_combo.AddString(NULL);
 m_combo.AddString(NULL);

 return TRUE;
}

OnInitDialog

 does two things. First, it subclasses the combo box we added to
the dialog.

SubclassDlgItem

 takes the ID of the control in the dialog template
(

IDC_COMBO1

) and the parent dialog. Second,

OnInitDialog

 adds some items to
our list. Because we have three bitmaps, we need three list items. You could also use
the item data of the combo box (

SetItemData

) to associate list items with bitmaps.

25.9 Conclusion

Self-drawn controls give you the freedom to create controls with almost any sort
of appearance. Simply by implementing three functions we have created a completely
customized combo box. To create self-drawn lists and menus, follow the same process
as the one shown here. Note also that the

CBitmapButton

 class in MFC is a self-
drawn button that handles bitmaps automatically.

523

26ANOTHER LOOK—
A SELF-DRAWING LIST BOX

It is sometimes useful to request from the system a list of the available fonts. For ex-
ample, you might want to know which fonts are available to use when drawing to the
display or which fonts are supported by the current printer. Such a list can be created
through a process called font enumeration. Enumeration is a general capability that
allows you to access a particular list of objects.

In this chapter you will learn how to enumerate fonts. The enumeration is dis-
played using a customized list box that benefits from several of the techniques used in
the previous chapter.

26.1 Introduction to Font Enumeration

Many different items in a Windows system can be enumerated. For example,
you can enumerate lists of objects such as child windows, tasks, fonts, clipboard for-
mats, metafile records, pens, and brushes. To use enumeration, you set up a procedure
that Windows can call each time it recalls an item in the list being enumerated. With
fonts, for example, you can set up an enumeration procedure and Windows will call
that procedure each time it finds a font that matches a certain specification.

The function that performs font enumeration is

EnumFontFamilies

 and is
shown below.

int EnumFontFamilies(HDC hDC, LPCTSTR lpszFamily,
 FONTENUMPROC lpEnumFontFamProc,
 LPARAM lParam);

The first argument is a device context. This argument specifies the device with
which we want the fonts to be compatible. For example, there might be many fonts
that can be displayed on the screen, but only a select few that can be used on a printer.
This is the case when you are using a text-only printer. The second argument is the
font family name. Font families are general font names, like “Courier” or “Times.”
The family allows us to narrow the search. If this argument is NULL, then one font
in each font family is enumerated. If this argument is a family name (e.g. “Courier”),
then each available style or size of the font family is enumerated. Styles are specific

524

This book is continuously updated. See http://www.iftech.com/mfc

26
A

 S
e

lf-
D

ra
w

in
g

 L
is

t B
o

x

characteristics such as “Courier Bold” or “Courier Italic.” The third argument is the
enumeration procedure. This is the function that will be called for each font matching
our family specification. This procedure has the prototype shown below and is ex-
plained later. The fourth argument

lParam

 is a call data parameter that allows us to
pass something to the callback function. For example, you might pass a pointer to an
integer and use the integer to keep track of the number of items.

Each enumeration procedure accepts different parameters depending on the ob-
ject being enumerated. When enumerating child windows, the enumeration
procedure receives the handle of the child window found. When enumerating pens,
the enumeration procedure receives the style or color of the enumerated pen. In our
case, the enumeration procedure will receive information describing each font.

int CALLBACK EnumFontFamProc(LPENUMLOGFONT lplf,
 LPNEWTEXTMETRIC lpntm,
 int nFontType,
 LPARAM lParam);

The first two arguments are pointers to structures that describe the current font.
We can determine attributes such as its weight (bold, italic), height, width, and un-
derlining. The

nFontType

 parameter lets us determine if the font is a TrueType font,
a device font, a raster font, or a vector font. The

lParam

 argument is the call data pa-
rameter passed from the calling function. The procedure returns an integer that
determines if the enumeration process should continue. Enumeration will stop when
there are no more fonts to enumerate or when the procedure returns 0. This allows us
to search for a particular item and then stop.

26.2 Enumerating Font Families

To begin, we will create a function that will fill a list box with the name of each
font family. It needs to enumerate one font from each family and add that font to the
list, saving the font type along with the name.

void UpdateFamilyList(CListBox& ctlFontList)
{
 // Create an array of CStrings that we can store the
 // font family names in.
 CStringArray* fontNameArray = new CStringArray;

 // Get a device context for the default printer.
 CPrintDialog cPrintDlg(FALSE);
 VERIFY(cPrintDlg.GetDefaults() == TRUE);
 HDC hdcPrint = cPrintDlg.GetPrinterDC();
 ASSERT(hdcPrint != NULL);

 // Enumerate ALL the font families.
 EnumFontFamilies(hdcPrint, NULL,
 (FONTENUMPROC)EnumAllFontFamiliesCB,
 (LPARAM)fontNameArray);

 VERIFY(::DeleteDC(hdcPrint) == TRUE);

26.2
Enum

e
ra

ting
 Fo

nt Fa
m

ilie
s

This book is continuously updated. See http://www.iftech.com/mfc

525

 // Fill the list box with the fonts.
 ctlFontList.ResetContent();
 for(int i=0; i < fontNameArray->GetSize(); i++)
 {
 // The item text looks like the following:
 // FONTNAME:[T|P|R|V]
 // where the character specifies the font type.
 // Remove the ':' before we display the font.

 CString curFontName = fontNameArray->GetAt(i);
 int i = curFontName.FindOneOf(":");
 ASSERT(i >= 0);
 char cch = curFontName[i + 1];
 char* s = curFontName.GetBuffer(256);
 ASSERT(s != NULL);
 s[i] = '\0';
 curFontName.ReleaseBuffer(-1);

 // The last character in the item text tells us if
 // the font it a TRUETYPE or PRINTER font.
 UINT nType = 0;
 switch(cch)
 {
 case 'T': nType = IDB_TRUETYPE; break;
 case 'P': nType = IDB_PRINTER; break;
 }

 UINT nItemPos = ctlFontList.AddString(curFontName);
 ASSERT(nItemPos != LB_ERR);
 ASSERT(nItemPos != LB_ERRSPACE);
 VERIFY(ctlFontList.SetItemData(nItemPos,
 MAKELONG(nType, 0)) != LB_ERR);
 }

 // Set the current selection.
 ctlFontList.SetCurSel(0);

 delete fontNameArray;
}

The enumeration callback will create a list of font family names and their types.
We will use an array of

CString

s to hold the list. This array will be passed to the enu-
meration callback function as the

lParam

 parameter. Next, because we want to
enumerate the fonts available for the default printer, the function needs a device con-
text for the default printer. The

CPrintDialog

 and its member functions make this
simple. If you want to instead enumerate the screen fonts, change the device context
accordingly. Now for the enumeration. Notice that the second parameter to

Enum-
FontFamilies

 is NULL. This is done so that when the enumeration is complete the
array will contain the font family names. When the enumeration is complete we have
to clean up the printer device context and fill the list box with the returned items.

Our enumeration procedure uses the last character in each name to represent the
font type (TrueType, printer, and so on). For each font in the array, we have to parse

526

This book is continuously updated. See http://www.iftech.com/mfc

26
A

 S
e

lf-
D

ra
w

in
g

 L
is

t B
o

x

it to determine its type, then add the name to the list box. We will store the type of
each font family in the item data value associated with each entry in the list box. Using

MAKELONG

 you can store two separate numbers in the item data—one in the

HI-
WORD

 and one in the

LOWORD

. In this case we need only one value. Remember
when adding strings to a self-drawing list box to make sure the Has Strings style is
checked or the list will not allocate space for the item data. Last of all, we set the cur-
rent selection to the first item in the list and delete the array of font names.

The enumeration function called for each font simply needs to add each family
name to the array passed through

lParam

.

int CALLBACK EnumAllFontFamiliesCB(LPENUMLOGFONT lplf,
 LPNEWTEXTMETRIC lpntm, int nFontType, LPARAM lParam)
{
 ASSERT(lplf != NULL);
 ASSERT(lpntm != NULL);
 ASSERT(lParam != NULL);

 ASSERT(lplf->elfLogFont.lfFaceName != NULL);
 CString curFontName(lplf->elfLogFont.lfFaceName);

 if(nFontType & TRUETYPE_FONTTYPE)
 curFontName += ":T"; // TrueType font
 else if((nFontType & DEVICE_FONTTYPE) &&
 (nFontType & RASTER_FONTTYPE))
 curFontName += ":P"; // Raster printer font
 else if(nFontType & RASTER_FONTTYPE)
 curFontName += ":R"; // Raster font
 else // Vector font type
 curFontName += ":V";

 // The parameter passed in was an array of CStrings.
 // Add the font name found to this array.
 CStringArray* fontNameArray = (CStringArray *)lParam;
 fontNameArray->Add(curFontName);

 TRACE("Enumerated Font Family (%s).\n",
 (LPCSTR)curFontName);

 // Return 1 so we will get called again
 return(1);
}

EnumAllFontFamiliesCB

 starts by getting the name of the font family. The

ENUMLOGFONT

 structure contains this name. Next, the function determines the
type of the font. It appends a character to the end of the font name depending on the
type. The font can be either a TrueType, raster, or vector font. If the font is both Ras-
ter and device, it is available to the printer, either in hardware or by downloading.
There is no special flag for the vector type. You can assume that if it is not TrueType
or Raster, then it is a vector font. After the font name is added to the array of font
names, the function returns the value 1 so enumeration will continue.

26.3
Enum

e
ra

ting
 Fo

nt Style
s

This book is continuously updated. See http://www.iftech.com/mfc

527

26.3 Enumerating Font Styles

When a font family is selected in the first list box we want to display the available
styles in the second list box we created. This process is very similar to enumerating the
families.

void UpdateStyleList(CListBox& ctlFontList,
 CListBox& ctlStyleList)
{
 // Create an array of CStrings that we can store the
 // font style names in.
 CStringArray* styleNameArray = new CStringArray;

 // Get a device context for the default printer.
 CPrintDialog cPrintDlg(FALSE);
 VERIFY(cPrintDlg.GetDefaults() == TRUE);
 HDC hdcPrint = cPrintDlg.GetPrinterDC();
 ASSERT(hdcPrint != NULL);

 // Get the currently selected font family.
 int nCurSel = ctlFontList.GetCurSel();
 ASSERT(nCurSel != LB_ERR);
 char szFontFamily[256];
 VERIFY(ctlFontList.GetText(nCurSel,
 szFontFamily) != LB_ERR);

 // Enumerate the font styles for the current family.
 EnumFontFamilies(hdcPrint, szFontFamily,
 (FONTENUMPROC)EnumFontStylesCB,
 (LPARAM)styleNameArray);

 VERIFY(::DeleteDC(hdcPrint) == TRUE);

 // Fill the combo box with the font styles.
 ctlStyleList.ResetContent();
 for(int i=0; i < styleNameArray->GetSize(); i++)
 {
 CString curStyleName = styleNameArray->GetAt(i);
 UINT nItemPos = ctlStyleList.AddString(curStyleName);
 ASSERT(nItemPos != LB_ERR);
 ASSERT(nItemPos != LB_ERRSPACE);
 }

 ctlStyleList.SetCurSel(0);

 delete styleNameArray;
}

Notice the similarity between this and

UpdateFamilyList

. The main difference
is the second argument to

EnumFontFamilies

. Now it is the name of the currently
selected font family. This will enumerate the styles available for each font. This can
also enumerate the sizes available for certain fonts, but we are only using the styles in
this example. After the enumeration is complete, each style in the array is added to the
style list box.

528

This book is continuously updated. See http://www.iftech.com/mfc

26
A

 S
e

lf-
D

ra
w

in
g

 L
is

t B
o

x

The styles callback function shown below determines which styles are available
for the family being enumerated and adds each style to an array.

int CALLBACK EnumFontStylesCB(LPENUMLOGFONT lplf,
 LPNEWTEXTMETRIC lpntm, int nFontType, LPARAM lParam)
{

 // The parameter passed in was an array of CStrings.
 // Add the style found to this array.
 CStringArray *szFamilyArray = (CStringArray *)lParam;

 // If the font is not TrueType assume there are only 4
 // style possibilities.
 if(!(nFontType & TRUETYPE_FONTTYPE))
 {
 szFamilyArray->Add("Regular");
 szFamilyArray->Add("Italic");
 szFamilyArray->Add("Bold");
 szFamilyArray->Add("Bold Italic");

 // We don't need to enumerate any more.
 return(0);
 }

 // If the font is TrueType, the styles are defined
 // in the elfStyle string.
 ASSERT(lplf->elfStyle != NULL);
 CString curStyleName(lplf->elfStyle);
 szFamilyArray->Add(curStyleName);

 // Return 1 so we will get called again for the next style.
 return(1);
}

If the font family is not TrueType, we assume there are four style possibilities:
normal, bold, italic, and bold italic. This is the first check performed by the callback.
We add these four styles to the array and then stop the enumeration with a return val-
ue of 0. If the family is TrueType, the procedure will be called once for each available
style. As each style is enumerated, it is added to the array and a return value of 1 lets
the enumeration continue.

26.4 An Example

As an example, we will create a dialog with two list boxes. One list box will be a
self-drawing control and will contain a list of the available printer fonts. This list box
will contain both the name of the font family and a bitmap that denotes its type. The
other list box will contain the styles available for the currently selected font family.

Create a new application framework. Then create a new dialog resource. On the
dialog, place two list boxes next to each other. Change the IDs of each to

IDC_FONTLIST

 and

IDC_STYLELIST

 respectively. We want the font list box to
be self-drawn, so change the styles of

IDC_FONTLIST

 so the Owner Draw style is

26.4
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

529

Variable and the Has Strings flag is set. The Variable value in the Owner Draw box
indicates that each item in the list can have a variable size. With MFC, all owner-
drawn lists and combo boxes must have this option set. The Has Strings checkbox,
when checked, indicates that the list box will hold the strings for each item in the list.
For this example, be sure that Has Strings is set.

Also create two bitmaps named

IDB_TRUETYPE

 and

IDB_PRINTER

 that
are 16x16 in size. These two bitmaps will represent True Type and Printer fonts.

Similar to the process described in the previous chapter, we need to create our
own list box class to handle the messages required to display our custom list items. Use
the ClassWizard to derive a new class

CFontListBox

 that is derived from

CListBox

.
Then override its

DrawItem

,

MeasureItem

, and

CompareItem

 functions.
For this example we will ignore sorting so the

CompareItem

 function does not
do anything. Return 0 so all the items are considered equal.

int CFontListBox::CompareItem(LPCOMPAREITEMSTRUCT
 lpCompareItemStruct)
{
 return 0;
}

Each item in the list will have a string and a bitmap. The height of the each item
needs to be the tallest of the two, either the height of the bitmap or the height of the
current font. Because our items are all the same height, it is sufficient to determine the
height of a single item and to always return the same value.

void CFontListBox::MeasureItem(LPMEASUREITEMSTRUCT
 lpMeasureItemStruct)
{

 static int cyItem = (-1);

 // Have we already set the height?
 if(cyItem < 0)
 {
 // Load one of the bitmaps to retrieve its height.
 BITMAP bm;
 CBitmap cBitmap;
 VERIFY(cBitmap.LoadBitmap(IDB_TRUETYPE));
 VERIFY(cBitmap.GetObject(sizeof(BITMAP), &bm));
 VERIFY(cBitmap.DeleteObject());

 // Get the height of the current font.
 TEXTMETRIC tm;
 CDC* pDC = GetDC();
 ASSERT(pDC != NULL);
 pDC->GetTextMetrics(&tm);
 VERIFY(ReleaseDC(pDC));

 // The height of each item is the greatest of the two
 cyItem = max(bm.bmHeight, tm.tmHeight);
 }

530

This book is continuously updated. See http://www.iftech.com/mfc

26
A

 S
e

lf-
D

ra
w

in
g

 L
is

t B
o

x

 ASSERT(cyItem > 0);
 lpMeasureItemStruct->itemHeight = cyItem;

}

The rest of the functionality is handled in

DrawItem

.

void CFontListBox::DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct)
{

 if(lpDrawItemStruct->itemID < 0)
 return;

 // Get the font type stored in the item data.
 DWORD wItemData = GetItemData(lpDrawItemStruct->itemID);
 ASSERT(wItemData != LB_ERR);

 // Get the name of the font.
 char szItem[256];
 VERIFY(GetText(lpDrawItemStruct->itemID, szItem) != CB_ERR);
 ASSERT(strlen(szItem) > 0);

 // Get a device context to draw with. We MUST use
 // this device context, and when we are finished with
 // it we have to make sure we didn't change any of its
 // values.
 CDC *pDC = CDC::FromHandle(lpDrawItemStruct->hDC);
 ASSERT(pDC != NULL);

 if(lpDrawItemStruct->itemAction &
 (ODA_DRAWENTIRE | ODA_SELECT))
 {
 COLORREF crText;
 COLORREF crBack;

 // If the item is selected then highlight it.
 if(lpDrawItemStruct->itemState & ODS_SELECTED)
 {
 crText = pDC->SetTextColor(
 ::GetSysColor(COLOR_HIGHLIGHTTEXT));
 crBack = pDC->SetBkColor(
 ::GetSysColor(COLOR_HIGHLIGHT));
 }

 // The LOWORD of the item data tells us if the
 // font it a TRUETYPE or PRINTER font.
 CBitmap cBitmap;

 switch((UINT)LOWORD(wItemData))
 {
 case IDB_TRUETYPE:
 VERIFY(cBitmap.LoadBitmap(IDB_TRUETYPE)); break;
 case IDB_PRINTER:
 VERIFY(cBitmap.LoadBitmap(IDB_PRINTER)); break;
 default :
 VERIFY(cBitmap.LoadBitmap(IDB_TRUETYPE)); break;
 }

26.4
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

531

 // Get the dimension of the bitmap to draw.
 BITMAP bm;
 VERIFY(cBitmap.GetObject(sizeof(BITMAP), &bm));

 // Draw the font label text.
 VERIFY(pDC->ExtTextOut(
 lpDrawItemStruct->rcItem.left + bm.bmWidth + 4,
 lpDrawItemStruct->rcItem.top,
 ETO_OPAQUE | ETO_CLIPPED,
 &lpDrawItemStruct->rcItem,
 szItem, strlen(szItem),
 (LPINT)NULL) == TRUE);

 // Draw the type bitmap on the left of the text.
 if(LOWORD(wItemData) != 0)
 {
 TransBitBlt(pDC,
 lpDrawItemStruct->rcItem.left,
 lpDrawItemStruct->rcItem.top,
 cBitmap, RGB(255,255,255));
 }

 VERIFY(cBitmap.DeleteObject());

 // Return device context to its original state.
 if(lpDrawItemStruct->itemState & ODS_SELECTED)
 {
 pDC->SetTextColor(crText);
 pDC->SetBkColor(crBack);
 }
 }

 // Draw the focus rectangle if needed.
 if((lpDrawItemStruct->itemAction & ODA_FOCUS) ||
 (lpDrawItemStruct->itemState & ODS_FOCUS))
 {
 pDC->DrawFocusRect(&lpDrawItemStruct->rcItem);
 }

}

This

DrawItem

 performs the same actions as the

DrawItem

 function described
in the previous chapter. The main difference is dealing with the bitmaps. First the
name of the font retrieved with

GetText

 is drawn with

ExtTextOut

. This clears the
area, selecting it if necessary, and draws the text. The appropriate bitmap to draw next
to the font is stored in the lower word of the item data associated with each item. This
value was retrieved with

GetItemData

. If the font is a TrueType or Printer font, the
bitmap is drawn with the same

TransBitBlt

 as in Chapter 25 (you must copy this
function into this project). The text is offset to the right to add some spacing between
the text and bitmap.

We need to make the font list box in the dialog a

CFontListBox

 object so use
the ClassWizard to add a control member variable of the type

CFontListBox

 for

IDC_FONTLIST

 and a control member variable of the type

CListBox

 for

532

This book is continuously updated. See http://www.iftech.com/mfc

26
A

 S
e

lf-
D

ra
w

in
g

 L
is

t B
o

x

IDC_STYLELIST

. Also, add a message handler for the

IDC_FONTLIST

's

LBN_SELCHANGE

 message. The

OnInitDialog

 and

OnSelchangeFontlist

 func-
tions are shown below.

BOOL CMyDialog::OnInitDialog()
{
 CDialog::OnInitDialog();

 UpdateFamilyList(m_ctlFontList);
 UpdateStyleList(m_ctlFontList, m_ctlStyleList);

 return TRUE;
}

The

OnSelchangeFontlist

 function will update the style combo box each time
a new family is selected.

void CMyDialog::OnSelchangeFontlist()
{

 UpdateStyleList(m_ctlFontList, m_ctlStyleList);

}

To see how the font enumeration changes, use the Control Panel and change the
default printer. With each printer, the available printer fonts that are shown in the
family list will change. For example, the “Generic/Text Only” printer displays perhaps
five fonts, and only one is a printer font. A PostScript printer has many fonts, most of
which are TrueType fonts.

26.5 Conclusion

Enumeration can be very involved, especially with fonts. One aspect of font enu-
meration not demonstrated here is font size enumeration. Determining what sizes are
available for each font is similar to enumerating the font styles. With TrueType and
vector fonts, there are an infinite number of font sizes, so the enumeration procedure
is not used to enumerate the sizes. With raster fonts, the enumeration procedure is
called once for each font size. With a few modifications to the

EnumFontStylesCB

function, you can add size enumeration easily.

533

27CREATING A SPLASH SCREEN

Most applications display what is called a splash screen as they first start. Some appli-
cations display a splash screen that contains an enlarged application icon and a copy-
right message. Others display a bitmap containing a graphic and the name of the
application. The purpose of a splash screen is to give the user some visual feedback
while the program is loading. It is also a good place to display a copyright or registra-
tion information.

In this chapter we will create a class that implements splash screens. The ap-
proach used here is one solution for implementing splash screens. Another solution is
to use the Component Gallery to insert another implementation of splash screens into
an application. The class presented here has the same functionality, it just does it a dif-
ferent way.

When you think about how a splash screen works, you might think they are
something special. They don’t look like ordinary windows because they don’t have
any borders or decorations, and they don’t stay around too long. In fact, a splash
screen can be nothing more than a modeless dialog. The dialog is tuned so that it has
no borders and a standard timer limits its lifespan. The application displays the dialog
when it first becomes visible and it disappears either when the user presses a key or
mouse button or when some amount of time has elapsed.

27.1 An Example

In this example we will create a simple application that displays a splash screen
when it begins. After the application’s main frame is created, the splash screen is dis-
played. It will remain on the screen until either the user presses a key or mouse button
or two and a half seconds passes.

To start, create an SDI or MDI application framework. Then create a dialog
template to use as the splash screen. We don’t want the splash screen to have a title bar
or system menu, so uncheck the Titlebar style. Delete the OK and Cancel buttons
from the template and add whatever controls you want. After the dialog template is

534

This book is continuously updated. See http://www.iftech.com/mfc

27

finished, use the ClassWizard to create a new class,

CSplashWnd

, that is based on this
template. Add a handler for the dialog’s

WM_CREATE

,

WM_INITDIALOG

, and

WM_TIMER

 messages. Also override the dialog’s

PreTranslateMessage

 function.
Then add the following member variable and function to the class definition.

public:
 BOOL ShowSplashScreen(DWORD dwDisplayTime = 2500);

protected:
 // Number of ticks the dialog is to be displayed
 DWORD m_dwDisplayTime;

Normally, when you want to display a dialog, you use the

CDialog::DoModal

member function. We want the splash dialog to be modeless, so we don’t want to call

DoModal

 because it does not return until the dialog is closed. We want to continue
processing application events while the splash screen is displayed, so we must take an-
other approach. We will create a function named

ShowSplashScreen

 that will display
the dialog and immediately return.

BOOL CSplashWnd::ShowSplashScreen(DWORD dwDisplayTime)
{
 m_dwDisplayTime = dwDisplayTime;

 // Update the main window.
 CWnd* pMainWnd = AfxGetMainWnd();
 ASSERT(pMainWnd != NULL);

 if (pMainWnd->IsIconic())
 return FALSE;

 if (!Create(CSplashWnd::IDD, pMainWnd))
 return FALSE;

 ShowWindow(SW_SHOW);
 UpdateWindow();
 pMainWnd->UpdateWindow();

 return TRUE ;
}

If the user started the application in an iconified state, we don’t want to display
the splash screen because it may get in the user’s way. So, first we use

IsIconic

 to see
if the main window is iconified. If not, we call

Create

. This is how you make the di-
alog modeless. The dialog will now exist until we explicitly destroy it. After the dialog
is created, we display it using

ShowWindow

, then

UpdateWindow

 is used to make
sure the main window and splash screen are displayed correctly.

When the splash screen is created, we use

SetTimer

 to notify us when the spec-
ified time period has elapsed. When it’s time for the splash screen to disappear we will
get a

WM_TIMER

 message notifying us.

27.1
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

535

int CSplashWnd::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CDialog::OnCreate(lpCreateStruct) == -1)
 return -1;

 SetTimer(1, m_dwDisplayTime, NULL);

 return 0;
}

When we receive the

WM_TIMER

 message it is time for us to close the splash screen.

void CSplashWnd::OnTimer(UINT nIDEvent)
{

 // Check only if the splash dialog exists.
 if (m_hWnd != NULL)
 {
 DestroyWindow();

 // Update the main window.
 CWnd* pMainWnd = AfxGetMainWnd();
 ASSERT(pMainWnd != NULL);
 pMainWnd->UpdateWindow();
 }

 CDialog::OnTimer(nIDEvent);
}

The function starts by making sure the dialog still exists. It may be the case that
the dialog was dismissed in response to a mouse or key message. When a window is
destroyed by

DestroyWindow

, the actual

CWnd

 object is not destroyed, but the
Windows window is and its handle (

m_hWnd

) is set to NULL. If there is no dialog,
there is no need to continue. Otherwise, we use

DestroyWindow

 to close the splash
screen. When the dialog is removed, there will be a blank area in the application win-
dow so we use

UpdateWindow

 again to fix it.
When the user clicks the mouse or presses a key we want the splash screen to go

away. This means the splash screen needs to know when the user causes any mouse or
keyboard messages. A good place to filter these messages as they occur is in the

Pre-
TranslateMessage

 function. It will dismiss the splash screen when any user input
occurs. To get this to work we will need to hook this function into the calling
application.

BOOL CSplashWnd::PreTranslateMessage(MSG* pMsg)
{

 if (m_hWnd == NULL)
 return FALSE;

 // If the user causes any input destroy the dialog
 if(pMsg->message == WM_KEYDOWN ||
 pMsg->message == WM_SYSKEYDOWN ||
 pMsg->message == WM_LBUTTONDOWN ||
 pMsg->message == WM_RBUTTONDOWN ||

536

This book is continuously updated. See http://www.iftech.com/mfc

27

 pMsg->message == WM_MBUTTONDOWN ||

 pMsg->message == WM_NCLBUTTONDOWN ||

 pMsg->message == WM_NCRBUTTONDOWN ||

 pMsg->message == WM_NCMBUTTONDOWN)

 {

 DestroyWindow();

 // Update the main window.

 CWnd *pMainWnd = AfxGetMainWnd();

 ASSERT(pMainWnd != NULL);

 pMainWnd->UpdateWindow();

 return TRUE;

 }

 return CDialog::PreTranslateMessage(pMsg);

}

Again, this function first makes sure the dialog is still visible by checking

m_hWnd

. It may be the case that the dialog timed-out before the user pressed any-
thing. Then it checks to see if the current message is a keyboard or mouse event,
ignoring mouse movements. If so, the dialog is destroyed and the main window is up-
dated the same way as before.

Last, we need to modify the

OnInitDialog

 function to perform a trivial but es-
sential task, call

CenterWindow

. This function centers a window within its parent. It
ensures that the splash screen dialog is centered in the application’s frame window.

BOOL CSplashWnd::OnInitDialog()

{

 CDialog::OnInitDialog();

 // Center the dialog in it's parent.

 CenterWindow();

 return TRUE;

}

To add this splash screen to an application first add a member variable of the
type

CSplashWnd

 to the application’s

CWinApp

 class:

 CSplashWnd m_splash;

Remember to include the splash screen include file where necessary. Next, we
have to display the splash screen when the application starts, following the appearance
of the main frame. To do this we use

ShowSplashScreen

. Add this line to the end of
the application’s

InitInstance

 function. You must call

ShowSplashScreen

 after the
application’s main frame window is created.

m_splash.ShowSplashScreen();

27.2
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

537

The last thing we have to do is add the call to the splash screen’s

PreTranslate-
Message

. Use the ClassWizard to override the application’s

CWinApp

 derived class

PreTranslateMessage

 function and have it call the splash screen.

BOOL CMyApp::PreTranslateMessage(MSG* pMsg)
{

 // Let the splash screen check for input.
 if (m_splash.PreTranslateMessage(pMsg))
 return TRUE;

 return CWinApp::PreTranslateMessage(pMsg);
}

Now, if you run the application, the splash screen dialog should pop up after the
main window is created and disappear when you hit a key, press a mouse button, or
wait for two and a half seconds.

27.2 Conclusion

The splash screen in this example is fairly simple and boring. Splash screens can
be much more elaborate and can include detailed images and even animation. See
Chapter 29 for a discussion of how to stretch a bitmap across your splash screen. The
splash screen generated by the Component Gallery is not based on a dialog. It just cre-
ates a window and paints a bitmap into it.

539

28EXPANDING DIALOGS

There are many cases where you need to present users with a complex dialog, but you
do not want to intimidate them by initially displaying all of the complexity. It may be,
for example, that some of the controls are not used very often, or that portions of the
dialog contain more advanced options that are not relevant to novices. As a designer,
you don’t want to overwhelm beginning users with too much information and com-
plexity, but you also don’t want to keep advanced users from being able to customize
your application.

A good compromise in situations like these is an expanding dialog. Expanding
dialogs allow you to cater to both needs. An example of an expanding dialog is the di-
alog shown in Figure 28.1. This is the Color dialog from the Control Panel that allows
you to customize the Windows color scheme. Most of the time users only need to pick
a color scheme they like from the Color Schemes combo. For this purpose the dialog
on the left is adequate. But in order to facilitate more advanced users, there is the Col-
or Palette button. If you select this button, the dialog expands so that more controls
are visible. This second pane gives advanced users more control, allowing them to
change the color of individual screen elements.

In this chapter we will create an expanding dialog class that you can derive from
and reuse in your applications. This will explain how expanding dialogs work and also
give you an example of how to create reusable classes.

28.1 The CExpandingDialog Class

The class we are going to create will be named

CExpandingDialog

 and it will
be derived from

CDialog

. Its goal will be to allow you to create expanding dialogs as
easily as you can create normal dialogs. The only thing you will have to do differently
is add two special dialog controls to your dialog template. The expanding dialog class
will automatically handle the expansion of the dialog.

540

This book is continuously updated. See http://www.iftech.com/mfc

28
Ex

p
a

nd
in

g
 D

ia
lo

g
s

Figure 28.1

A typical expanding dialog

In order to for the expanding dialog class to be able to automatically handle the
expansion of the dialog, the derived dialog’s template must have two special controls.
The first will be the button that will cause the expansion. This button must have an
ID of

IDC_EXPAND

. The second control will be used to mark the division between
the controls that are visible in the expanded portion of the dialog versus the non-ex-
panded portion. This control can be of any type, but it must have an ID of

IDC_EXPAND_MARKER

.
To start, use the ClassWizard to create a

CExpandingDialog

 class that is de-
rived from

CDialog

 and add a handler for the dialog’s

WM_INITDIALOG

message.
The class the created by the ClassWizard is supposed to be used in connection with a
dialog template. Our case is special. We want our expanding dialog class to be a base
class for other dialogs, it cannot be used directly with a dialog template. To make the
class a base dialog class you must change the default constructor and remove the dialog
template

IDD

 enumeration from the

AFX_DATA

portion of the class definition.
This is because the class is a base class, it does not have an associated dialog template,
derived classes are intended to provide the template to use. The new class definition
for the expanding dialog class is shown below. It includes the changes above as well as
a few member variables and functions.

class CExpandingDialog : public CDialog
{
// Construction
public:

 CExpandingDialog(UINT nIDTemplate, CWnd* pParentWnd = NULL);

// Dialog Data
 //{{AFX_DATA(CExpandingDialog)

 CButton m_ctlExpandBtn;
 CWnd m_ctlExpandMarker;

28.1
The

 C
Exp

a
nd

ing
D

ia
lo

g
 C

la
ss

This book is continuously updated. See http://www.iftech.com/mfc

541

 //}}AFX_DATA

// Overrides
public:
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CExpandingDialog)
 protected:
 virtual void DoDataExchange(CDataExchange* pDX);
 //}}AFX_VIRTUAL

 CString m_strShrinkCaption;
 CString m_strExpandCaption;
 virtual void EnableExtraControls(BOOL bEnabled);

// Implementation
protected:

 void ShrinkDialog(void);

 int m_nNormalHeight;
 int m_nExpandedHeight;
 BOOL m_bExpanded;

 // Generated message map functions
 //{{AFX_MSG(CExpandingDialog)
 virtual BOOL OnInitDialog();

 afx_msg void OnExpand();

 //}}AFX_MSG
 DECLARE_MESSAGE_MAP()
};

Manually add an entry for the

IDC_EXPAND

 button command to the dialog’s
message map:

BEGIN_MESSAGE_MAP(CExpandingDialog, CDialog)
 //{{AFX_MSG_MAP(CExpandingDialog)

 ON_BN_CLICKED(IDC_EXPAND, OnExpand)

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

The class constructor initializes the member variables to a default state. Derived
classes can change the caption strings in their constructors to customize the dialog.

CExpandingDialog::CExpandingDialog(UINT nIDTemplate,
 CWnd* pParentWnd) : CDialog(nIDTemplate, pParentWnd)

{

 m_nNormalHeight = 0;
 m_nExpandedHeight = 0;
 m_bExpanded = TRUE; // Dialogs are created at normal size

 m_strShrinkCaption = _T("Details <<");
 m_strExpandCaption = _T("Details >>");

 //{{AFX_DATA_INIT(CExpandingDialog)
 //}}AFX_DATA_INIT
}

542

This book is continuously updated. See http://www.iftech.com/mfc

28
Ex

p
a

nd
in

g
 D

ia
lo

g
s

Manually edit

DoDataExchange

 to use the

DDX_Control

routine to associate
the control member variables with the two special controls on the dialog.

void CExpandingDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CExpandingDialog)

 DDX_Control(pDX, IDC_EXPAND, m_ctlExpandBtn);
 DDX_Control(pDX, IDC_EXPAND_MARKER, m_ctlExpandMarker);

 //}}AFX_DATA_MAP
}

When the dialog is initially displayed we want it to be in its non-expanded form.
First we check to make sure the expanding marker control exists, then we call

Shrink-
Dialog

 so the dialog is displayed in it’s non-expanded state.

BOOL CExpandingDialog::OnInitDialog()
{

 // The expand marker control must exist
 if(GetDlgItem(IDC_EXPAND_MARKER) == NULL)
 {
 TRACE0("Expanding control marker does not exist\n");
 EndDialog(-1);
 return TRUE;
 }

 CDialog::OnInitDialog();

 // The initial dialog is not expanded
 ShrinkDialog();

 return TRUE;
}

The expanding button’s

OnExpand

 message handler uses the

MoveWindow

function to toggle the dialog’s height between normal and expanded.

void CExpandingDialog::OnExpand()
{
 CRect rcDlg;

 GetWindowRect(rcDlg);

 if(m_bExpanded)
 {
 rcDlg.SetRect(rcDlg.left, rcDlg.top,
 rcDlg.left + rcDlg.Width(),
 rcDlg.top + m_nNormalHeight);
 }
 else
 {
 rcDlg.SetRect(rcDlg.left, rcDlg.top,
 rcDlg.left + rcDlg.Width(),

28.1
The

 C
Exp

a
nd

ing
D

ia
lo

g
 C

la
ss

This book is continuously updated. See http://www.iftech.com/mfc

543

 rcDlg.top + m_nExpandedHeight);
 }

 // Keeps the window from flashing by hiding it
 SetWindowPos(NULL, -1, -1, -1, -1,
 SWP_HIDEWINDOW | SWP_NOMOVE | SWP_NOSIZE |
 SWP_NOZORDER | SWP_NOACTIVATE);

 // Resize the dialog
 MoveWindow(rcDlg, TRUE);

 // Keep the dialog centered
 if(CheckAutoCenter())
 {
 CenterWindow();
 }

 // Toggle the expanded flag
 m_bExpanded = !m_bExpanded;

 // Change the button text
 m_ctlExpandBtn.SetWindowText(
 (m_bExpanded) ? m_strShrinkCaption :
 m_strExpandCaption);

 // Enable/Disable the extra controls
 EnableExtraControls(m_bExpanded);

 // Keeps the window from flashing
 SetWindowPos(NULL, -1, -1, -1, -1,
 SWP_SHOWWINDOW | SWP_NOMOVE | SWP_NOSIZE |
 SWP_NOZORDER | SWP_NOACTIVATE);
}

The function uses the

m_bExpanded

flag to determine what mode the dialog
should be in. Then it can use

MoveWindow

 to modify the height of the dialog to be

m_nNormalHeight

or

m_nExpandedHeight

. It also changes the button caption to
let the user know the dialog can change between normal and expanded views. After
the dialog is resized we have to enable or disable the controls in the expanded portion
of the dialog.

EnableExtraControls

 allows us to enable and disable the extra controls on the
dialog depending on what mode the dialog is in.

void CExpandingDialog::EnableExtraControls(BOOL bEnabled)
{
 HWND hWndChild = ::GetDlgItem(m_hWnd, IDC_EXPAND_MARKER);

 // Enable the extra controls when the dialog is expanded
 // and disable them when it is in normal mode. This
 // keeps the user from being able to tab to the controls.
 // The default is to enable all the controls including and
 // after the IDC_EXPAND_MARKER control.

 while(hWndChild != NULL)

544

This book is continuously updated. See http://www.iftech.com/mfc

28
Ex

p
a

nd
in

g
 D

ia
lo

g
s

 {
 ::EnableWindow(hWndChild, bEnabled);
 hWndChild = ::GetNextWindow(hWndChild, GW_HWNDNEXT);
 }
}

This is where the expanding marker control is used. All the controls after the
marker, including the marker itself, are enable or disabled automatically depending on
the dialog’s mode. We have to disable the controls that will not be visible when the
dialog is shown in the normal (not expanded) state. This keeps the controls from gain-
ing focus. If you did not disable these controls, the user could tab to them or use any
mnemonics they might have. This would become very confusing for the user. If the
derived class cannot use the automatic enabling and disabling of controls, it can over-
ride

EnableExtraControls

 to do any special processing.
The

ShrinkDialog

 function initializes the dialog to it’s non-expanded mode.

void CExpandingDialog::ShrinkDialog(void)
{
 CRect rcDlg, rcMarker;

 // Calculate the expanded (max) height of the dialog
 GetWindowRect(rcDlg);
 m_nExpandedHeight = rcDlg.Height();

 // The top of this control is considered the bottom
 // of the normal height dialog.
 m_ctlExpandMarker.GetWindowRect(rcMarker);

 // Calculate the normal height of the dialog
 const int nPadding = ::GetSystemMetrics(SM_CYFRAME) * 3;
 m_nNormalHeight = (rcMarker.top - rcDlg.top) /*+ nPadding*/;

 // Shrink the height dimension of the dialog
 rcDlg.SetRect(rcDlg.left, rcDlg.top,
 rcDlg.left + rcDlg.Width(),
 rcDlg.top + m_nNormalHeight);

 // Resize the dialog to the new (normal) size
 MoveWindow(rcDlg, TRUE);

 // The dialog is normal size
 m_bExpanded = FALSE;

 // Change the button text
 m_ctlExpandBtn.SetWindowText(
 (m_bExpanded) ? m_strShrinkCaption :
 m_strExpandCaption);

 // Enable/Disable the extra controls
 EnableExtraControls(m_bExpanded);
}

28.2
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

545

The expanded height of the dialog is the original height of the dialog when it is
created. We can use

GetWindowRect

 to get this value. The normal (non-expanded)
height of the dialog is the distance between the top of the dialog and the top of the
expanding control marker. To determine this height, we find the top of the marker
and add some padding to it. This value is stored in

m_nNormalHeight

. These vari-
ables are used each time the user selects the expand button to toggle between normal
and expanded views. Because we want the dialog to be shown initially in its normal
state, the last thing we do is shrink the dialog to its normal height. The key part of this
function is the

MoveWindow

 call. This is the function that we will use to expand and
shrink the dialog. It changes the position and dimensions of a window. Because we
only modified the dialog’s height in

SetRect

, that is the only dimension that will
change. The

m_bExpanded

flag is used to keep track of what state the dialog is in.

28.2 An Example

Create a new dialog resource. Add a button below the Cancel button and make
this button’s ID be

IDC_EXPAND

. Add a control (the Picture control makes a good
divider) and place it as a divider between the upper and lower portions of the dialog.
Give this control an ID of

IDC_EXPAND_MARKER

. (You can make this control
not visible if you like.) Now add some other controls to the dialog. Controls above the
divider will always be visible. Controls below the divider will only be visible when the
dialog is expanded. After you add all the controls to the dialog check the tab order.
All controls below the divider must be after the divider itself. An example is shown in
Figures 28.2 and 28.3.

When the dialog is complete, use the ClassWizard to create a new dialog class
that is based on this template. If the ClassWizard will not let you specify

CExpand-
ingDialog

 as the base class, you will have to edit the new class generated by the
ClassWizard and manually change all references of

CDialog

 to

CExpandingDialog

using Replace All . Also, remember to include the expanding dialog class header file
where necessary.

Now wire this dialog into an application and play with the expand button.

Figure 28.2

Sample dialog

546

This book is continuously updated. See http://www.iftech.com/mfc

28
Ex

p
a

nd
in

g
 D

ia
lo

g
s

Figure 28.3

Tab order for sample dialog

28.3 Conclusion

If you wanted to make the dialog expand horizontally you could make the class
a bit smarter so you could have either a horizontal or vertical divider. The only change
necessary would be to change the dialog’s width instead of its height.

Although expanding dialogs are useful, they may not be the only solution to the
problem of complex dialogs. In some cases it might be more appropriate to use anoth-
er auxiliary dialog (nested dialogs), or perhaps a property sheet containing the
advanced options.

547

29DRAWING AND CONTROLS

In this chapter we will explore two types of unusual drawing areas. The first is a static
text control. You usually use static text controls as labels for other controls such as lists
or edit fields. In this chapter we will explain how to convert a static text control into
a miniature drawing area. The second unusual area is the background of a dialog. We
will explain how to use the background of a dialog to display a bitmap.

29.1 Drawing in CStatic Controls

You usually don’t think of a static text control as a place to draw. The technique
used in this chapter allows you to think of the face of a static text area as a normal
drawing area where you can use any of the

CDC

 drawing functions. This approach
has several advantages:

1. It allows the control to draw itself. This is not the same type of self-drawing
described in Chapter 25, but it keeps the drawing’s functionality self-contained.
This lessens the work required when drawing.

2. It allows the programmer to position and size a control in the dialog editor. The
alternative to drawing on a

CStatic

 control is to try to draw on the dialog’s
background in a small, specified sub-area of the dialog. The problem with this
approach is that you have to position and clip the sub-area yourself. Using a

CStatic

 control you can visually position the drawing area in a dialog with
respect to other dialog controls using the dialog editor. The

CStatic

 control will
handle positioning and clipping of the drawing itself.
In this section we will convert a static text control into a drawing area that plots

points as the mouse moves when the left mouse button is pressed. The drawing area
can be used for any kind of drawing, however, including static drawing commands,
animated bitmaps, and other techniques.

Create an application framework and then create a new dialog template. Add a
static text control to the dialog and change its ID to something other than

548

This book is continuously updated. See http://www.iftech.com/mfc

29
D

ra
w

in
g

 a
nd

 C
o

nt
ro

ls

IDC_STATIC

. If you use

IDC_STATIC

as the ID (the default), the control will not
appear in the ClassWizard object list because this ID is filtered out.

In a manner similar to the process described in previous chapters for self-draw-
ing controls, we need to create our own class to handle the messages required to draw
into the static control. Use the ClassWizard to derive a new class,

CMyStatic

, from

CStatic

. The most important message to handle in the

CMyStatic

 class is the

WM_PAINT

message. This message will allow the class to draw itself when necessary,
in effect making the control self-drawing. The other messages we will handle are the
mouse messages

WM_MOUSEMOVE

,

WM_LBUTTONDOWN

,

WM_LBUTTONUP

, and

WM_NCHITTEST

. These messages will allow us to turn
the static control into a miniature drawing area. Use the ClassWizard to add handlers
for these messages.

First, add the following member variable to the

CMyStatic

 class definition and
modify the class constructor to initialize the member variable:

protected:
 BOOL m_bButtonDown;

CMyStatic::CMyStatic()
{

 m_bButtonDown = FALSE;

}

The

OnPaint

 message for the new class is shown below. This function is called
each time the control needs to be repainted or refreshed. The function is simple for
this example because we are not storing the points that are being drawn. If you were
storing the data or wanted to draw a picture, it would be done in the

OnPaint

function.

void CMyStatic::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 CRect r;
 GetClientRect(&r);

 // Draw a border around the control
 dc.Rectangle(r);

 // If you were storing the data being drawn
 // this is where you would place the code to
 // draw on refreshes.

 TRACE("OnPaint\n");

 // Do not call CStatic::OnPaint() for painting
}

The

CStatic

 control class does not usually handle any input messages. However,
we want our

CMyStatic

 class to handle button presses and mouse movement so we

29.1
D

ra
w

ing
 in C

Sta
tic

 C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

549

can draw. Because the

CStatic

 class will not automatically handle the

WM_LBUTTONDOWN

message and other messages like it, we have to do a little
extra work.

The key to making the

CMyStatic

 class understand messages lies in the

WM_NCHITTEST

message. This message is sent to a control when the mouse
moves or when a mouse button is pressed or released inside the control. The value re-
turned from the message lets Windows know what the cursor shape should be and
when to change it. The default

CStatic::OnNcHitTest

function returns the value

HTTRANSPARENT

. This value tells Windows that the mouse is in a window that
is covered by another window. When a control returns

HTTRANSPARENT

, Win-
dows does not send the control any mouse events. Therefore, to allow the

CMyStatic

class to receive mouse events, its

OnNcHitTest

 function needs to return

HTCLIENT

instead. This value tells Windows that the cursor is in the client area of a window and
that the control should receive mouse events.

UINT CMyStatic::OnNcHitTest(CPoint point)
{

 // Do not call CStatic::OnNcHitTest
 return(HTCLIENT);

}

The handling of the button events for this example is simple. We want to draw
in the client area of the static text control when the user moves the mouse when the
left button is pressed. To begin drawing we need to know when the mouse button is
pressed. The

OnLButtonDown

 and

OnLButtonUp

 functions use a Boolean flag
that tells us when to draw points on mouse movement. Note, to make this process
more accurate, you would need to use the

SetCapture

 function.

void CMyStatic::OnLButtonDown(UINT nFlags, CPoint point)
{

 TRACE("OnLButtonDown\n");

 m_bButtonDown = TRUE;

 CStatic::OnLButtonDown(nFlags, point);
}

void CMyStatic::OnLButtonUp(UINT nFlags, CPoint point)
{

 TRACE("OnLButtonUp\n");

 m_bButtonDown = FALSE;

 CStatic::OnLButtonUp(nFlags, point);
}

When the mouse is moved in the static text control’s client area,

OnMouse-
Move

 is called. If the left button is pressed while the mouse is moving,

OnMouseMove

 will set a pixel at each mouse point using

SetPixel

. You could, if you

550

This book is continuously updated. See http://www.iftech.com/mfc

29
D

ra
w

in
g

 a
nd

 C
o

nt
ro

ls

like, improve the process by modifying the code to store each point drawn and draw
lines between adjacent points.

void CMyStatic::OnMouseMove(UINT nFlags, CPoint point)
{

 if(m_bButtonDown)
 {
 TRACE("OnMouseMove with button down\n");

 CClientDC dc(this);
 dc.SetPixel(point, RGB(0,0,0));
 }

 CStatic::OnMouseMove(nFlags, point);
}

Now that we have a

CMyStatic

 class, we need to associate it with the static text
control we created in the dialog. Use the ClassWizard to create a control member vari-
able of the type

CMyStatic

 for the static text control.
Before continuing, test the

CMyStatic

 class. Run the application and move the
mouse over the static text control and move the mouse while holding the left mouse
button down. You should see a black pixel drawn at each point where the mouse
moves. Remember, the lines will be jumpy unless you move the mouse slowly. (You
may wish to remove the

TRACE

 statements from the code once it is working.)

29.2 Drawing in Dialogs

The background of most windows is one solid color. The background of views
may be white, and the background of most dialogs is gray. But what if you want to
customize the background of a dialog or make the background of each view in your
application different? By having a window manage the

WM_ERASEBKGND

mes-
sage, we can customize what is drawn as the background. Instead of having Windows
erase the background with some boring color we can draw any sort of pattern or bit-
map in the background.

First, create a new bitmap resource with an ID of

IDB_BACKGROUND

. The
width and height of the bitmap can be anything you like because we will use

Stretch-
Blt

 to draw the bitmap. This function will stretch the bitmap to fit a given rectangle.
To lessen the distortions caused by

StretchBlt

 though, the bitmap dimensions should
be close to the dimensions of the window it will be drawn in.

The

WM_ERASEBKGND

message is sent to a window when some portion of
the window’s background needs erasing. It is usually sent before the

WM_PAINT

message is sent to the window. The default response to this message is to erase the
background with the window’s class background brush. By overriding this function
we can draw whatever we want in the window’s background.

Try to use the ClassWizard to add a handler for the

WM_ERASEBKGND

mes-
sage. If you search through the list of available messages to add, you will not see the

WM_ERASEBKGND

message. This is because the ClassWizard filters that message,

29.2
D

ra
w

ing
 in D

ia
lo

g
s

This book is continuously updated. See http://www.iftech.com/mfc

551

along with several others because they are not used in dialogs often. To show all the
available messages in the list, switch to the Class Info tab. Notice the Message Filter
combo box. Each item in the list causes different messages to be filtered from the mes-
sage list. For example, the Not a Window item filters out all messages and no items
will appear in the Messages list. The ClassWizard filters the messages in this fashion
to simplify the process of adding messages to a class. A dialog initially has the Dialog
message filter and the

WM_ERASEBKGND

message isn’t shown. Change the filter
to Window and all messages will be available. Change back to the Message Maps tab
and add a function for the

WM_ERASEBKGND

message.

BOOL CMyDialog::OnEraseBkgnd(CDC* pDC)
{

 // Load bitmap to display
 CBitmap bmpBackground;
 VERIFY(bmpBackground.LoadBitmap(IDB_BACKGROUND));

 // Get the dimensions of the bitmap.
 BITMAP bm;
 bmpBackground.GetObject(sizeof(BITMAP), &bm);

 // How big is the destination window?
 RECT clientRect;
 GetClientRect(&clientRect);

 // Get the position to draw the upper
 // left corner of the bitmap.
 CPoint point(clientRect.left, clientRect.top);

 // Get the width and height the bitmap
 // needs to be drawn.
 CSize size(clientRect.right, clientRect.bottom);

 // Create a memory DC compatible with the window's DC.
 CDC memDC;
 VERIFY(memDC.CreateCompatibleDC(pDC));

 // Select the background bitmap into the memory DC.
 CBitmap* pOldBmp = memDC.SelectObject(&bmpBackground);
 ASSERT(pOldBmp != NULL);

 // StretchBlt the bitmap onto the window's background.
 pDC->StretchBlt(point.x, point.y, size.cx, size.cy,
 &memDC, 0, 0, bm.bmWidth-1, bm.bmHeight-1,
 SRCCOPY);

 // Select out the bitmap.
 VERIFY(memDC.SelectObject(pOldBmp));

 // Delete the bitmap that was loaded.
 bmpBackground.DeleteObject();

 return TRUE;

}

552

This book is continuously updated. See http://www.iftech.com/mfc

29
D

ra
w

in
g

 a
nd

 C
o

nt
ro

ls

First, the function loads the bitmap from the resource file and determines its di-
mensions. Then it determines the dimensions of the destination window and where
the bitmap should be drawn. A memory device context compatible with the window
device context is created and the bitmap is selected into it.

StretchBlt

 copies the bit-
map from the memory DC to the background of the window. The bitmap will be
stretched or compressed as necessary to fit the dimensions of the destination. This way
we completely fill the window’s background with the bitmap. If you only want to
draw at a particular position without distortion, you can use the normal

BitBlt

 func-
tion instead of

StretchBlt

. After the bitmap is copied, the DC is returned to normal
and the bitmap is deleted.

29.3 Dialog Controls and the Background

If you rebuild the application and display the dialog, you will find it displays
your bitmap on the background of the dialog. For this example everything looks fine.
But if you add some controls to the dialog, such as other static text controls, you will
notice something peculiar. You will notice that the rectangular regions around the
static text controls are gray and they overwrite the bitmap. This is because the default
background of the dialog is gray. The static control usually erases its client area with
its parent’s background color. To keep the controls from overwriting the bitmap, we
need to handle the

WM_CTLCOLOR

message. The

OnCtlColor

 function is called
when a child control is about to be drawn. It gives you a chance to prepare the device
context that will be used to draw the control. Here we will change the background
mode of the device context to

TRANSPARENT

so the background bitmap will not
be erased before the static text control is drawn. Then we return a handle to a

HOL-
LOW

 brush that will be used for painting the control’s background.

HBRUSH CMyDialog::OnCtlColor(CDC* pDC, CWnd* pWnd,
 UINT nCtlColor)
{

 // Don't erase bitmap when drawing controls.
 pDC->SetBkMode(TRANSPARENT);

 return((HBRUSH)::GetStockObject(HOLLOW_BRUSH));

}

Compile and run the application. You will find that the dialog appears and that
the bitmapped background has been stretched over it. The controls are then painted
on top of the background.

29.4 Conclusion

The examples discussed in this chapter are greatly simplified for illustrative pur-
poses. In the drawing area, for example, we didn’t store the points drawn so they could
be redrawn in the

OnPaint

 function. You could add a variety of functionality to the

CMyStatic

 class by using other drawing techniques.

29.4
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

553

You could also enhance the dialog’s handling of the

OnCtlColor

 and

OnErase-
Bkgnd

 functions to be more efficient. For example, if you load the hollow brush in

OnInitDialog

,

GetStockObject

 wouldn’t need to be called each time

OnCtlColor

was called. It would also be more efficient to load and select the bitmap being drawn
into a class member variable in the

OnInitDialog

 function. This would keep the code
from having to load the bitmap every time the background needs erasing. Two points
to remember when using this approach:

1. The window’s

OnDestroy

 member function needs to deselect and delete the
bitmap.

2. The

CBitmap

 pointer returned by

SelectObject

 is temporary, so to keep track
of

pOldBmp

 between the

OnInitDialog

 call and the

OnDestroy

 call you
would need to save the Windows handle of the bitmap that is returned by the

GetSafeHandle

 function.
The same bitmap techniques shown in this chapter can also be used to customize

the background of views in an SDI or MDI shell. For example, you could also modify
the background of a view with a product logo or bitmap. Try out several variations
and see if any of them appeal to you.

555

30DIALOG BARS

One of the classes in the MFC visual object hierarchy is the

CControlBar

 class. This
is the base class for the

CToolBar

,

CStatusBar

, and

CDialogBar

 classes. These classes
demonstrate how MFC can tremendously simplify the creation of desirable applica-
tion features. For example, the

CToolBar

 class gives your application the ability to cre-
ate a row of buttons across the top of your frame window. These buttons allow access
to common menu items. You saw how easy it was to add tool bar buttons in Chapter
18. Also in Chapter 18 you saw how the

CStatusBar

 class allows you to create a set of
status panes across the bottom of your frame window to notify the user about the state
of the application. Both these classes perform a substantial amount of their work “be-
hind the scenes” and, therefore, make your job as a programmer much easier. You don’t
have to think about what happens when the frame window resizes or when a menu
item is selected or disabled. The classes handle these details automatically.

 The

CDialogBar

 class is a member of this family. It is an extremely flexible and
powerful class that gives you the freedom to place almost any control that you choose
into a toolbar-like window. In this chapter we will explore the

CDialogBar

 class and
give you an example of how to use it.

The most common example of a dialog bar is the standard set of buttons that
appear in the tool bar at the top of every MFC print preview window.

Figure 30.1

The print preview dialog box

The

CDialogBar

 class is unique in the fact that it behaves much like a modeless
dialog. It can contain any type of control: buttons, edit boxes, lists, and so on. It also
supports tabbing between controls in the dialog bar. Dialog bars are extremely useful
when you need a toolbar–like window in your application that requires more flexibil-
ity than a simple line of buttons.

556

This book is continuously updated. See http://www.iftech.com/mfc

30
D

ia
lo

g
 B

a
rs

Creating the dialog bar is as simple as creating a normal dialog. First you create
a dialog template resource, then you create a

CDialogBar

 object using that template.
The controls on the dialog bar behave as normal, sending notification messages to the
dialog bar’s parent window. Additionally the

CDialogBar

 class has the ability to align
itself with its parent window and even “float” like a normal

CToolBar

 object so that
it works like a palette.

30.1 An Example

In this example we will create a

CDialogBar

 containing several different con-
trols. The bar will initially align itself to the top of the main frame window of an
application.

Create a new application framework and create a dialog template to use for the
dialog bar. Give the dialog an ID of

IDD_DIALOGBAR

and change the dialog style
to Child, the Border to None, and make sure all the options are unchecked. Delete
the two default buttons and add some controls to the dialog. For this example you can
add an edit box, a combo box, and a push button. We will use the default control IDs,

IDC_EDIT1

,

IDC_COMBO1

, and

IDC_BUTTON1

. The size of the dialog bar
will be the size of the dialog template, so resize the dialog template so it is shaped like
a regular tool bar.

Now we need to modify the

CMainFrame

 class so it contains our dialog bar.
The main frame is probably already creating a toolbar and status bar so we can add the
dialog bar where these are created. Add a

CDialogBar

 member variable named

m_dlgBar

to the

CMainFrame

 class definition. Also, so we can later add a message
handler for the button on the dialog bar, modify the

AFX_MSG

section of the class
by adding the

OnButton1

 function. Sections of the resulting class are shown here:

class CMainFrame : public CFrameWnd
{
 protected:

 CDialogBar m_dlgBar;

 ...

 //{{AFX_MSG(CMainFrame)

 afx_msg void OnButton1();

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 //}}AFX_MSG

 ...
};

To create the dialog bar, call the

m_dlgBar

object’s

Create

 function in the
frame window’s

OnCreate

 after calling the base class

OnCreate

.

 if (!m_dlgBar.Create(this,IDD_DIALOGBAR,CBRS_TOP,
 IDD_DIALOGBAR))
 {
 TRACE("Failed to create dialog bar!\n");
 return -1;

30.1
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

557

 }

This creates a dialog bar using the dialog resource template

IDD_DIALOGBAR

. The

CBRS_TOP

flag makes the dialog bar span the top of the
frame window. Try changing this to

CBRS_BOTTOM

,

CBRS_LEFT

, and

CBRS_RIGHT

to see how the dialog bar changes. The height of the dialog bar is de-
termined by the height of the dialog resource template, and the width becomes the
width of the frame window it is attached to.

For the button we created on the dialog bar to actually do something, it must
have a message handler. Because the parent of the dialog bar will be the main frame
window,

CMainFrame

 is the class that will receive the control messages from the di-
alog bar. We already added the function prototype to the

CMainFrame

 class. All
that’s left is to add the function

OnButton1

 to the class’s message map by adding the

ON_COMMAND

for the

IDC_BUTTON1

command ID.

BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
 //{{AFX_MSG_MAP(CMainFrame)
 ON_WM_CREATE()

 ON_COMMAND(IDC_BUTTON1, OnButton1)

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

An example

OnButton1

 function is shown here.

void CMainFrame::OnButton1()
{
 TRACE("Button Pressed\n");
 Beep(500, 500);
}

What we have done here is add the button’s message handler into the message
map manually. Once we have added the control into the map manually, its ID will
appear in the ClassWizard and you will be able to later manipulate it from there as you
would with any control in a dialog.

If you make several minor modifications to the application, you can give the di-
alog bar tool tips and display helpful information in the status bar as well. First, add
the

CBRS_FLYBY

and

CBRS_TOOLTIPS

flags to the

Create

 call.

if(!m_dlgBar.Create(this, IDD_DIALOGBAR,

 CBRS_TOP | CBRS_FLYBY | CBRS_TOOLTIPS,

 IDD_DIALOGBAR))
{
 TRACE("Failed to create the dialog bar!\n");
 return -1;
}

Then you must add a string to the String Table resource. The ID of this new
string must be the same as the control command ID of the control with which the
message is to be associated, just like for tool bars. The message contains two sections

558

This book is continuously updated. See http://www.iftech.com/mfc

30
D

ia
lo

g
 B

a
rs

separated by a newline (\n). The first part of the string is the message that will be dis-
played in the status bar if the

CBRS_FLYBY

flag is used. The second part of the string
is the message that will appear in the tool tip for the control when

CBRS_TOOLTIPS

is specified. By adding a string resource for

IDC_BUTTON1

,

IDC_EDIT1

, and

IDC_COMBO1

you can have tool tips for each control.
The dialog bar can also be turned into a floating dialog bar just as tool bars can.

Add the two lines shown below after the dialog bar has been created in the

OnCreate

function in. The

EnableDocking

 call tells the dialog bar that it can align itself to any
side of its parent (as long as its parent accepts docking on that side by calling

Enable-
Docking

 also).

m_dlgBar.EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_dlgBar);

The final

DockControlBar

 call docks the dialog bar to the frame window. The
opposite of this is the

FloatControlBar

 call that undocks the dialog bar and makes it
a floating window. You usually call these functions when the application is starting.

Compile and run the application. You will find that your new dialog bar initially
appears at the top of the window. However, you can drag it to other positions, or drag
it out so it converts automatically to a floating palette. The tool tips and status bar will
respond appropriately. Something you may notice is that the tool tips and fly-by mes-
sages don’t always appear when the cursor is over a control in the dialog bar. For
example, notice how the tool tip disappears after you click the button once. No tool
tips or fly-by messages will appear for that dialog bar until another window in the ap-
plication takes away the focus from the dialog bar. This is so that when you start
typing in an edit control in a dialog bar, the fly-by message will not get in the way.

30.2 Data Exchange

As you get more involved with dialog bars, you will eventually want to exchange
data with the dialog bar’s controls. Ideally you would like to use DDX as you do with
normal dialogs. For example, when the ClassWizard creates a new

CDialog

-derived
class, it automatically adds the

DoDataExchange

 function. Then you can use Class-
Wizard to add member variables to the dialog class.

The

CDialogBar

 class is different because you cannot use ClassWizard to create
a

CDialogBar

-derived class. There are two solutions to this problem:

1. The simpler solution is to use functions such as

GetDlgItemText

 to access the
data inside dialog bar controls. The dialog bar's parent can use these functions
to exchange and validate the data in each control. This technique can become
difficult if the dialog bar is complicated, but is extremely straightforward for
simple dialog bars.

2. The other solution is to use the dialog data exchange functions described in
Chapter 22. This technique allows you to use the existing DDX and DDV
functions. This approach is more difficult because you must create your own

30.3
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

559

class derived from

CDialogBar

 and override its

DoDataExchange

 function
(inherited from

CWnd

). This must be done manually, either by creating a new
class from scratch or by starting from a

CDialog

-derived class created by Class-
Wizard and modifying that class to be derived from

CDialogBar

. Then the dia-
log bar's parent can call the dialog bar's

UpdateData

 function to validate the
data in the dialog bar.

30.3 Conclusion

You can literally do anything you want with dialog bars. You simply use the
same principles demonstrated in Part 1 to extract the data from the bar. You will find
a number of important ways to use these extremely flexible controls in your own
applications.

561

31DIALOG AND VIEW IDLE
COMMAND UPDATING

In Part 3 of this book you learned how to use

UPDATE_COMMAND_UI

to have
your applications’ menus and toolbar buttons enable and disable themselves automat-
ically. Using this method of command update handling is very simple and very useful.
The

UPDATE_COMMAND_UI

mechanism however only works for menus, and
controls that are children of toolbars, status bars, and dialog bars. In this chapter we
will create a dialog and view class that will also be able to enable and disable children
controls using the

UPDATE_COMMAND_UI

mechanism. Note: The information
in this chapter depends on some undocumented features of the framework. Future
versions of MFC may require changes for this functionality.

31.1 How Idle Updates Work

When an applications’ message queue becomes empty, the application goes into
an idle state. When the application enters this idle state, a

WM_IDLEUPDATECMDUI

message is sent to the applications’ main window, all
the main windows’ descendants, and to all frame windows and their descendants. The
handler for this message, usually

OnIdleUpdateCmdUI,

 does different things for dif-
ferent windows. For example, the

CFrameWnd

 updates elements such as the menu
bar, title, and window layout.

The interesting class is

CControlBar

. This is where you usually see the affects
of idle updates because its affects are visible, i.e. when buttons on a

CToolBar

 are en-
abled and disabled. Its

OnIdleUpdateCmdUI

 eventually calls its virtual function

OnUpdateCmdUI

. Derived classes handle this call differently as well, but the power
of this function is that it calls

CWnd::UpdateDialogControls

. This function iterates
through all the controls in the window and either calls the controls’

OnCmdMsg

 (for
message reflection), the controls’ parents’

OnCmdMsg

 or

CCmdUI::DoUpdate

on
the control.

DoUpdate

 is the major player in the idle update process. (This is also
the function called in

CFrameWnd

OnInitMenuPopup

 to enable/disable menu
commands). This function calls the target window’s

OnCmdMsg

 with the message

CN_UPDATE_COMMAND_UI

which will call the familiar

ON_UPDATE_COMMAND_UI

handlers that actually

Enable

,

SetText

, etc. the
toolbar or menu commands.

562

This book is continuously updated. See http://www.iftech.com/mfc

31
D

ia
lo

g
 a

nd
 V

ie
w

 Id
le

 C
o

m
m

a
nd

 U
p

d
a

tin
g

All we need to do to make views and dialogs have the same idle update mecha-
nism is to have them handle the

WM_IDLEUPDATECMDUI

message and then use
the

UpdateDialogControls

 function to enable and disable their children controls.

31.2 Idle Updating in Views

Making a view class, such as

CFormView

, have idle command update capability
is simple because a view can handle the

WM_IDLEUPDATECMDUI

message and
then call

UpdateDialogControls

.
In the view header file add

OnIdleUpdateCmdUI

 to the message map
declarations.

//{{AFX_MSG(CMyView)

afx_msg void OnIdleUpdateCmdUI();

//}}AFX_MSG

In the view source file add

WM_IDLEUPDATECMDUI

to the message map
and have the message handler call

UpdateDialogControls

. You must include AFX-
PRIV.H to define the

WM_IDLEUPDATECMDUI

message. We also call

UpdateDialogControls

 in

OnInitialUpdate

 so the controls are updated before the
view becomes visible.

#include "afxpriv.h"

BEGIN_MESSAGE_MAP(CMyView, CFormView)
 //{{AFX_MSG_MAP(CMyView)

 ON_MESSAGE_VOID(WM_IDLEUPDATECMDUI, OnIdleUpdateCmdUI)

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

void CMyView::OnInitialUpdate()
{
 CFormView::OnInitialUpdate();

 // Update before becoming visible
 UpdateDialogControls(this, TRUE);

}

void CMyView::OnIdleUpdateCmdUI()
{
 // Don’t bother if the user can’t see us
 if(!IsWindowVisible())
 return;

 UpdateDialogControls(this, TRUE);
}

The first argument to

UpdateDialogControls

 is the parent window of the con-
trols to update. The second argument determines if controls that do not have any
command handlers are disabled. Because this argument is TRUE, any controls in the

31.3
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

563

view that do not have an

ON_COMMAND

or

ON_BN_CLICKED

handler will be
disabled.

31.3 An Example

Say you have a form view that contains a list box and a button. If you wanted to
enable and disable the button depending on whether an item in the list is selected.
There are two solutions to this problem. You could handle some control notifications
such as

LBN_SELCHANGE

and enable the button when an item is selected and dis-
able the button when no items are selected. Another solution would be to use idle
command updating. For this approach all we need to do is add a command update
handler for the button to the view.

In the view header add the handler function to the message map declarations.

//{{AFX_MSG(CMyView)
afx_msg void OnIdleUpdateCmdUI();

afx_msg void OnUpdateSomeCommand(CCmdUI* pCmdUI);

//}}AFX_MSG

In the view source add an

ON_UPDATE_COMMAND_UI

for the button to
the message map.

BEGIN_MESSAGE_MAP(CMyView, CFormView)
 //{{AFX_MSG_MAP(CMyView)
 ON_MESSAGE_VOID(WM_IDLEUPDATECMDUI, OnIdleUpdateCmdUI)

 ON_UPDATE_COMMAND_UI(IDC_COMMAND, OnUpdateSomeCommand)

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

In the update handler we can just check to see if any items in the list are selected
using

GetCurSel

.

void CMyView::OnUpdateSomeCommand(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(
 ((CListBox*)GetDlgItem(IDC_LIST))->GetCurSel() != LB_ERR);
}

31.4 Idle Updating in Dialogs

Adding idle command updating to modal dialogs is not as simple as with views.
Modal dialogs don’t use the same message processing loop as the main application.
The message loop for modal dialogs doesn’t handle the idle state the same as the ap-
plication message loop. This means there are no

WM_IDLEUPDATECMDUI

messages being sent around. Therefore we have to do some extra work to get idle com-
mand updating to work in dialogs.

The key to this process is the

WM_KICKIDLE

message. When there are no
messages in the application message queue, the modal dialog message loop enters an
idle state by sending a

WM_ENTERIDLE

message to its parent. Next, it sends itself

564

This book is continuously updated. See http://www.iftech.com/mfc

31
D

ia
lo

g
 a

nd
 V

ie
w

 Id
le

 C
o

m
m

a
nd

 U
p

d
a

tin
g

a

WM_KICKIDLE

message with a

wParam

 of

MSGF_DIALOGBOX

and

lParam

containing the idle count. Because the

WM_KICKIDLE

message is sent while the
application is idle, we can use it to tell us when to perform idle update processing.
When the application enters the idle state, the idle count is zero. Here, our

OnKick-
Idle

function can do the same thing the main message loop does, it can send itself a

WM_IDLEUPDATECMDUI

message then send all its descendants an

WM_IDLEUPDATECMDUI

message.
In the dialog header file add an

OnUpdateCmdUI

 virtual function. Also add

OnKickIdle

 and

OnIdleUpdateCmdUI

 to the message map declarations.

virtual void OnUpdateCmdUI(CDialog* pTarget,
 BOOL bDisableIfNoHndler);

//{{AFX_MSG(CMyDialog)
virtual BOOL OnInitDialog();

afx_msg LRESULT OnKickIdle(WPARAM, LPARAM);
afx_msg LRESULT OnIdleUpdateCmdUI(WPARAM, LPARAM);

//}}AFX_MSG

In the dialog source file add

WM_KICKIDLE

and

WM_IDLEUPDATECMDUI

to the message map. You must include AFXPRIV.H
to define

WM_IDLEUPDATECMDUI

. In

OnInitDialog

 we call

OnIdleUpdate-
CmdUI

 to update the controls before the dialog becomes visible.

#include "afxpriv.h"

BEGIN_MESSAGE_MAP(CMyDialog, CDialog)
 //{{AFX_MSG_MAP(CMyDialog)

 ON_MESSAGE(WM_KICKIDLE, OnKickIdle)
 ON_MESSAGE(WM_IDLEUPDATECMDUI, OnIdleUpdateCmdUI)

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

BOOL CMyDialog::OnInitDialog()
{

 BOOL bInit = CDialog::OnInitDialog();

 // Update controls before becoming visible
 OnIdleUpdateCmdUI(TRUE, 0L);

 return bInit;

}

LRESULT CMyDialog::OnKickIdle(WPARAM nFilterCode,
 LPARAM lIdleCount)
{
 // Only update commands on enter idle
 if((nFilterCode == MSGF_DIALOGBOX) &&
 (lIdleCount == 0))
 {
 if (m_hWnd != NULL && IsWindowVisible())
 {

31.5
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

565

 AfxCallWndProc(this, m_hWnd,
 WM_IDLEUPDATECMDUI,
 (WPARAM)TRUE, 0);

 SendMessageToDescendants(
 WM_IDLEUPDATECMDUI,
 (WPARAM)TRUE, 0, TRUE, TRUE);
 }
 }

 return Default();
}

LRESULT CMyDialog::OnIdleUpdateCmdUI(WPARAM wParam,
 LPARAM)
{
 OnUpdateCmdUI(this, (BOOL)wParam);
 return 0L;
}

void CMyDialog::OnUpdateCmdUI(CDialog* pTarget,
 BOOL bDisableIfNoHndler)
{
 UpdateDialogControls(pTarget, bDisableIfNoHndler);
}

Now we have a dialog that can have idle update handlers for its controls. Notice
here that we delegated the call to

UpdateDialogControls

to

OnUpdateCmdUI

in-
stead of

OnIdleUpdateCmdUI

. This was done in order to keep the process flexible.
This way you can have a derived class that can override

OnUpdateCmdUI

 to do any
special processing it may need. You could also enhance this model by adding a virtual
function such as

OnDialogIdle

 that you could call each time

OnKickIdle

 is called.
This would give you the opportunity to have idle processing in the dialog. If you do
this however, you should not call the application’s

OnIdle

 because the framework per-
forms tasks in

OnIdle

, such as cleaning up temporary handles, that may adversely
affect the dialog.

31.5 An Example

Say you have a dialog with an edit control and you want to enable the OK but-
ton only when the user has typed something in the control. One solution would be
to use a control notification such as

EN_CHANGE

to enable and disable the OK but-
ton manually. Another solution is to use idle command updating to enable the button
automatically.

In the dialog header add

OnUpdateOK

 to the message map declaration.

//{{AFX_MSG(CMyDialog)
virtual BOOL OnInitDialog();
afx_msg LRESULT OnKickIdle(WPARAM, LPARAM);
afx_msg LRESULT OnIdleUpdateCmdUI(WPARAM, LPARAM);

afx_msg void OnUpdateOK(CCmdUI* pCmdUI);

566

This book is continuously updated. See http://www.iftech.com/mfc

31
D

ia
lo

g
 a

nd
 V

ie
w

 Id
le

 C
o

m
m

a
nd

 U
p

d
a

tin
g

//}}AFX_MSG

In the dialog source add an

ON_UPDATE_COMMAND_UI

for the OK but-
ton. Then in its command update handler we can use

GetWindowText

 to determine
if the user has typed anything.

BEGIN_MESSAGE_MAP(CMyDialog, CDialog)
 //{{AFX_MSG_MAP(CMyDialog)
 ON_MESSAGE(WM_KICKIDLE, OnKickIdle)
 ON_MESSAGE(WM_IDLEUPDATECMDUI, OnIdleUpdateCmdUI)

 ON_UPDATE_COMMAND_UI(IDOK, OnUpdateOK)

 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

void CMyDialog::OnUpdateOK(CCmdUI* pCmdUI)
{
 CString strInput;
 GetDlgItem(IDC_EDIT)->GetWindowText(strInput);
 pCmdUI->Enable(strInput.GetLength()>0);
}

31.6 Conclusion

Notice how idle command updating can simplify the task of enabling controls.
If you had a dialog or view with a lot of controls, handling the necessary control no-
tifications for each control would be complicated and error prone.

To make this process reusable, a good object-oriented approach would be to de-
rive a class such as

CMyDialog

 from

CDialog

, then have all other dialogs in your
application be derived from

CMyDialog

. An example of creating a base dialog class
in this way is shown in Chapter 28. The same process could be done for a

CIdleUp-
dateFormView

 class. This allows you to hide the implementation details and
complexity in a base class.

567

32ODDS AND ENDS

This chapter covers several topics that don’t fit into any other section of the book. The
topics covered include dragging files to your application, creating modeless dialogs
and handling mini-frame windows. Small out-of-the-way topics such as these are not
discussed often, but are extremely useful in special situations.

32.1 Accepting Files from the File Manager

If your application deals with files, it may be useful for the user to be able to se-
lect files in the File Manager and drag them to your application. Your application can
process the files as if the user had opened them individually. The File Manager is called
a drag-and-drop source. This means that files selected in the File Manager can be
dragged to another application called the target. It is very simple for an application to
become a drag-and-drop target. There is only one function that must be called for
your main window and all its child windows to accept files dropped from the File
Manager. This is the

CWnd::DragAcceptFiles

function. Calling this function from
the main window in your

CWinApp

-derived class will turn any example into a target.
Just add the following line to then end of its

InitInstance

 function:

m_pMainWnd->DragAcceptFiles();

The default argument for

DragAcceptFiles

 is TRUE. To stop accepting
dragged files, call this function with an argument of FALSE. Remember

m_pMainWnd

is NULL until a document is created.
Now, if you select files from the File Manager and then drag them to the exam-

ple window, you will notice that the cursor does not change into a circle with a slash
through it as it normally does. This notifies the user that the application is a drag-and-
drop target. When the mouse button is released, a

WM_DROPFILES

message is sent
to the application.

The default processing done by the

CFrameWnd

 class is to get the name of each
dropped file and try to open it with

OpenDocumentFile

. In many cases, therefore,

568

This book is continuously updated. See http://www.iftech.com/mfc

32
O

d
d

s
a

nd
 E

nd
s

you may not need to add any code to your application for it to handle drag-and-drop
properly. In special cases where you want to handle the message yourself, you have to
add a message handler for

WM_DROPFILES

to the

CFrameWnd

-derived class in
your application.

void CMainFrame::OnDropFiles(HDROP hDropInfo)
{

 // How many files were dropped?
 UINT nFiles = ::DragQueryFile(hDropInfo, 0xFFFFFFFF,
 NULL, 0);

 // Where were they dropped?
 POINT point;
 ::DragQueryPoint(hDropInfo, &point);

 for(UINT i = 0; i < nFiles; i++)
 {
 char szFileName[_MAX_PATH];

 ::DragQueryFile(hDropInfo, i, szFileName, _MAX_PATH);

 TRACE("Filename (%s) dropped at %d,%d\n",
 szFileName,
 point.x, point.y);
 }

 ::DragFinish(hDropInfo);

}

This function simply determines how many files were dropped and then it prints
the name of each file to the debug window. If the position of the drop determines
what action takes place, you can use the

DragQueryPoint

 function to decide where
the files were dropped. Remember not to call the base class

OnDropFiles

 or you will
invoke the framework’s default behavior, which opens the files.

32.2 Making an Application the Topmost Window

Some applications such as WinHelp, the Windows clock, and other small status
windows such as the RAS monitor, have an option that allows them to remain on
“top” of other windows, even though another application is active. Sometimes this can
be useful. For example, it is nice to be able to keep the clock in the corner of the screen
and for it always to be visible. Making an application the topmost window is a simple
task. To make any application the topmost window, just add the following function
to then end of its InitInstance function:

m_pMainWnd->SetWindowPos(&CWnd::wndTopMost, 0,0,0,0,
 SWP_NOMOVE | SWP_NOSIZE);

After you add this line, the application’s window will always be the topmost win-
dow. Only other topmost windows are allowed to overlap yours. With

32.3
Sta

rting
 a

n A
p

p
lic

a
tio

n M
inim

ize
d

This book is continuously updated. See http://www.iftech.com/mfc

569

SetWindowPos

 you can make the window topmost, bottommost, and anywhere in
between. It will also change the size and location of the window, but we use the

SWP

flags that keep the original dimensions.
Usually an application provides a check box in its options dialog or an Always

on top menu option, which allows the user to make the application topmost or
normal.

32.3 Starting an Application Minimized

To make your application initially appear minimized (as an icon) when it starts,
all you need to do is change the value of the

CWinApp

 member variable

m_nCmdShow

. For an MDI application you add the following line to the

InitIn-
stance

 function of your

CWinApp

-derived class. This value must be set before
ShowWindow is called.

m_nCmdShow = SW_SHOWMINIMIZED;

pMainFrame->ShowWindow(m_nCmdShow);
pMainFrame->UpdateWindow();

For an SDI application you add the same line before you call

ProcessShellCommand

.

m_nCmdShow = SW_SHOWMINIMIZED;

ProcessShellCommand();

The variable

m_nCmdShow

is initialized by Windows when your application
starts. This value is used by

ShowWindow

 to determine how a window is displayed.
You can also use the value

SW_SHOWMAXIMIZED

to initially maximize the
window.

32.4 Modeless Dialog Boxes

A modeless dialog box is the same as a modal dialog box except that the user can
interact with other application windows while the dialog box is active. For example,
when you create a modal dialog box using

CDialog

 and call

DoModal

, the user can-
not interact with any other window in the application. This behavior occurs because
the dialog box processes all command events and does not let them get to the applica-
tion. Also, because

DoModal

 does not return until the user closes the dialog box, the
application cannot continue until the dialog is closed. Modeless dialog boxes, on the
other hand, can be active along with the application’s other windows. Both the appli-
cation’s window and the modeless dialog can process events simultaneously.

To create a modeless dialog, you must first create a new class that is derived from

CDialog

. For this example, use the ClassWizard to create a new class named

CFind-
NameDialog

. Add a Cancel and a Next button to the dialog. Then, override the

CDialog

 functions

Create

 and

PostNcDestroy

 and then create handlers for the two
buttons called

OnClose

 and

OnNext

.

570

This book is continuously updated. See http://www.iftech.com/mfc

32
O

d
d

s
a

nd
 E

nd
s

In the class definition for the new class change the class constructor so it accepts
no arguments and change

Create

 so it only takes the argument

pParentWnd

.

CFindNameDialog();
virtual BOOL Create(CWnd* pParentWnd);

Then change the constructor,

Create

,

PostNcDestroy

,

OnClose

, and

OnNext

.

CFindNameDialog::CFindNameDialog() : CDialog()

{
 //{{AFX_DATA_INIT(CFindNameDialog)
 //}}AFX_DATA_INIT
}

BOOL CFindNameDialog::Create(CWnd* pParentWnd)

{
 return CDialog::Create(IDD, pParentWnd);
}

void CFindNameDialog::PostNcDestroy()
{

 CDialog::PostNcDestroy();
 delete this;

}

void CFindNameDialog::OnClose()
{

 DestroyWindow();

}

void CFindNameDialog::OnNext()
{

 if(!UpdateData(FALSE))
 {
 TRACE0("UpdateData failed in OnNext()\n");
 return;
 }

}

The constructor,

Create

, and

PostNcDestroy

 all work together to create and
destroy the dialog box. The constructor is changed so it calls the protected constructor
that does not take any arguments. This creates the object itself:

Create

 is the function
that actually creates the dialog box window. Now the window is like any other win-
dow and can process messages independently of the other application windows. Note,
however, that the dialog window is still a child of the application so it will iconify
along with the application.

The

PostNcDestroy

 function is special in this case. It is used to destroy the

this

pointer. The dialog’s life cycle usually lasts longer than a function call. For this reason,
the dialog is allocated on the heap with

new

. When the dialog box is destroyed, its
resources need to be freed with delete. Because

PostNcDestroy

 is called after the di-
alog window has been destroyed, it is the appropriate place to delete

this

.

32.5
M

ini-Fra
m

e
 W

ind
o

w
s

This book is continuously updated. See http://www.iftech.com/mfc

571

The

OnClose

 and

OnNext

 functions perform the same actions as they would
for modal dialogs. The

OnClose

 function closes the dialog using

DestroyWindow

.
The

OnNext

 function calls

UpdateData

 to perform any data exchanges that are nec-
essary. Notice that we can still use DDX and DDV with modeless dialogs. Because we
might want to be able to search for multiple names without closing the dialog,

On-
Next

 does not close the dialog. Make sure your modeless dialog does not call the base
class

CDialog::OnOK

or

CDialog::OnCancel

functions. These functions will call

EndDialog

, which should only be used with modal dialogs.
When you want to create an instance of the modeless dialog, you would do

something similar to this.

void CMainFrame::OnFindName()
{

 CFindNameDialog* pFindName = new CFindNameDialog;
 pFindName->Create(this);

}

This constructs a

CFindNameDialog

 object on the heap and calls its

Create

function. Make sure the dialog is created on heap with

new

 or it will be destroyed
when it goes out of scope. Also be careful of dereferencing the pointer after creation
because the dialog may have been closed, which will delete the pointer and make it
invalid.

Modeless dialogs have some unique problems that you must be careful to avoid.
With modeless dialogs, you can create multiple instances of the dialog. If you only
want a single dialog at a time you must keep track of the dialog’s condition and modify
the dialog’s menu option to disable it when the dialog is visible. Also you must be able
to communicate with the dialog. This can be done through messages and the

Send-
Message

 function or by careful access to a pointer to the dialog. The dialog can get
access to the application through functions such as

AfxGetMainWnd

.

32.5 Mini-Frame Windows

When the tool bars in an MFC application are floating, they have a thin border
(or frame) around them called a mini-frame. This thin border is handled by the

CMiniFrameWnd

 class. This class behaves the same as the

CFrameWnd

 class except
it draws a half-height frame around its window. It also does not have minimize/max-
imize buttons or menus, and you only have to single-click on the system menu to
dismiss it. In this section we will describe how to convert the modeless dialog de-
scribed above in into a mini-framed window.

Use the ClassWizard to derive a new class

CMiniFindNameDialog

 from

CMiniFrameWnd

. Add to it the following member variable and make the construc-
tor and destructor public:

public:

 CMiniFindNameDialog();
 virtual ~CMiniFindNameDialog();

572

This book is continuously updated. See http://www.iftech.com/mfc

32
O

d
d

s
a

nd
 E

nd
s

public:
 CFindNameDialog* m_pFindNameDialog;

Remember to include the

CFindNameDialog

 include file at the top of the

CMiniFindNameDialog

 include file. Initialize the pointer to NULL in the
constructor:

CMiniFindNameDialog::CMiniFindNameDialog()
{

 m_pFindNameDialog = NULL;

}

Now use the ClassWizard to add handlers for the

WM_ACTIVATE

,

WM_CREATE

, and

WM_SETFOCUS

messages.
When the mini-frame window is created we need to create the modeless dialog

it manages. This dialog must be modeless because otherwise we would have to call

CDialog::DoModal

and that would be unacceptable.

int CMiniFindNameDialog::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CMiniFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 // Create the modeless find dialog
 m_pFindNameDialog = new CFindNameDialog;
 if (m_pFindNameDialog->Create(this) == -1)
 {
 delete m_pFindNameDialog;
 m_pFindNameDialog = NULL;
 return -1;
 }

 CRect clientRect, frameRect;
 m_pFindNameDialog->GetWindowRect(clientRect);
 frameRect = clientRect;

 // CMiniFrameWnd::CalcWindowRect adds the extra width
 // and height needed for the mini-frame
 CalcWindowRect(frameRect);
 SetWindowPos(NULL, frameRect.left, frameRect.top,
 frameRect.Width(), frameRect.Height(),
 SWP_NOZORDER | SWP_NOACTIVATE);
 m_pFindNameDialog->SetWindowPos(NULL, 0, 0,
 clientRect.Width(), clientRect.Height(),
 SWP_NOZORDER | SWP_NOACTIVATE);

 return 0;
}

First we call the base class

OnCreate

. Then we create the modeless find dialog
the same way we did before. If the modeless dialog cannot be created, we clean up the
resources and return. Otherwise we need to size the mini-frame window so it fits
around its child dialog. This is done using

SetWindowPos

. Using

GetWindowRect

32.5
M

ini-Fra
m

e
 W

ind
o

w
s

This book is continuously updated. See http://www.iftech.com/mfc

573

we get the dimensions of the modeless dialog. Then

CalcWindowRect

 is called to in-
crease those dimensions by the amount necessary for the frame border. The resulting
rectangle is used to resize the mini-frame window.

When you select the caption of the mini-frame window it becomes the active
window. In this example we want the dialog to become the active window because it
is managing the controls. The mini-frame window needs to handle the

WM_ACTIVATE

and

WM_SETFOCUS

messages because we need to forward these
messages to the child dialog. This allows the dialog to reset the focus to the child that
previously had the focus, such as a button or edit control.

void CMiniFindNameDialog::OnActivate(UINT nState,
 CWnd* pWndOther, BOOL bMinimized)
{
 CMiniFrameWnd::OnActivate(nState, pWndOther, bMinimized);

 // Forward message to the dialog
 ASSERT_VALID(m_pFindNameDialog);
 const MSG* pMsg = GetCurrentMessage();
 ASSERT(pMsg->message == WM_ACTIVATE);
 m_pFindNameDialog->SendMessage(pMsg->message, pMsg->wParam,
 pMsg->lParam);

}

void CMiniFindNameDialog::OnSetFocus(CWnd* pOldWnd)
{
 CMiniFrameWnd::OnSetFocus(pOldWnd);

 ASSERT_VALID(m_pFindNameDialog);
 m_pFindNameDialog->SetFocus();

}

OnActivate

 uses

GetCurrentMessage

 to get a pointer to the message currently
being processed. This message can then be forwarded to the dialog.

OnSetFocus

 sets
the focus to the dialog using

SetFocus

.
This completes the

CMiniFindNameDialog

 class. Before we can use the class
however, we must modify the original

CFindNameDialog

 dialog template. Because
the dialog will be a child of another window it must have the

WS_CHILD

style, so
set it’s style to Child. It cannot have a border because the

CMiniFindNameDialog

class is providing one, so set the Border to None. Also make sure the Visible style is
set or it will not appear in the window.

Next we have to change the way the

CFindNameDialog

 class is destroyed. The

CFindNameDialog

OnClose

 function calls

DestroyWindow

. This will destroy the
dialog itself. In this case we don’t want to close the dialog. Instead we want to close
the mini-frame window of which the dialog is a child. If you were just to close the di-
alog, you would be left with a hollow mini-frame window. The new

OnClose

 is
shown here.

void CFindNameDialog::OnClose()
{

 TRACE("CFindNameDialog::OnClose\n");

574

This book is continuously updated. See http://www.iftech.com/mfc

32
O

d
d

s
a

nd
 E

nd
s

 GetParent()->SendMessage(WM_CLOSE, 0, 0);

}

Using

GetParent

, the dialog can get a pointer to the mini-frame window. It
then sends the mini-frame a

WM_CLOSE

message causing it to destroy both the
mini-frame window and the child dialog.

Creating the mini-frame window is the same as creating a modeless dialog. First
you create the mini-frame object on the heap and then call its

Create

 function.

void CMainFrame::OnFindName()
{

 CMiniFindNameDialog* pMiniFindName = new CMiniFindNameDialog;

 if (!pMiniFindName->Create(NULL, "Find Name",
 WS_POPUP | WS_CAPTION | WS_SYSMENU,
 CRect(0,0,0,0),
 AfxGetMainWnd()))
 {
 delete pMiniFindName;
 pMiniFindName = NULL;
 return;
 }

 pMiniFindName->CenterWindow();
 pMiniFindName->ShowWindow(SW_SHOW);

}

The arguments to the

Create

 function are: an optional class name for the win-
dow, the window caption, the window style attributes, the dimensions of the window,
and the parent window. We specify the typical style attributes, and the window di-
mensions can be empty because the

CMiniFindNameDialog

 window will resize
itself. The window is displayed using

CenterWindow

 to position the window and
then having

ShowWindow

 show the window. We could have used the

WS_VISIBLE

style attribute instead of

ShowWindow

, but this will cause the window to flash be-
tween being created and being centered with

CenterWindow

.
This same process of creating a mini-frame with a dialog as its child can also be

used to create modeless property sheets or any other type of window that needs a mini-
frame.

32.6 Context Popup Menus

In certain types of programs, drawing editors for example, popup menus (also
called shortcut or context menus) can eliminate a great deal of back-and-forth motion
required to select common options from the menu bar. Instead of having to move the
cursor from its current position in the drawing all the way up to the menu bar, the
user simply clicks the right mouse button and a menu appears immediately.

You can use the Component Gallery to insert a context menu in your applica-
tion. The implementation shown here is to give you an explanation of how they work.
You should use the Component Gallery to insert context menus into your application

32.6
C

o
nte

xt Po
p

up
 M

e
nus

This book is continuously updated. See http://www.iftech.com/mfc

575

because it will also add the code necessary to display the context menu using the
keyboard.

To demonstrate a popup menu, create a menu with an ID of

IDR_POPUP

.
Then add a message handler for the view’s

WM_CONTEXTMENU

message.

void CMyView::OnContextMenu(CWnd* /*pWnd*/, CPoint point)
{

 // Make sure window is active
 GetParentFrame()->ActivateFrame();

 // Load menu from resource file
 CMenu menu;
 if (menu.LoadMenu(IDR_POPUP))
 {
 // Display menu
 CMenu* pPopup = menu.GetSubMenu(0);
 ASSERT(pPopup != NULL);
 pPopup->TrackPopupMenu(
 TPM_LEFTALIGN | TPM_RIGHTBUTTON,
 point.x, point.y, AfxGetMainWnd());
 }

}

When you run the application, click the right mouse button in the client area of
the view. The popup menu will appear, and you use it like any other menu. Any menu
handlers and update command handlers for identical menu options in the menu bar
will be called.

The code then uses the

GetSubMenu

 function to get the zeroth element of the
menu resource. This step must be taken because we need a popup frame for the popup
menu itself. Because the

IDR_POPUP

resource is intended for use in a normal menu
bar, we need the dummy popup to act as a replacement for the menu bar in the popup
menu.

Finally, the code calls

TrackPopupMenu

 so the menu appears and the user’s
mouse actions are tracked appropriately. The

TPM_LEFTALIGN

constant indicates
that the menu should be left aligned in relation to the point where the mouse button
was clicked. Other options are right and center alignment. The

TPM_RIGHTBUTTON

constant indicates that the right mouse button’s clicks
should traverse the menu in the same way left mouse button clicks do. This is simply
a convenience for the user—because the user has a finger on the right button to acti-
vate the menu, then it should be possible to use that same finger to traverse the menu
as well.

A popup menu can, if you choose, completely echo the main menu bar. Gener-
ally, however, the popup contains only those items needed within a document. This
minimization of popup options makes it easier and quicker for the user to traverse the
popup menu structure. The popup menu items should not contain mnemonics—
since you have to use the mouse to activate the popup anyway, keyboard traversal is
not needed. You can leave out the accelerator labels if you like to minimize the size of

576

This book is continuously updated. See http://www.iftech.com/mfc

32
O

d
d

s
a

nd
 E

nd
s

the popup menu or leave them in to remind the user of the available accelerator
keystrokes.

32.7 Modifying the System Menu

The system menu that appears when you click the box on the left side of the title
bar is a normal menu. It sends messages just like any other. You can obtain a pointer
to it so that you can modify it using the

CWnd::GetSystemMenu

function.

 CMenu* pMenu;
 pMenu = m_pMainWnd->GetSystemMenu(FALSE);
 pMenu->AppendMenu(MF_SEPARATOR);
 pMenu->AppendMenu(MF_STRING, 1000, "Always On Top");

This code gets the system menu and then appends two menu items to it: a sep-
arator and an Always on Top option. The new menu option generates the arbitrary
command ID of 1,000 in this case, and you would probably use a named constant in-
stead. Handle the option by manually modifying one of the message maps to
recognize it.

See the MFC help file for more information on

GetSystemMenu

 and the func-
tions, such as

AppendMenu

, in the

CMenu

 class.

32.8 Conclusion

Using the concepts in this chapter you can create a variety of interesting appli-
cation effects. For example, you might create an application that is displayed as an icon
that is always on the top of the screen and that processes files from the Windows File
Manager. You should understand more clearly the difference between modal and
modeless dialogs and how they can be used. This chapter also gives you a better un-
derstanding on what window classes are and how they can be used.

Part 5

A

D
V

A
N

C
ED

 M
FC

 C

LA
SSES

Several of classes in MFC provide access to advanced features that are not necessarily
needed in every application. However, by understanding these features you can take
advantage of them when necessary. For example, if you are a corporate programmer
needing to hook to SQL databases on client/server networks, the first chapter in this
section will show you how to use the ODBC classes in MFC to provide an easy inter-
face to a variety of database servers.

Although you may not have an immediate need for the features discussed in this
section, you will want to browse through it occasionally to keep in mind the variety
of solutions that MFC has to offer.

579

33DATABASE ACCESS

Most enterprises today store their data in database servers that are available to employ-
ees anywhere on the enterprise’s client/server network. Users run client applications to
view or modify the data. Because this type of data access is so prevalent, MFC contains
classes that allow your code to interact with database servers using a facility called
ODBC (Open Database Connectivity). The database-access class called

CRecordSet

makes this possible. Using the

CRecordSet

 class, you can easily access database servers
and manipulate their data from your MFC applications.

This chapter starts with the assumption that you know nothing about databases,
SQL (Structured Query Language), or ODBC, and will teach you the basic concepts
behind the system as well as specific ways of accessing databases through MFC. If you
are already familiar with SQL and ODBC, you may want to skim the first portion of
the chapter to map your vocabulary to the vocabulary used here and then proceed to
the MFC specifics.

33.1 Understanding Relational Databases

If you have experience working or programming in a corporate environment,
you are already familiar with the concept of databases and database servers. If, on the
other hand, you have been programming in college, at home, or on a small peer-to-
peer network, these concepts may be foreign to you. It is important that you under-
stand what client/server databases are and why they have become so prevalent in the
corporate world for you to completely understand the MFC database classes.

Almost any MFC application you create with Visual C++ uses data stored on a
hard disk. This configuration is so prevalent, in fact, that the AppWizard makes the as-
sumption that any application it creates will have a document class associated with it.
One of the document class’s primary jobs is to load and store the disk-based informa-
tion that the application uses. In Part 3 of this book, for example, every application we
created had the ability to load documents, display their data, and then save changes that
the user made. The drawing program in Chapter 15 stores drawing information in its

580

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

documents. The text editor in Chapter 16 stores text information in its documents.
The address list program in Chapter 18 stores address information in its documents.
While it is possible to imagine and create applications that do not store data, they are
few and far between. A simple digital clock is an example of such a program.

Many applications can get by without sharing the information they store on
disk. For example, if you create a text file with a text editor, it is likely that you will be
the only one who ever sees it. If someone else needs one of your text files, you simply
make a copy of it. As you can see, the concept of multiple users somehow “sharing”
the text file, simultaneously viewing and editing it, is completely unknown. In Chap-
ter 18 you created an address list application that had these same constraints. It lets
you load an address list file into memory, modify it, and save it. This is an acceptable
programming style when address lists are small and they have only one user. However,
there are many cases where data is frequently shared among users, and this simple file
model breaks down in that sort of environment.

Think about how any large company uses address lists. For example, if the com-
pany maintains a list of employees, this data is used all over the company. In the
personnel department this data is used to send out mailings to employees. Many peo-
ple in the personnel department need to look at this list, and there are also people in
the department adding employees to the list and deleting employees from the list every
day. People in the security department use the list, as do people at the switchboard
looking up office phone numbers. A company statistician might want to access the list.
There may be hundreds or thousands of different people in the company who want to
look at the list of employees, add to it, modify entries, and so on.

You can see that the simple document-based approach used in Chapter 18 sim-
ply will not work in this sort of environment. Here are three of the problems with the
document-based approach:

1. The address list may be huge, so loading the entire thing into memory is unac-
ceptable.

2. Many people need to access the list at once, but giving everyone a private copy
is wasteful.

3. All changes need to be reflected company-wide. If everyone keeps a separate
copy of the list and modifies it on their own, then there is no easy way to syn-
chronize all the changes.
To solve these problems, the company will generally create a

database server

 on
the company’s network to hold the list. This server contains a single copy of the list and
makes it available to everyone on the network. Hundreds of people can look at the same
list simultaneously and all modifications are immediately available company-wide.

Most large corporate databases use the

relational

 database model. In this model,
data are subdivided into separate lists, or

tables

, that are related to one another through
unique IDs called

keys

. This model helps to reduce duplicate data and, therefore, saves
space, time and frustration. For example, the company might store name and address
information for its employees in one table, as shown in Figure 33.1.

33.1
U

nd
e

rsta
nd

ing
 Re

la
tio

na
l D

a
ta

b
a

se
s

This book is continuously updated. See http://www.iftech.com/mfc

581

Each line in the table is called a

row

 or a

record

. It contains the information about
the employee, as well as a unique ID for each employee record. This ID is known as
the

primary key

, and must be unique. The primary key can consist of one column in the
table, as shown in Figure 33.1, or it might consist of two or more columns that, taken
together, are unique. In Figure 33.1, the

EmpId

 field is unique to each employee and
would be the primary key for that table. The database will enforce uniqueness on values
in the primary key column. Not all tables need to have primary keys, but most do.

The power of a relational database comes when you add other tables that relate
to existing tables. For example, in Figure 33.1 you might have noticed that there is no
city or state information stored in the employee table. That’s because the storage of
city and state information would be redundant. Instead, it is easier to store it in an-
other table, as shown in Figure 33.2.

In the zip code table shown in Figure 33.2, the

ZipCode

 field would act as the
primary key. In the

Employee

 table, the zip code field is now referred to as a

foreign
key

. It references into the primary key of the zip code table. The power of this storage
technology comes from the fact that there might be 200 employees who have the

Figure 33.1

The employee table

Figure 33.2

The zip code table

EmpID

1

LastName FirstName Address ZipCode

Brain Marshall 853-I Durham Rd. 27587

2 Lovette Lance 496-J Raleigh Rd. 27611

Ano so on...

3 Campbell Kelly 901-K Halifax Rd. 27597

ZipCode

27587

27611

And so on ...

Durham NC

City State

Raleigh NC

27597 Halifax NC

582

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

27611 zip code, but the words “Raleigh, NC” only exist in the database once. That
saves a lot of space, and also eliminates a lot of typing errors.

When you want to display employee information on the screen in a client’s ap-
plication, you need to somehow merge information from the employee table and the
zip code table. This operation is called a

join

. A join relates the data in tables that have
at least one field in common—the foreign key in one table is related to the primary key
in another. The joined view of the data contains fields from both tables. By joining the
employee table in Figure 33.1 to the zip code table in Figure 33.2, you can create a re-
sult that contains city and state information for each employee in the employee table.

A database server can hold many different tables. Normally the tables do not ex-
ist as individual entities, however. They are collected together into

databases

 or

data
sources

of two or more tables. A large database storing complex data for a corporate
process might have hundreds of tables to store all the different types of data relevant
to the process. The organization of the tables and their columns is called the

schema

of the database and is determined by the database designer.
The collection of tables in one database is seen as one entity by the database serv-

er, and the server can therefore provide some interesting services for the entity. For
example, the database server can maintain

referential integrity

 in any database. That is,
the database server will ensure that any entry in a foreign key column actually has a
partner in the primary key of the corresponding table. The server can also provide
multi-table entry protection using

transactions

. For example, a single complex opera-
tion in a large database might need to update five tables simultaneously. However, if
the operation were to start, update two of the five tables, and then fail to complete be-
cause of a power failure, the entire database would be corrupted. You can therefore
bracket the five table operations in a single transaction. You signal to the database the
start of the transaction, perform the five operations, and then signal the end. If the
power fails before the server receives the end signal, the server will

roll back

 (or restore)
the database to the state before the beginning of the transaction when it reboots.

You can see from this discussion that a database server offers a large enterprise a
number of significant data-handling advantages. That is why these servers have be-
come so prevalent and why MFC contains classes to access them.

33.2 Understanding SQL

Most companies now use relational database servers to store all their data. These
servers hold such things as employee lists, customer lists, payroll information, inven-
tory information, billing information, factory statistics, and so on. To access this data,
a language called

Structured Query Language

, or SQL, has evolved as a standard. Al-
though all database server manufacturers extend SQL in various ways, the core of the
SQL language is compatible across all SQL servers. This core language allows you to
retrieve information from any server, add data to specific tables, and update fields in
tables. The language is simple and very powerful.

The most common reason to access an SQL server is to perform a

query

. Using
SQL commands, you can ask questions of a database. SQL servers have an interesting

33.2
U

nd
e

rsta
nd

ing
 SQ

L

This book is continuously updated. See http://www.iftech.com/mfc

583

property that makes them popular in client/server environments: the database server
actually performs all the work of processing the queries. For example, you can issue an
SQL statement that asks the server to retrieve only those rows in a table that match
certain criteria and then sort the selected rows on a certain field. In a large database it
might take a tremendous amount of work to perform the selection and ordering, but
all that work takes place on the server rather than on your local machine. The advan-
tage of this configuration is that as the company grows and stores and retrieves more
and more data from its databases, only the database servers must be upgraded to han-
dle the additional load.

The

CRecordSet

 class in MFC exists primarily to handle queries. It can also be
used to add and delete records, but its primary emphasis is queries. To feel completely
comfortable with the

CRecordSet

 class in MFC, you need to understand SQL query
syntax. That does not mean that you have to understand the entire SQL language—
you simply need to understand a subset that the

CRecordSet

 class uses.
The most commonly used command in SQL is SELECT. This command allows

you to retrieve data from a table and also performs joins between multiple tables. The
following sections contain examples of the SELECT command so you can understand
its different features.

33.2.1 Basic SELECT Statements

To retrieve all the information from the EMPLOYEE table shown in Figure
33.1, you can use the following SELECT command:

SELECT EmpID, LastName, FirstName, Address, ZipCode FROM EMPLOYEE

 As you can see, the SELECT statement names the columns it wishes to select
and the table that it wishes to select them from. The general form of the statement is:

SELECT <columns> FROM <table>

When you issue this command to an SQL server, the server retrieves the request-
ed information into a record set and makes that record set available to the client
application over the network. The client application can retrieve the records of the
record set one at a time by sending requests to the server.

Using the SELECT statement, you can create a record set containing one, some,
or all of the columns from any table in the database. The SQL server will check to
make sure that the table you selected contains all the requested fields. If one of the field
names is incorrect, it will return an error.

33.2.2 WHERE Clauses

To select data more specifically from a table, you can add a WHERE clause to a
SELECT statement. For example, if you want to retrieve the names of all employees
in the 27611 zip code, you can use the following SELECT statement:

SELECT LastName, FirstName FROM Employee WHERE (ZipCode=27611)

The SQL server will respond to this request by building a record set that con-
tains only the

LastName

 and

FirstName

 columns. In those columns will be the names

584

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

of only those employees whose

ZipCode

 fields equal 27611. In the WHERE clause,
you can add AND and OR statements to further qualify the selection. For example:

SELECT LastName, FirstName FROM EMPLOYEE WHERE (ZipCode=27611) AND
(LastName='Smith')

 This query would return all the Smiths living in the 27611 area code.

33.2.3 ORDER BY Clauses

The ORDER BY clause can be added to a SELECT statement to force the SQL
server to sort information in a record set. For example, you might use the following
statement:

SELECT LastName, FirstName FROM Employee ORDER BY LastName

This statement causes the server to sort the record set on the

LastName

 column.
To sort by last name and first name you can simply extend the ORDER BY clause like
this:

SELECT LastName, FirstName FROM Employee ORDER BY LastName, FirstName

By adding the ASC and DESC key words, you can set the sorting order to as-
cending or descending on a field-by-field basis. For example:

SELECT LastName, FirstName FROM Employee

ORDER BY LastName ASC, FirstName DESC

You can also combine ORDER BY and WHERE clauses to select and order in-
formation very specifically, like this:

SELECT LastName, FirstName FROM Employee WHERE (ZipCode=27611) AND

(LastName='Smith') ORDER BY FirstName

This statement causes the SQL server to select all the Smiths in the 27611 zip
code and then sort all the information in the record set by first name.

33.2.4 Joining Tables

You join two tables by adjusting the WHERE clause. For example, to display all
of the information in the

Employee

 table, join it to the

ZipCode

 table in Figure 33.2
and display the city and state as well, you would use the following SELECT statement:

SELECT

Employee

.LastName,

Employee

.FirstName,

Employee

.Address, ZIPCODE.City, ZIPCODE.State,

Employee

.ZipCode
FROM

Employee

, ZIPCODE
WHERE

Employee

.ZipCode=ZIPCODE.ZipCode

The WHERE clause instructs the SQL server to join the two tables on the

Zip-
Code

 fields and to create a record set containing fields from both tables. The FROM
statement tells the server which tables to use. Notice that each field is scoped by its
table name, e.g., EMPLOYEE.LastName. This is necessary because it is possible for
two tables to have column names that match. The use of the table name lets you dis-
tinguish between columns in the different tables. It is possible to join any number of
fields from any number of tables.

33.3
U

nd
e

rsta
nd

ing
 O

D
BC

This book is continuously updated. See http://www.iftech.com/mfc

585

33.2.5 Other SQL Key Words

SQL contains several other key words that are frequently useful when perform-
ing common database operations:

DELETE
INSERT
UPDATE
CALL
The CALL command in particular is important in corporate environments. It is

possible, in many SQL servers, to create

stored procedures

 that execute on the database
server. A stored procedure is pre-written SQL code, and it is common to use a collec-
tion of stored procedures to encapsulate and protect a database. Rather than allowing
direct access to tables, many companies will allow access only through stored proce-
dures to enforce business rules in the database. The CALL command lets you call a
stored procedure in the database.

33.3 Understanding ODBC

As you can see in the previous section, SQL is extremely simple, but it is also
extremely powerful. It is a useful, general tool for accessing data from database servers.
Unfortunately, SQL is not universal. In fact, there is a wide variety of other database
formats that are quite common, including:

• DBase databases and other XBase derivatives
• Excel and Lotus 123 databases
• Access databases
• BTrieve databases
This proliferation of database access methods presents a problem: How can you

allow programmatic access to this wide variety of database systems without requiring
programmers to understand a wide variety of access languages, libraries, and so on?
That is where ODBC comes in.

ODBC is a layer that lets any Windows application access any database using a
single, SQL-like query language. Database manufacturers create ODBC drivers that
let ODBC access the database. Under this system, any program that knows how to
talk to ODBC can talk to any database provided that the system contains the appro-
priate ODBC driver for the database. ODBC drivers are available from Microsoft,
many database vendors, and third-party companies.

The MFC

CRecordSet

 class uses the ODBC facility to access databases. There-
fore, to access a database you must be able to access it through ODBC. To set up
connections to databases, you use the ODBC Administrator, located in the Control
Panel. The ODBC Administrator is able to show you all the drivers known to ODBC,
as well as the different databases available through the different drivers. It can also cre-
ate new databases.

This is a nearly ideal solution because it standardizes all database interaction.
One problem that arises, however, is that not all databases can support all the features
in the SQL language. For example, while all true SQL servers support the concept of

586

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

transactions that can be rolled back, many lower-level database systems like DBase and
Excel do not. Therefore, ODBC contains the ability to handle transactions, but sim-
ply disables that feature when it is talking to a low-functionality driver.

Another minor problem arises in the area of data types (e.g., integers, strings).
SQL supports certain data types, but these types differ from standard C++ types and
can also differ between ODBC drivers. Therefore, ODBC does its best to map the dif-
ferent data types in the different database drivers to SQL types. You then map the
standard SQL types to C++ data types. The article “SQL: SQL and C++ Data Types”
in the MFC documentation explains the mapping.

ODBC is encapsulated in its own API called the ODBC API (your machine may
have a file called ODBCAPI.HLP or ODBC20.HLP available to describe the API’s
functions). This API offers direct access to database servers through the ODBC calls.
The MFC classes that access databases use this API to do their manipulations. There
are some cases where special programming problems can be solved by accessing the
ODBC API directly.

33.4 Microsoft Query

[This example demonstrates how to use Microsoft Query (which comes with Mi-
crosoft Office) to access an SQL server. You could also use tools that come with the
SQL server to build and query the tables. See the web site for another example that uses
Microsoft Access to build and query a sample database.]

To work with the examples in this chapter, you need to be able to create a data-
base and the tables within it. The ODBC administrator allows you to create the
database itself. To create tables in the database, you can either send direct SQL table-
creation statements through ODBC, use a database administration tool provided with
your database, or use a tool called Microsoft Query. The Microsoft Query tool is widely
available—for example, it comes with Microsoft Office and many other products. The
tool interacts with the ODBC facility to talk to any database that is a registered ODBC
data source. It is able to create tables as well as the columns in those tables; add, update,
and delete rows from tables; and perform queries by allowing you to visually or manu-
ally create SQL SELECT statements. If your machine has no ODBC drivers, or if you
need Microsoft Query, contact Microsoft. The tutorial for the Enroll example in books
on-line contains ordering information for ODBC drivers.

What we need to do here is use the ODBC administrator and Microsoft Query
to create a simple two-table database that we will use in the following sections. The
goal of this sample database is to provide a very simple test case you can use to under-
stand the

CRecordSet

 class and many of its features. The two tables will contain
employee and zip code information as described earlier in this chapter. To create the
database, take the following steps. Or, take similar steps with Microsoft Access, Trans-
act-SQL, or other database interaction tool.

33.4
M

ic
ro

so
ft Q

ue
ry

This book is continuously updated. See http://www.iftech.com/mfc

587

33.4.1 Create the Database

In this example, we will use the Microsoft SQL server. However, any database
for which you have ODBC drivers will do. In this particular case, assuming that you
have installed the SQL server on an NT machine, you need to start by opening the
ODBC Administrator in the Control Panel. You will see a screen like the one shown
in Figure 33.3.

The view shown in Figure 33.3 indicates that the system currently knows about
no data sources (databases) at all. To add a new data source, click the

Add

 button. You
will see a dialog like the one shown in Figure 33.4.

The dialog in Figure 33.4 shows you all the ODBC drivers known to your sys-
tem. In this case, only SQL drivers exist on this system. Choose the driver you wish to

Figure 33.3

The ODBC administrator

Figure 33.4

Selecting an ODBC driver

588

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

use and then click on the

OK

 button. You will see a dialog like the one shown in Fig-
ure 33.5. In this dialog, you name your new data source. The dialog will change
slightly depending on the type of driver you are using.

You can call the new data source anything you like. For this example, name it
“Sample database” as shown. When you click the

Close

 button you will return to the
ODBC Administrator, and the new data source will be visible in the list. Close the
Administrator and the Control Panel.

33.4.2 Create the Employee and ZipCode Tables

At this point we have created a database, but it has no tables. You need to add
tables. The amount of difficulty you will experience in adding tables relates to the type
of database engine that holds the tables. For example, if you are working with the Mi-
crosoft SQL server, you will probably want to use the administration tools that come
with the server to create a new device and database, as well as a user account for your-
self, and then set permissions. If you are using something like the Access database
engine, things will be much easier.

We will add the EMPLOYEE table first. Start Microsoft Query. Choose the

Ta-
ble Definition

 option in the

File

 menu. You will see the Select Data Source dialog.
At this point you can choose the data source you just created or create a new one by
clicking the

Other

 button and following the same sort of procedure described above.
Choose your data source and then click the

Use

 button. You will see a dialog like the
one shown in Figure 33.6.

 Click the

New

 button in the Select Table dialog to create a new table. Add col-
umns to the table to duplicate the columns shown in Figure 33.1. When you are done
you should see a dialog like the one shown in Figure 33.7. Click the

Create

 button
when you are done adding columns to the table.

Repeat the same steps to create a new ZIPCODE table. When you are done it
should resemble Figure 33.8.

Figure 33.5

Creating a new data source

33.4
M

ic
ro

so
ft Q

ue
ry

This book is continuously updated. See http://www.iftech.com/mfc

589

Figure 33.6

The Select Table dialog

Figure 33.7

The New Table dialog for the EMPLOYEE table

590

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

When you are through creating your tables, click the

Close

 button.
Note that you can use your database’s specific tools to create these same tables,

and you will probably have more control over how you create and adjust things like
primary keys, indexes, and so on. On many SQL servers you will have to use specific
tools to grant users access to the database. We have used Microsoft Query here simply
because it is generic and fairly universal. If a database already exists, then the only step
to take is step 1, which creates the data source.

33.4.3 Add Data to the Tables

Now you have a Data Source and it has two tables. We need to add data to the
tables. To do this, use Microsoft Query to create a “new query.” A query in this case
is a view on the database. Select the

New Query

 option in the

File

 menu. Select your
data source. Then add the

Employee

 table to the query. Click the “*” field at the top
of the list of fields and finally choose the

Allow Editing

 option in the

Records

 menu.
Add the data shown in Figure 33.1 to the table. Or add anything you like. The point
is to get several valid records into the table. Simply type right into the fields you see.
As you enter each value press the tab key to move to the next column. When you press
the tab key on the last column, the record will be added to the database.

Figure 33.8

The New Table dialog for the ZIPCODE table

33.5
The

 C
Re

c
o

rd
Se

t C
la

ss

This book is continuously updated. See http://www.iftech.com/mfc

591

Now close that query. There is no need to save it. Create a second new query so
you can add data to the

ZipCode

 table and add several records there. Make sure there
is one record in the

ZipCode

 table for each unique zip code in the EMPLOYEE table.

33.4.4 Experiment with Queries

Now that the tables contain data, you can use the Microsoft Query application to
play with SQL. The

View

 menu contains an

SQL

 option you can use to modify the
current query. You can modify this statement in any way you like to experiment with
WHERE clauses, ORDER BY clauses, join statements and so on. The application will
immediately show you show you the results graphically, and you can learn quite a bit
about SQL by experimenting with statements this way. You can also use the different
menu options to modify the SQL statement graphically and then view the text you’ve
created. The

Execute SQL

 option in the

File

 menu is also useful. See the MS Query
documentation for further information Experiment freely until you feel comfortable
with SQL.

33.5 The CRecordSet Class

The

CRecordSet

 class supports the concept of a record set. The idea behind the

CRecordSet

 class is extremely simple: An instance of the

CRecordSet

 class holds one
SELECT statement and can send it to the database server. The instance then lets you
retrieve the records in the resulting record set from the database server one at a time.
You might display those records immediately as you retrieve them, and if that is your
goal the

CRecordView

 class (see Section 33.7) makes your life extremely simple. Or
you might spin through all the records in the record set so you can display them in a
list box, show them in some sort of viewer, or print them.

One way to gain an understanding of the

CRecordSet

 class is to read through
all its member functions. The list below briefly describes each one. You will want to
read the detailed description of each function in the MFC documentation at some
point so you have a complete understanding of these different functions. Another way
to feel comfortable with this class is to work through some examples, as described in
the following sections.

Data Members

m_hstmt Used by ODBC API to access database
m_nFields Number of fields in record set
m_nParams Number of parameters supported by the record set
m_strFilter String used in SQL WHERE clause for this record set
m_strSort String used in SQL ORDER BY clause by this record set

Opening and Closing

CRecordset Constructor
Open Performs the record set’s query, the record set can then re-

trieve the records one by one using the Move functions
Requery Reruns the SELECT statement to update record set
Close Closes the record set and disconnects from the database

592

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

Getting Data

Move Moves the record set’s pointer up or down by amount spec-
ified and gets that record from the database

MoveFirst Moves the record set’s pointer to first record and gets that
record from the database

MoveLast Moves the record set’s pointer to the last record and gets that
record from the database

MoveNext Moves the record set’s pointer to the next record and gets
that record from the database

MovePrev Moves the record set’s pointer to the previous record and
gets that record from the database

Information Functions

CanAppend Returns TRUE if you can use AddNew
CanRestart Returns TRUE if you can use Requery
CanScroll Returns TRUE if you can use MoveNext and MovePrev
CanTransact Returns TRUE if you can use transactions in CDatabase ob-

ject
CanUpdate Returns TRUE if you can update records
GetRecordCount Returns the number of records resulting from latest query
GetStatus Returns the record set status
GetTableName Returns the name of the record set’s table
GetSQL Returns this record set’s SQL SELECT string
IsOpen Returns TRUE if the record set is open
IsBOF Returns TRUE if record set pointer is before the first record
IsEOF Returns TRUE if record set pointer is past the last record
IsDeleted Returns TRUE if current record has been deleted
IsFieldDirty Returns TRUE if field has changed
IsFieldNull Returns TRUE if field is NULL
IsFieldNullable Returns TRUE if NULL is a valid field value

Modifying Records

AddNew Initiates an Add operation. Call Update at completion
Delete Deletes the current record
Edit Initiates an Edit operation. Call Update at completion
Update Saves the data of an AddNew or Edit operation
Cancel Cancels asynchronous operations

Setting Characteristics

SetFieldDirty Sets field’s dirty bit
SetFieldNull Sets field to NULL
SetLockingMode Sets the locking mode

Overridables

DoFieldExchange Override to exchange data between database and
field variables

GetDefaultConnect Override to change the connect string

33.6
Sim

p
le

 C
Re

c
o

rd
Se

t O
p

e
ra

tio
ns

This book is continuously updated. See http://www.iftech.com/mfc

593

GetDefaultSQL Override to modify the SQL string
OnSetOptions Override to set options for the ODBC statement
OnWaitForDataSource Override to yield CPU to other applications

33.6 Simple CRecordSet Operations

The easiest way to begin your understanding of the

CRecordSet

 class is to create
an instance of it that can access the

Employee

 table we created in Section 33.4. In this
section we will do this using the simplest and most primitive code possible so that you
can see exactly what is happening. Take the following steps.

33.6.1 Create the Application Framework

Create a new SDI framework with the AppWizard. Give the new project the
name “db.” As you go through the six AppWizard option screens, select the following
options:

• Choose the

Single-Document

 option.
•

In the database support screen, choose

Only Include Header Files.

• Choose

None

 for OLE support.
• Enable or disable any application features as you see fit.

Make sure you choose the header files specified in Step 2.

 We are not going to use
this Application Framework as anything but a foundation to support and activate an
instance of the

CRecordSet

 class.

33.6.2 Create a CRecordSet Class

Open the ClassWizard and prepare to add a new class. In the dialog that appears,
set the class type to

CRecordSet

. Name the class

CEmpSet

. Create the new class. You
will see a dialog asking you to pick the data source (database). Choose the employee
database you created in Section 33.4. You will then be asked to choose a table in that
data source. Choose the

Employee

 table.
If you look at the files the ClassWizard created, you will find they appear as

shown in Listings 33.1 and 33.2

Listing 33.1
The EMPSET.H file

// empset.h : header file
//

//
// CEmpSet recordset

class CEmpSet : public CRecordset
{
public:

CEmpSet(CDatabase* pDatabase = NULL);
DECLARE_DYNAMIC(CEmpSet)

594

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

// Field/Param Data
//{{AFX_FIELD(CEmpSet, CRecordset)
longm_EmpID;
CStringm_LastName;
CStringm_FirstName;
CStringm_Address;
CStringm_ZipCode;
//}}AFX_FIELD

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CEmpSet)
public:
virtual CString GetDefaultConnect(); // Default connection string
virtual CString GetDefaultSQL(); // Default SQL for Recordset
virtual void DoFieldExchange(CFieldExchange* pFX); // RFX support
//}}AFX_VIRTUAL

// Implementation
#ifdef _DEBUG

virtual void AssertValid() const;
virtual void Dump(CDumpContext& dc) const;

#endif
};

Listing 33.2
The EMPSET.CPP file

// empset.cpp : implementation file
//

#include "stdafx.h"
#include "db.h"
#include "empset.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// CEmpSet

IMPLEMENT_DYNAMIC(CEmpSet, CRecordset)

CEmpSet::CEmpSet(CDatabase* pdb)
: CRecordset(pdb)

{
//{{AFX_FIELD_INIT(CEmpSet)
m_EmpID = 0;
m_LastName = _T("");
m_FirstName = _T("");

33.6
Sim

p
le

 C
Re

c
o

rd
Se

t O
p

e
ra

tio
ns

This book is continuously updated. See http://www.iftech.com/mfc

595

m_Address = _T("");
m_ZipCode = _T("");
m_nFields = 5;
//}}AFX_FIELD_INIT

}

CString CEmpSet::GetDefaultConnect()
{

return _T("ODBC;DSN=Sample database;");
}

CString CEmpSet::GetDefaultSQL()
{

return _T("brain.EMPLOYEE");
}

void CEmpSet::DoFieldExchange(CFieldExchange* pFX)
{

//{{AFX_FIELD_MAP(CEmpSet)
pFX->SetFieldType(CFieldExchange::outputColumn);
RFX_Long(pFX, "EmpID", m_EmpID);
RFX_Text(pFX, "LastName", m_LastName);
RFX_Text(pFX, "FirstName", m_FirstName);
RFX_Text(pFX, "Address", m_Address);
RFX_Text(pFX, "ZipCode", m_ZipCode);
//}}AFX_FIELD_MAP

}

//
// CEmpSet diagnostics

#ifdef _DEBUG
void CEmpSet::AssertValid() const
{

CRecordset::AssertValid();
}

void CEmpSet::Dump(CDumpContext& dc) const
{

CRecordset::Dump(dc);
}
#endif //_DEBUG

You can see that the ClassWizard did not have to do a lot of work to create the
new class. What it did do is use the ODBC API to query the Employee table and find
its fields. It created a member variable in the class for each field in the table and then
created RFX function calls in the DoFieldExchange function to hold data from each
field. The class uses these member variables and RFX functions to hold one record’s
data when it transfers a record from the database to the class. It also uses these fields
to hold user changes before transferring those changes to the database.

596

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

The RFX functions are similar to DDX functions. A DDX function, as de-
scribed in Chapter 22, transfers data back and forth between member variables in a
dialog or form view class and the controls in the dialog template. An RFX function
transfers data between a member variable in a record set class and the database.

The ClassWizard automatically assumes you want to retrieve all columns from
a table and sets up its member variables and RFX functions accordingly. If you do not
want to retrieve all the columns from a table, simply remove the variable names using
the ClassWizard.

33.6.3 Create Viewing Code

To view the data in the record set, we will use here an extremely primitive meth-
od that has the advantage of being extremely clear. The code we are about to create
will recognize when the user clicks in the view. In response to that click, the code will
present a succession of message boxes that display the record set’s SQL statement fol-
lowed by information from the database.

Open the ClassWizard, select the

Message Maps

 tab, and then select the view
class. What we want to do is detect when the user clicks anywhere in the view and use
that as a signal to display the data in the record set. Select the

CDbView

 class and then
select its WM_LBUTTONUP message. Add a function for that message and edit the
function. Add the following code to the new function:

void CEmpView::OnLButtonUp(UINT nFlags, CPoint point)
{

int x;
CEmpSet set;
set.Open();

AfxMessageBox(set.GetSQL());
while (!set.IsEOF())
{

AfxMessageBox(set.m_LastName + set.m_FirstName);
set.MoveNext();

}

CView::OnLButtonUp(nFlags, point);
}

Be sure you include EMPSET.H at the top of the CBBVIEW.CPP file.

33.6.4 Compile and Run

Compile and run the program. Provided the employee database exists and the

Employee

 table contains data as shown in Section 33.4, you can click anywhere in the
view to trigger the code you just entered. This code will first create an instance of the
record set and

Open

 it. That is, the record set class will attach to the database server
and send the class’s SELECT statement to it. The database will respond to the SE-
LECT statement and form a result set. In addition, the

CEmpSet

 class will retrieve
the first record in the record set and store it in its member variables.

33.6
Sim

p
le

 C
Re

c
o

rd
Se

t O
p

e
ra

tio
ns

This book is continuously updated. See http://www.iftech.com/mfc

597

The code then uses a message box and the

GetSQL

 function to display the SQL
statement held by the record set class. A typical SQL statement would be:

SELECT EmpID,LastName,FirstName,ZipCode FROM EMPLOYEE FOR UPDATE OF

The “FOR UPDATE OF” clause specifies that updates will be allowed on the
records in the record set.

The code then begins looping. Each time through the loop the code gets the last
name field and displays it in a message box. Then it moves to the next record and dis-
plays it, repeating until it has shown all the records in the table.

33.6.5 Trap Exceptions

The code you’ve just tested is a bit too loose. If any problem occurs in accessing
the database, the program will fail catastrophically. You can make the code much
more stable by trapping database exceptions. See Chapter 13 for information on ex-
ception handling. Replace the code from Section 33.6.3 with the following:

void CEmpView::OnLButtonUp(UINT nFlags, CPoint point)
{

try
{

int x;
CEmpSet set;
set.Open();

AfxMessageBox(set.GetSQL());
while (!set.IsEOF())
{

AfxMessageBox(set.m_LastName + set.m_FirstName);
set.MoveNext();

}
}
catch(CDBException *theException)
{

AfxMessageBox(theException->m_strError);
}

CView::OnLButtonUp(nFlags, point);
}

If you compile and run this code, it will work exactly as it did before. If you want
to force a database exception to occur, replace the

for

 statement with the following:

for (x=0; x<set.GetRecordCount()

+ 1

; x++)

The loop will try to access one too many records and this will lead to an excep-
tion. If you look up the

CDBException

 exception in the MFC documentation, you
will find that it contains the extremely handy

m_strError

 member. This member con-
tains an English error string produced by the database server at the time of the error.

598

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

33.6.6 Add an ORDER BY Clause

You can sort the data in the record set by adding an ORDER BY clause, as dis-
cussed in Section 33.2.3. The

m_strSort

 member variable in the

CRecordSet

 class
facilitates this process. You simply specify the field names you want to use for sorting.

To demonstrate the ORDER BY clause, modify the code as shown below:

void CDbView::OnLButtonUp(UINT nFlags, CPoint point)
{

try
{

int x;
CEmpSet set;
set.m_strSort = "LastName ASC, FirstName ASC";
set.Open();

AfxMessageBox(set.GetSQL());
while (!set.IsEOF())
{

AfxMessageBox(set.m_LastName + set.m_FirstName);
set.MoveNext();

}
}
catch(CDBException *theException)
{

AfxMessageBox(theException->m_strError);
}

CView::OnLButtonUp(nFlags, point);
}

The single line that sets the

m_strSort

 variable is all that’s needed. You must set
this variable after instantiating the class but before opening the record set. Do not in-
clude the words “ORDER BY” in the string because the class will apply them itself.

33.6.7 Compile and Run

Compile and run the program. You will find the data returned in the record set
is appropriately sorted.

33.6.8 Add a WHERE Clause

You can filter the data in the record set by adding a WHERE clause, as discussed
in Section 33.2.2. The

m_strFilter

 member variable in the

CRecordSet

 class facili-
tates this process. You simply specify the field names that you want to use for filtering.

To demonstrate the WHERE clause, modify the code as shown below:

void CDbView::OnLButtonUp(UINT nFlags, CPoint point)

{
try
{

int x;
CEmpSet set;

33.6
Sim

p
le

 C
Re

c
o

rd
Se

t O
p

e
ra

tio
ns

This book is continuously updated. See http://www.iftech.com/mfc

599

set.m_strFilter = "(ZipCode = '27612')";
set.m_strSort = "LastName ASC, FirstName ASC";
set.Open();

AfxMessageBox(set.GetSQL());
while (!set.IsEOF())
{

AfxMessageBox(set.m_LastName + set.m_FirstName);
set.MoveNext();

}
}
catch(CDBException *theException)
{

AfxMessageBox(theException->m_strError);
}

CView::OnLButtonUp(nFlags, point);
}

The single line that sets the

m_strFilter

 variable is all that’s needed. You must
set this variable after instantiating the class but before opening the record set. Do not
include the word “WHERE” in the string because the class will apply the word itself.

You can make the string as long and complicated as you want, using ANDs and
ORs to extend it.

33.6.9 Compile and Run

When you compile and run the code, you will find only those rows with a 27612
zip code appear in the output, and they will be sorted by last name and first name.

33.6.10 Parameterize the WHERE Clause

In many cases you will not know at compile time the values you want to use for
the filter and sort strings. The

CRecordSet

 class, therefore, allows you to

parameterize

these strings. To parameterize a record set, you have to modify both the H and CPP
files generated by the ClassWizard.

In this example, we will parameterize the zip code field in the filter string. You
can parameterize as many values as you like in both the filter and sort strings. Making
the modifications to the code requires four steps.

33.6.10.1 Add a Parameter Member

Start by adding a parameter member to
the record set class. In EMPSET.H, add this variable to the bottom of the Field/Param
Data section:

// Field/Param Data
//{{AFX_FIELD(CEmpSet, CRecordset)
long m_EmpID;
CString m_LastName;
CString m_FirstName;
CString m_Address;
CString m_ZipCode;
//}}AFX_FIELD

CString m_ZipCodeParam;

600

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

This string variable will hold the value of the parameter and send it to the data-
base server.

33.6.10.2 Set up and Initialize the Parameter Member

The new member must
be initialized. You must also set the

m_nParams

 parameter in the

CRecordSet

 class to
let it know you are using parameter values. Add the following two lines of code to the
constructor in EMPSET.CPP:

CEmpSet::CEmpSet(CDatabase* pdb)
: CRecordset(pdb)

{
//{{AFX_FIELD_INIT(CEmpSet)
m_EmpID = 0;
m_LastName = _T("");
m_FirstName = _T("");
m_Address = _T("");
m_ZipCode = _T("");
m_nFields = 5;
//}}AFX_FIELD_INIT

m_nParams = 1;
m_ZipCodeParam = "";

}

33.6.10.3 Modify DoFieldExchange

You must then modify the

DoFieldEx-
change

 function so that: 1) it knows to pass parameters, and 2) it knows how to pass
the parameters. Modify the function by adding two lines as shown below:

void CEmpSet::DoFieldExchange(CFieldExchange* pFX)
{

//{{AFX_FIELD_MAP(CEmpSet)
pFX->SetFieldType(CFieldExchange::outputColumn);
RFX_Long(pFX, "EmpID", m_EmpID);
RFX_Text(pFX, "LastName", m_LastName);
RFX_Text(pFX, "FirstName", m_FirstName);
RFX_Text(pFX, "Address", m_Address);
RFX_Text(pFX, "ZipCode", m_ZipCode);
//}}AFX_FIELD_MAP

pFX->SetFieldType(CFieldExchange::param);
RFX_Text(pFX, "ZipCodeParam", m_ZipCodeParam);

}

The second parameter passed to

RFX_Text

 is immaterial and can contain any
string you like.

If you were passing multiple parameters, you would simply add more RFX state-
ments following the

RFX_Text

 statement (you need to call

SetFieldType

 just once).
MFC has ten different

RFX_

 functions to handle all SQL data types—see the MFC
documentation for more information.

33.6.10.4 Apply the Parameters

To apply the parameters, you simply set the
parameter member variables before calling

Open

 or

Requery

. In DBVIEW.CPP,
make the changes shown below:

33.6
Sim

p
le

 C
Re

c
o

rd
Se

t O
p

e
ra

tio
ns

This book is continuously updated. See http://www.iftech.com/mfc

601

void CDbView::OnLButtonUp(UINT nFlags, CPoint point)
{

try
{

int x;
CEmpSet set;
set.m_strFilter = "(ZipCode = ?)";
set.m_strSort = "LastName ASC, FirstName ASC";

set.m_ZipCodeParam = "27587";
set.Open();

AfxMessageBox(set.GetSQL());
while (!set.IsEOF())
{

AfxMessageBox(set.m_LastName + set.m_FirstName);
set.MoveNext();

}

set.m_ZipCodeParam = "27612";
set.Requery();

AfxMessageBox("Requerying");
for (x=0; x<set.GetRecordCount(); x++)
{

AfxMessageBox(set.m_LastName + set.m_FirstName);
set.MoveNext();

}
}
catch(CDBException *theException)
{

AfxMessageBox(theException->m_strError);
}

CView::OnLButtonUp(nFlags, point);
}

Note the use of the question mark in setting

m_strFilter

. This question mark
indicates where to substitute the parameter. The code then sets the parameter member
variable in the record set and calls

Open

. The

CRecordSet

 class automatically passes
the parameter to the database server at the same time it sends the SQL statement. You
can later respecify the parameter and call

Requery

 to query the database with the new
parameter value. This is significantly more efficient than calling

Open

 again.
You can fill the

m_ZipCodeParam

 member with any string. Typically, you
would fill it with a string supplied by the use in a dialog box or chosen by the user
from a list.

Note that if you want to use multiple parameters, you follow the same steps: 1)
add a member variable, 2) initialize the member variable and set the number of pa-
rameters, 3) add an

RFX_

 function to transfer the parameter to the database, and 4)
use a question mark in the filter string, set the parameter member, and query the da-
tabase. When you use multiple question marks in a filter string, the question marks
are filled from the parameter member variables in the order specified. That is, the first

602

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

question mark is filled with the first

RFX_

 function’s value, the second with the sec-
ond, and so on.

33.6.11 Compile and Run

When you compile and run the program, you will find that the SQL query string
sent to the database server contains the question mark. Behind the scenes the

CRecordSet

 sends the query string first, and then passes the parameter(s). The data-
base fills the question marks with the parameters in the order received.

You will find the code displays all rows that contain the 27587 zip code, fol-
lowed by all records containing the 27612 zip code.

33.7 Using the CRecordView Class

As you can see from the examples in the previous section, the

CRecordset

 class
is designed to make the retrieval of data from a database server simple. The class issues
a SELECT statement to the database and then makes it easy to retrieve all the records
that result from the query. You can easily imagine creating applications that contain a
number of record sets for a complicated database.

In the previous examples, we displayed all the data from the record set in a mes-
sage box. This made the code simple, compact, and easy to understand. It would have
been nearly as easy to walk through all the records resulting from a query and add
them to a list. In many cases, however, what you would like to do is take the values
from the record set and display them in a form, with each field in its own edit field so
the user can view and modify the individual fields easily. Because this display tech-
nique is so common and so desirable, MFC contains a class called

CRecordView

. The
AppWizard and ClassWizard can work with record views and record sets to quickly
generate forms for the application.

The easiest way to understand a record view is to create one.

33.7.1 Create an Application Framework

Create a new SDI framework with the AppWizard. Give the new project the
name “db.” Select the location for the new application directory and rename the di-
rectory if necessary.

As you go through the AppWizard option screens, select the following options:
• Choose the

Single-Document

 option.
•

In the database support screen, choose

A Database View, Without File Sup-
port.

 You will then need to click the

Data Source

 button and choose a data
source and a table. Use the sample data source we created earlier in this chap-
ter, and choose the EMPLOYEE table.

• Choose

None

 for OLE support.
• Enable or disable any application features as you see fit.

Make sure you choose the correct database option and data source as specified in Step
2.

 When you get done you should see a New Project Information dialog. This dialog

33.7
U

sing
 the

 C
Re

c
o

rd
V

ie
w

 C
la

ss

This book is continuously updated. See http://www.iftech.com/mfc

603

summarizes the choices you made in the customization screens. See Appendix B.6 for
details.

33.7.2 Compile and Run

Compile and run the new application. You will find, first of all, that the

File

menu contains nothing but an

Exit

 option. This is because we specified

A Database
View, Without File Support

 when creating the application. This selection implies
that you want to create an application that automatically opens the specified data
source and uses it for all the application’s data needs. Therefore, the

Open

,

New

,

Save,

 and

Save As

 options in the

File

 menu are unnecessary.
There is also a complete new menu called

Record

 that gives you the ability to
move to the first, last, next, and previous records in the record set. These options don’t
really seem to do anything right now. However, if you try them out you will notice
you can choose the

Next

 option a limited number of times and that limit happens to
correspond to the number of records you have in your sample

Employee

 table. Try
out the options in the

Record

 menu.
You will also notice that the body of your SDI window is occupied with the stan-

dard TODO label. Our main goal with this application will be to fill the window with
appropriate controls.

Take some time to look around at the files the AppWizard created. The DBSET
files look exactly as they did in the previous section. This class simply provides an in-
terface to the

Employee

 table in the database. The DBVIEW files look remarkably
like the files for a normal form view. For example, there is a dialog in the resource file
for the form view, and this dialog’s ID appears in DBVIEW.H and is referenced in
DBVIEW.CPP. The only real differences between the view class here and a normal
form view are:

1. DBVIEW.CPP knows about the record set class via an assignment that occurs
in

OnInitialUpdate

.
2. DBVIEW.CPP does not contain a

Serialize

 function. This difference occurs
because we did not request file support when we created the application. If we
had, the

File

 menu would contain appropriate options and the

Serialize

 func-
tion would be included here.
All other files look about the same as they normally do.

33.7.3 Modify the Dialog Template

To use a

CRecordView

-derived class, you create a set of edit controls to display
the data in the different fields, and then you attach those fields through DDX to the
different fields in the record set. The ClassWizard makes this easy.

Start by opening the resource file for the application and looking at the
IDD_DB_FORM dialog. Remove the TODO static control already in the dialog and
add to the dialog five static labels and five edit controls as shown in Figure 33.9. Dou-
ble-click on each edit control and rename it with a meaningful ID. For example,

604

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

rename the employee ID edit control with IDC_EMPID. Rename the edit control for
the last name with IDC_LASTNAME. Do this for all five controls. Save and close the
modified dialog.

33.7.4 Connect the Controls

Open the ClassWizard and make sure the

Member Variables

 tab is selected. Se-
lect the

CDbView

 class. If you click on the IDC_ADDRESS control and click the

Add Variable

 button, you will see the Add Member Variable dialog. Click on the ar-
row next to the

Member Variable Name

 combo box and you will see a list that
contains all the member variables

in the record set class

. This is unusual, but extremely
useful. What we will do is wire the edit control for the address

directly to the RFX mem-
ber variable in the record set class

. Select the proper variable from the record set class
and press

OK

. Do this for all five controls in the view. Then adjust the DDX limits
as appropriate.

The mechanism that allows the ClassWizard to hook the controls in the view
class to variables in the record set class can be found in the

Class Info

 section of the
ClassWizard. If you look in that section you will find you have the ability to set a

for-
eign class

 and a

foreign variable

 in that class. The foreign class capability is designed
specifically to allow you to form links between dialog or form classes and

CRecordset

classes.

33.7.5 Compile and Run

Compile and run the application. You will find the program comes up and dis-
plays the first record of the record set in the form. You can move forward and
backward between the records in the record set using the menu options in the

Record

menu. You can also modify the fields in a record. When you move to another record,
the database will be updated with the new information.

Figure 33.9

The form for the application

33.8
A

d
d

ing
 a

nd
 D

e
le

ting
 Re

c
o

rd
s

This book is continuously updated. See http://www.iftech.com/mfc

605

This is a remarkable amount of functionality, especially when you consider that
you have written zero lines of code. All of this is accomplished by leveraging off the
standard capabilities built into the

CRecordset

 and

CRecordView

 classes. Any record
set that you can create (see Section 33.7) can be viewed in a record view.

33.7.6 Noticing a Problem

Try the following experiment. Open two copies of the application. Modify one
of the records in the first copy. Save the changes by moving to the next record and
moving back. You will find that the record has changed correctly.

Now scroll through all the records in the second copy of the application. You
will find that the changes do not appear in that copy. If you start a third copy, it will
contain the changes but the second one will never pick up the changes.

This problem occurs because the record set class, by default, is in

snapshot

 mode.
That is, the record set class sends a SELECT statement to the database, and the data-
base responds to the statement and forms a result set. Then that result set is fed one
record at a time to the record set as it requests them. However, the result set is separate
from the actual data in the tables. It is possible to update the snapshot by calling the

Requery

 function, but the code as it stands now does not contain that call.
The

CRecordset

 class has another capability, called a

dynaset

 that solves some of
these problems. In a dynaset, the database correctly updates records each time it sends
them to the record set. You determine whether the record set uses snapshots or dy-
nasets in the call to the record set’s

Open

 function.

33.8 Adding and Deleting Records

As you saw in the previous section, the record set class automatically updates
records in the database when you change field values and move to a different record.
The

CRecordset

 class also contains functions that allow you to add and delete records.
You can experiment with these functions by taking the following steps.

33.8.1 Add Menu Options

Start with the application that you created in Section 33.7. Open the resource
file and add four options to the bottom of the

Record

 menu:

Requery

,

Add

,

Update

,
and

Delete

. Save and close the file.

33.8.2 Create the Code for Requery

Using the ClassWizard, create a COMMAND handler for the

Requery

 menu
option in the

CDbView

 class (if the menu IDs do not appear in the object ID list for
the

CDbView

 class, try opening the menu resource and, with it open as the topmost
window in Visual C++, open the ClassWizard). Use the following code in the
function:

void CDbView::OnRecordRequery()
{

m_pSet->Requery();

606

This book is continuously updated. See http://www.iftech.com/mfc

33
D

a
ta

b
a

se
 A

c
c

e
ss

UpdateData(FALSE);
}

When you compile and run the program you will find that you can requery the
database whenever you like to reform the record set’s snapshot. You can add to this
function exception handling code if you like.

33.8.3 Create the Code for Delete

You can also delete records from the database. Using the ClassWizard, create a
COMMAND handler for the

Delete

 menu option in the

CDbView

 class (if the menu
IDs do not appear in the object ID list for the

CDbView

 class, try opening the menu
resource and, with it open as the topmost window in Visual C++, open the ClassWiz-
ard). Use the following code in the function:

void CDbView::OnRecordDelete()
{

m_pSet->Delete();
m_pSet->MoveNext();
// Check for empty file
if (m_pSet->IsBOF())
{

m_pSet->SetFieldNull(NULL);
m_pSet->Requery();

}
// Check for end of file
else if (m_pSet->IsEOF())

m_pSet->MoveLast();
UpdateData(FALSE);

}

This function deletes the current record. Then it moves to the next one in the
record set. At that point the code checks for two conditions: 1) an empty file, and 2)
end of file. In either case it responds appropriately.

33.8.4 Create the Code for Adding Records

Because there are so many different ways that a programmer might want to im-
plement adding records to a database, it is suggested that you read through a variety
of documentation entries (see Section 33.10 for a list) and also examine the Enroll tu-
torial provided by Microsoft in books on-line for some ideas. The basic principle,
however, is that you need to call

AddNew

 in the

CRecordset

 class to start the add pro-
cess and then call

Update

 in the

CRecordset

 class to actually add the record. We have
previously created two menu options to handle these two activities. Other approaches
might include calling

Update

 when the user moves off the record (this is the approach
described in the Enroll tutorial) or creating a separate Add dialog.

For the example here, the following minimalist code implements the

Update

and

Add

 menu options. Wire in these two functions with the ClassWizard.

33.9
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

607

void CDbView::OnRecordUpdate()
{

UpdateData();
m_pSet->Update();
m_pSet->Requery(); // not necessary in all databases
UpdateData(FALSE);

}

void CDbView::OnRecordAdd()
{

m_pSet->AddNew();
UpdateData(FALSE);

}

To use this code, you should choose the

Add

 menu option, enter your new val-
ues, and then choose the

Update

 menu option. You will want to add exception-
handling code to see specific error messages generated by the database.

33.9 Conclusion

SQL is its own science, and the

CRecordSet

 and

CDatabase

 classes are quite
intricate as well. Therefore, the goal of this chapter has not been to cover these topics
exhaustively, but instead to help you get started in creating your own understanding
of these topics and their use in MFC applications.

The following pages in the advanced section of the MFC documentation may
also prove useful in further understanding databases and the database classes in MFC:
SQL, ODBC, Recordset, Database, Record, Record Field Exchange, Record View,
Data Source and Data Object. Use the

Search

 button to find these pages. See also the
documentation on the

CRecordSet

,

CDatabase

 and

CRecordView

 classes, as well as
the ODBCAPI.HLP documentation. Alternative examples for the

CRecordSet

 and

CRecordView

classes are available in the Enroll example in the Visual C++ tutorials,
available in books on-line. The MFC Encyclopedia in books on-line contains related
articles as well. You may also want to pick up a book on SQL databases to increase
your understanding of the SQL language.

609

34OLE

OLE is one of the most interesting and intricate subsystems inside Windows. OLE is
so intricate, in fact, that Microsoft plans to let it completely overwhelm and dominate
Windows, eventually becoming the core technology inside forthcoming object-orient-
ed operating systems. At present OLE has developed to the point of being a complete
inter-application communication mechanism, and you can use this mechanism in
your own applications to provide a wide variety of extremely interesting features and
capabilities.

Because of the complexity of OLE, it would be impossible in any one chapter,
or in fact in any book, to completely explain everything OLE can do. However, the
MFC classes and different tools provided by Visual C++ go a long way toward making
OLE usable, provided you understand the basic concepts that drive the whole system.
Therefore, the goal of this chapter is to explain in a general way what OLE is and what
it can do for you as a programmer. This chapter will also show you how to use the
AppWizard and the new ControlWizard to create OLE servers, OLE containers, and
OLE controls. Once you have a good grounding in these basic concepts, you can use
the prodigious documentation provided by Microsoft to expand your knowledge in
almost any way you desire.

34.1 Understanding OLE

To get started, here is a simple definition of OLE:

Object Linking and Embed-
ding, also know as OLE, is a facility that allows separate Windows applications to
communicate with one another. It is a standard protocol that lets one application request
the services of another and also allows for specific forms of communication to occur between
any two applications.

OLE, at a conceptual level, is truly that simple. You can describe it in just a sen-
tence or two. One program, through OLE, can communicate with another program.
This simple definition is extremely important, because if you can keep this basic con-
cept in mind at all times it is easy to keep the system in perspective. This simple

610

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

definition also immediately generates two important questions: “Why do programs
need to communicate with each other?” and “What are the implications of the com-
munication system once it exists?” By answering these two questions you can gain a
clear understanding of why OLE exists and what it can accomplish.

The first question is best answered by example. Let’s say you wanted to design
and create your own simple GUI environment. For the moment imagine that Win-
dows, the Macintosh, X, and other windowing environments do not exist, and you
want to create the first windowed operating system that the world has ever seen. You
would probably want to start with something simple. The initial system might allow
a programmer to create a window, draw shapes or text into that window, and send
output to a printer. With such a system, it is fairly easy to create such things as word
processors and drawing programs. Therefore, your first product release might consist
of the GUI operating system, a word processor, and some sort of drawing program.
This is, by the way, exactly the sort of configuration the world saw when the Macin-
tosh made its appearance in 1984.

Once you release this new windowed operating system and its two applications
and people start using it, one thing that your users will immediately demand is a way
to put pictures into their word processor documents in a seamless way. For example,
a user might want to create a figure for a technical paper and incorporate it into the
paper itself. There are several ways you might create this capability, one of those being
a temporary storage space in memory that applications use to pass data to one another:
a clipboard. A clipboard is nothing more than an area of memory managed by the op-
erating system to facilitate a form of inter-application communication. The concept
of the clipboard gets a little murky, however, when applications want to share data
that is fundamentally unexpected. For example, a “word processor” is meant to pro-
cess words, not pictures. So when a word processor receives pictures on the clipboard
it doesn’t know what to do with them and therefore has a problem.

Clearly the easiest way to solve this problem is to brute-force a solution. You
might define one or more specific formats for clipboard data, and then decree that
each program must be able to accept those formats and render them. For example, you
might allow programs to copy either text or bitmaps (and nothing else) to the clip-
board. Then you can give each application the code it needs to handle and display and
print both text and bitmap insertions. This simplification makes it easy to insert draw-
ings into word processor documents.

This approach works well initially, but it eventually runs into problems for two
reasons. First, as the number of applications proliferate, the two formats allowed prob-
ably are insufficient. For example, spreadsheet data works well neither as text nor as a
bitmap. It may be too grainy, for instance, when rendered as a bitmap. When rendered
as text it loses its fundamental spreadsheetness—all the nice boxes that divide the cells
and line things up disappear. Second, the document that holds the pasted spreadsheet
data cannot use that data in any way. All it has is a bitmap and there is no way to use
it for anything other than rendering an image. Or all it has is some text and none of
the formulas get transmitted.

34.1
U

nd
e

rsta
nd

ing
 O

LE

This book is continuously updated. See http://www.iftech.com/mfc

611

One alternative is to allow the number of clipboard formats that each applica-
tion supports to proliferate with the applications. For example, you could add
spreadsheet-format data to your list of clipboard formats that all applications must
support. Unfortunately, this approach will quickly become cumbersome because the
number of applications in a GUI environment grows very quickly. There is no way
that all the applications can keep up with the growing number of other applications
and the clipboard formats they demand.

As the developer of this GUI environment, you might therefore scratch your
head and begin to look for a better solution to the problem. A second, much more
general approach is to allow applications to communicate at a deeper level and to in-
teract with each other in more meaningful ways. For example, say that each
application on a system is responsible for rendering its own data regardless of which
application is actually holding the data. If the user has pasted spreadsheet data into a
word processing document, and the word processing document needs to print the
spreadsheet data, the word processor would somehow send a message to the spread-
sheet application to request assistance. The spreadsheet application would start up,
properly format and print the spreadsheet data for the word processor, and then ter-
minate. This sort of system could be complicated, but it would allow applications to
proliferate without putting an undue strain on developers. As long as each application
is coded so it can communicate with the others about the clipboard data it is holding,
the problem of proliferating clipboard data formats is solved.

This is exactly the sort of problem faced by GUI designers in their operating sys-
tems. And this is exactly the sort of evolutionary process clipboard data handling has
gone through. The ultimate solution to the clipboard data problem is to let each ap-
plication be in charge of changing and rendering its data no matter where that data
actually lives. You can see from this example that any two applications need to be able
to communicate and cooperate with one another at a fairly intimate level for this sort
of clipboard formatting to occur properly.

Why limit inter-application communication strictly to clipboard data, however?
If this communication capability is generalized just a bit, you suddenly end up with
something much more powerful. What you end up with is a general system of com-
munication that allows cooperation between applications for a variety of different
tasks. In such a general communication environment, applications can request all sorts
of services from one another. For example, a word processor can ask a spreadsheet to
allow the user to edit a spreadsheet object. A spreadsheet can automatically update
spreadsheet objects in other applications whenever it needs to. A spreadsheet can re-
ceive a data feed from another application connected to a modem that is querying a
remote database. Once a general inter-application communication system exists, there
is almost no end to the ways creative programmers can use the system.

The implications of this simple capability are tremendous. By giving applica-
tions a way to communicate, OLE ends up implementing the foundation of an object
oriented-operating system. Each application acts as a stand-alone object, and all appli-
cations can communicate with one another. OLE’s facilities are general enough to

612

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

allow this sort of interaction. One of the things you will discover later in this chapter
is that OLE will form the base of Microsoft’s upcoming object-oriented operating sys-
tem, currently known as “Cairo.”

The ability to allow different applications to generally communicate with one
another may not initially seem to be very important. For example, any Windows pro-
grammer using the Win32 API can already easily create two applications and let them
communicate through shared memory, named pipes, mailslots, and any variety of oth-
er standardized inter-process communication mechanisms. Windows has also
supported fairly general communications mechanisms such as DDE for some time.
C++ and Smalltalk programmers constantly create objects and send messages between
them. All these types of communication are limiting, however, because they expect
that the application writer will specify the communication protocol and know how to
use it. The beauty of a

general

 system like OLE is that

any

 two applications, regardless
of the manufacturer, can communicate about a wide variety of topics. In the absence
of a general scheme, developers come up with all sorts of proprietary schemes, and this
diversity discourages interoperability. With one standardized scheme like OLE in
place, any application can communicate with any other.

To implement a completely general communication system, OLE offers capabil-
ities not normally found in other object-oriented systems. When you create an object
oriented program in C++, for example, you have an important advantage that is not
available to OLE: You know what each of the classes in your program does and there-
fore you can call specific functions in your different classes. This makes
communication easy, because you inherently know which functions each class sup-
ports. But what if two applications, developed totally independently of one another,
need to communicate? OLE is unique in this regard. In an OLE system, the different
applications generally know

nothing

 about one another. In fact, they cannot even be
sure that other applications exist on the system. Yet they can communicate through
OLE.

For OLE to allow independent applications to communicate, OLE applications
must do something that is unusual in object-oriented programming: They must ask
one another what can be done. OLE defines a set of pre-defined

interfaces

 that any ap-
plication may or may not choose to implement. These interfaces are simply
standardized collections of functions that applications can call to communicate with
one another. For example, if an application supports

visual editing

(see the next section
for an example of this capability), it must implement the interfaces (the specific col-
lections of functions) that other applications will use to access the visual editing
features. Interfaces act as the communication channels between different applications,
and each interface handles a specific type of communication. OLE originally defined
43 standard interfaces, each made up of a set of specific functions. These standard in-
terfaces together handle most normal forms of communication between applications.
Programmers can also define new interfaces of their own to handle special situations,
so the number of interfaces grows constantly. Any application can choose to imple-

34.1
U

nd
e

rsta
nd

ing
 O

LE

This book is continuously updated. See http://www.iftech.com/mfc

613

ment any number of known interfaces, depending on what the application does and
how it wants to be able to interact with other applications.

Because the collections of functions in an interface are predeclared and publicly
documented, any application can make use of an interface with the knowledge that it
will work in a specific way. This expectation allows applications to communicate safe-
ly with one another.

Applications may also support, through a set of standard interfaces, a feature
called

automation

. Using automation, an application can export an arbitrary set of op-
erations that allow external manipulation of the application. These operations can be
invoked by other applications, generally through some form of programming lan-
guage or macro facility. A programmer can write code that calls the automated
operations directly. The automation facility makes it possible for programmers to treat
applications as reusable objects that become integral parts of other applications.

You can see from this discussion that OLE allows two forms of inter-application
communication: 1) Independent applications can communicate with one another
through standardized OLE interfaces, and 2) programmers can access the capabilities
of certain applications through automation, if those applications support the automa-
tion interfaces. It is important to understand and accept OLE at this high level of
generality. As you can see from the description given above, OLE is simply a commu-
nication mechanism used between separate applications.

Interfaces are, by design, standardized. The functions in any given interface have
predefined and publicly declared names and parameter lists. Therefore, the code inside
of a given interface will generally be similar across applications. The goal of the MFC
classes that support OLE is to encapsulate this commonality in classes so you do not
have to write the code yourself. These classes make standard OLE interactions extreme-
ly easy to implement because the bulk of the code is already written.

Figure 34.1

Communication between two applications

Application 1 needs a service
that application 2 provides. It
contacts application 2 through
its interfaces

Interfaces

Application 1 Application 2

Application 2

Application 2 provides a
service that application 1
needs. It makes those services
available to application 1
through its interfaces.

614

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

34.2 An Example

Because it is a general communication system, and because it has also been tuned
to handle certain specific communication tasks, OLE expresses itself in a number of
different ways in a Windows system. One way to understand OLE is to look at one of
its most obvious capabilities and see how that capability is implemented.

Let’s take the very common operation of pasting information from one applica-
tion to another using the clipboard. For example, you might wish to paste something
into a document that you have created using Microsoft Word version 6.0. This is a
“traditional” use of OLE. Word 6.0 allows you to paste at least three different types
of objects into a document:

1. Raw text—When Word sees raw text on the clipboard, it simply pastes it into
the document at the current insertion point. It will apply some default format-
ting to the text.

2. Formatted text from Word and other word-processing applications—When
Word sees specifically formatted text on the clipboard, it performs any transla-
tions required and then pastes the formatted text into the document.

3. OLE objects—When Word sees an OLE object on the clipboard, it pastes the
object into the document. It also keeps track of the originating application, so
that it can later request the services of that application to deal with the foreign
data.
It is the third type of paste operation that is of interest, not because of the paste

itself, but because of what can happen later. If the object is pasted properly, and if the
object originated in an OLE application, then the user can double-click on the object
to edit it within Word itself.

You can, and should, try this out yourself if you have OLE-aware versions of
Word (versions 6.0 and above are OLE aware) and Excel (versions 5.0 and above are
OLE aware) on your system. Open Word and type several lines of text into a new doc-
ument. Then take the following steps:

1. Open Excel and enter four or five numbers in a column.
2. Select the numbers by dragging over them and copy them from Excel onto the

clipboard.
3. In Word, choose the

Paste Special

option in the

Edit

 menu and indicate that
you want to paste the object in a native Excel format, as shown in Figure 34.2.
Click the OK button on the dialog.

4. Once the paste operation is complete, double-click on the spreadsheet object in
the Word document. What you will see is interesting: the Microsoft Excel
application will take over Word’s tool bar and menu, and you will also see scroll
bars and a frame surround the spreadsheet data in the Word document, as
shown in Figure 34.3. This capability is called

visual editing

. Excel has, in a way,
momentarily taken over Word. You can use Excel from within Word to edit the

34.2
A

n Exa
m

p
le

This book is continuously updated. See http://www.iftech.com/mfc

615

spreadsheet object directly. Single-click anywhere else in the document and
Excel will disappear.
When you double-click on the spreadsheet object to indicate you want to edit

it, OLE goes into action. The Word application and the Excel application begin to
communicate with one another using a standard OLE conversation. Here is what hap-
pens in this particular conversation:

1. Word can be thought of as a

container

 for the OLE object it holds. The user
double-click on the object that Word holds. Word doesn’t really care where the
object originated, but it does know that the object came from an OLE-aware
application. Word, therefore, requests that OLE start the application that cre-
ated the object on which you double-clicked.

2. The OLE-aware application that created the object starts. In this case that
application is Excel. Excel doesn’t really care who started it. It simply knows, by
the way that it was started, that a user wants to edit one of its objects currently
residing in another application. It therefore needs to determine what level of
editing the container is willing to support.

3. To figure out what the container can do, Excel queries Word through a standard
OLE interface and asks, “Do you know how to do visual editing?” If the con-
tainer answers negatively, Excel will pull in the data, open itself on the screen as
a stand-alone application, change its

File

 menu to include an

Update

 option,
and let the user edit the data. When the user chooses the

Update

 option, Excel
will write the data back to the document and quit.

Figure 34.2

The Paste Special dialog

616

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

4. If the container allows visual editing, Excel and the container enter into an
OLE conversation to negotiate how the visual editing will take place. Word and
Excel communicate with one another: They talk back and forth through stan-
dard interfaces to give Excel the space it needs to display its scroll bars, tool bar,
status line, menus, and so on. Once the user is done editing the object, Excel
saves the modified data in the document and terminates.
The entire conversation between Excel and Word occurs through standard in-

terfaces pre-defined by OLE to perform this common conversation. Coded into each
application is the appropriate response to each question that applications can ask of a
given interface. The questions are asked, or services requested, by calling functions
known to exist in the defined interfaces.

Your job as a programmer when you create an OLE application is to decide
which capabilities your application needs to support and to then implement those in-
terfaces so they correctly interact with other applications. You can do this directly
yourself on an interface-by-interface basis using C or C++. However, because much of
the behavior of any interface is fairly standard, the MFC class hierarchy contains class-
es that implement a great deal of the standard boilerplate code needed by OLE. These
classes can make your programming task much easier.

Figure 34.3

Visual editing in OLE. A Word document contains a piece of an Excel spreadsheet

34.3
O

LE a
s a

 V
isio

n o
f the

 Future

This book is continuously updated. See http://www.iftech.com/mfc

617

Either way you do it, through MFC or standard C++, your application ends up
possessing the OLE interfaces that other applications need to communicate with it.
Once these interfaces are in place, your application becomes a full participant in the
universe of OLE applications.

34.3 OLE as a Vision of the Future

OLE sets the stage for a new way of designing and implementing software. Once
an operating system has an easy and efficient way for applications to communicate
with one another, it opens up the possibility of creating applications with replaceable
parts. It also opens the possibility of creating applications that are really little more
than combinations of other applications. For example, a word processor might use a
spelling checker, a drawing program, a table editor, and an e-mail routing system that
are all stand-alone applications attached to the word processor through OLE. All these
OLE parts are replaceable, independent sub-assemblies completely separate from the
word processor. This vision of the future is called

Component Software

.
Under this component model, each application is a stand-alone software object

that contains a set of capabilities. The application makes those capabilities available to

Figure 34.4

Visual editing in OLE. The user has double-clicked on the spreadsheet portion of the
Word document and is now editing it with Excel. Note how Excel has taken over the
menu, the tool bars, and the area immediately surrounding the spreadsheet object

618

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

other applications through its OLE interfaces. Other applications that need certain
specific capabilities then tend to obtain them from the pool of applications on the cur-
rent system, rather than implementing them internally. This tendency creates an
environment in which individual components tend to be fairly small and single-mind-
ed. Programmers and users can then combine different sets of components to create
specific applications.

The move toward component software has a number of important advantages:

1. Given a single, standard communication mechanism, any application can com-
municate with any other. This saves the cost of developing and supporting a
number of proprietary communication systems and protocols.

2. Application designers and implementers can focus on the “meat” of their appli-
cations rather than having to waste time on peripheral issues like spelling
checkers, address lists, and so on. Instead of implementing these extraneous
pieces, the application developer simply connects to existing components that
perform these tasks through OLE.

3. Users are no longer bound to specific vendors. They can mix and match com-
ponents based on merit. Because all components communicate through the
same standardized mechanism, they are interchangeable.

4. Small and innovative software companies can enter the software marketplace
with sanely-sized products. Vendors can implement individual components
that do just one thing. They are no longer required to invent huge, monolithic
applications. At the same time, a developer can combine many existing pieces
from other vendors to create large applications in much less time.
In the future, OLE will have two important effects. First, the mechanism will be

extended to allow object connections over networks, so that distributed computing
can be integrated into the workplace in a standard and simple way. Second, the entire
Windows operating system will rapidly migrate toward OLE, so eventually all of the
features of the operating system itself will be made available through their own stand-
alone software objects. Instead of a programmer accessing the file system through an
API, the programmer will access it in a standard way through an OLE interface. The
operating system will itself become a set of components that the user extends by pur-
chasing other components from a variety of software vendors.

34.4 Standard OLE Features

Although OLE is a general intercommunication system, it is used in several spe-
cific and stylized ways to accomplish common intercommunication tasks. It is these
common tasks that the MFC classes support. Here is a list of the application features
you commonly see in OLE applications.

1. Embedding—An application can embed an OLE object into one of its docu-
ments. The object comes in via the clipboard or through an Insert Object menu
option. Under embedding, the application holds a complete copy of the object

34.4
Sta

nd
a

rd
 O

LE Fe
a

ture
s

This book is continuously updated. See http://www.iftech.com/mfc

619

in its document. The user can double-click on the object to edit it in its proper
server.

2. Visual Editing—If an application supports visual editing, and if an embedded
OLE object inside that application comes from an application that also sup-
ports visual editing, the user can edit the object in-place, as described in the
example in the previous section.

3. Linking—An application can form a link to data held in a file on disk, as long
as the file is owned by an OLE application. Under linking, the application sim-
ply stores a pointer to the data in the second file, and many documents can
point to the same data. If the linked file changes, all documents linked to the
file see the changes.

4. Drag-and-Drop—Rather than forcing the user to cut or copy information to
the clipboard and then paste it in the destination document, OLE applications
can speed up the process by allowing the user to drag information from one
application and drop it in another. This action is equivalent to embedding.

5. Automation—An application can, if it chooses, allow other applications to acti-
vate and use it through automation. For example, a Visual Basic programmer
can use automation to start up Word, open a document, change the document,
and then print it. All of this happens invisibly, so the programmer can use
Word in an application as a report generator and document-printing engine.
Behind the scenes, there is one other technology new to OLE that makes a num-

ber of these other features possible. It is called

structured storage

. If you think about
how OLE might efficiently implement several of its features, it becomes easy to un-
derstand where structured storage comes from and why it is important.

Imagine that a word-processing document contains an embedded spreadsheet
object. The user of the document double-clicks on the spreadsheet object to edit it. It
is important to keep in mind two things: 1) the embedded object can, potentially, be
quite large, and 2) when the user changes the object, the spreadsheet is going to want
to save the modifications and the embedded object may therefore change in size. So
how does the spreadsheet get the data, and how does it return the changes?

One way to implement OLE would be for the word processor to transmit the
data to the spreadsheet and then accept the changes and write them back. To do that,
however, the word processor would have to read the object off disk and into memory.
Then it would have to transmit a copy of the data to the spreadsheet object. If the em-
bedded object is large, the two copies of the data take up too much memory space, and
the creation and transmission of the copy takes too much time.

Another way to implement OLE is to make it possible for the spreadsheet to ma-
nipulate the object directly inside the word-processing document’s file. The word
processor would tell the spreadsheet where the data is. The spreadsheet would load it
and manipulate it independently of the word processor. However, this is rather risky
in a conventional file because the spreadsheet may need to grow the object larger and
there would be no room in the file to allow that.

620

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

One solution to this problem would be to store all embedded OLE objects in
separate files outside the word processor file. Then the spreadsheet could manipulate
a file that contains just the embedded object. This approach would solve a lot of prob-
lems, but has the disadvantage that a single document now consists of multiple
physical files.

Structured storage, at least at a high level, can be thought of as a system that al-
lows you to place multiple files inside a single file. The structured storage model lets
you create what appears to be a hierarchical file structure inside a single file. Structured
storage manages this entire abstraction for you and makes it possible for you to nearly
forget that it is happening, especially when using the MFC classes.

Another feature that makes OLE possible is an external table that holds all the
known OLE servers on each Windows machine. This table is used, for example, to
populate the list you see when you select the

Insert New Object

 menu option in any
application that can embed OLE objects. This table gets updated each time you install
a new server on your system or move a server’s directory to another location on your
hard disk. On any Windows machine, this table is known as the

registry

.
Any Windows NT programmer is familiar with the registry as a place to store

system values for different applications as well as a variety of user information. This
data is accessed with the REGEDT32 application. One of the subsections in the reg-
istry is called HKEY_CLASSES_ROOT. This subsection contains information about
the OLE servers on the system. This particular subsection of the registry is also acces-
sible through an application called REGEDIT.

If you run REGEDIT

with the /v option

 from a command line on your machine,
you will find that it displays two different kinds of information, as shown in Figures
34.5 and 34.6. In Figure 34.5, for example, you can see that Microsoft Equation 2 has
been identified by name. The top part of the OLE registry is nothing but a list of the
different servers identified by name. Underneath the name is additional information
about the particular server, including the

class ID

 of the server and the path to the serv-
er’s executable. The system uses this part of the registry whenever it needs to create a
list of all available servers for the user.

When the user picks an object server, for example, from a dialog that appears in
response to an

Insert New Object

 menu option, the dialog returns the

class ID

 of the
server. The word

class

 in the name again demonstrates the object-oriented nature of
OLE. Each object server known to the system is said to produce objects of a specific
class. This is identical to the terminology used to talk about instantiation in any ob-
ject-oriented language. The ID portion of the name signifies that different available
severs have unique identifiers that OLE uses when specifying servers.

The identifiers used for OLE servers are called

UUIDs

, or Universally Unique
Identifiers. UUIDs will be familiar to you if you have ever worked with Remote Pro-
cedure Calls (RPCs) in the Win32 API. A UUID is a 128-bit value represented as a
hex number containing 32 digits. For example, the universally unique identifier for
Microsoft Equation version 2.0 is:

00021700-0000-0000-C000-000000000046

34.5
A

n Intro
d

uc
tio

n to
 O

LE C
o

nta
ine

rs

This book is continuously updated. See http://www.iftech.com/mfc

621

Every single Windows machine on the entire planet, now and until the end of
time, will use that specific string to represent Microsoft Equation 2.

Each OLE server on the planet needs to have its own unique ID. When creating
a server, you (or the AppWizard) can generate a UUID using a utility named UUID-
GEN. This utility uses your machine’s name, the time, and the date as input to a
random number generator. The generator creates a value that has an extremely high
probability of being completely and universally unique. After all, what is the probabil-
ity of someone else on the planet generating a UUID at exactly the same millisecond
on the same day using the same machine name you used? Pretty slim.

Given a class ID, also known as a CLSID, you can uniquely identify an OLE
server. Therefore, if you pass a class ID to the OLE DLL and ask it to create an object
of that type, the DLL can do so provided that your machine has a copy of that server
available. OLE.DLL looks into the lower part of the registry to look up the name and
the executable path of the server associated with the ID. Figure 34.6 shows that, in the
lower part of the registry, all of the servers on the machine are listed a second time, but
here they are sorted by UUIDs.

When you embed an OLE object in a document, the data for the object is stored
along with the class ID of the application that generated the object. The application
managing the document simply hands the class ID to the OLE server whenever it
wants to request services on an OLE object.

34.5 An Introduction to OLE Containers

An OLE container is an application that can hold embedded or linked objects
created by OLE servers. The AppWizard makes it extremely easy to create OLE con-
tainers that support linking, embedding, and visual editing of embedded objects. In
this section you will learn how to create the AppWizard container framework and
modify it to properly support multiple embedded objects. The following steps guide
you through the process and explain it.

Figure 34.5

The first registry entry for Microsoft Equation 2

622

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

34.5.1 Create the Framework

Create a new SDI framework with the AppWizard. Give the new project the
name “Samp.”

As you go through the AppWizard option screens, select the following options:
•

Choose

Container

 for OLE support. Select

No Automation

 under automation
support. See Appendix B.6.6 for details.

• Enable or disable any application features as you see fit.

Be sure to enable print-
ing.

34.5.2 Compile and Run

Compile the application and run it. You will find that it looks like any other
AppWizard application. The only real difference you will be able to see is in the

Edit

menu, which contains several new options that allow you to paste or directly insert
OLE objects into the application.

Figure 34.6

The second registry entry for Microsoft Equation 2

34.5
A

n Intro
d

uc
tio

n to
 O

LE C
o

nta
ine

rs

This book is continuously updated. See http://www.iftech.com/mfc

623

Choose the

Insert New Object

 option in the

Edit

 menu. From the list, choose
a server that you know to be OLE capable and able to handle visual editing. You will
find that the server will create a new object in the upper left corner of the client area,
and will allow you to visually edit that object. If you save the document and reopen
it, you will find that it opens correctly.

There are a few problems, however. You cannot move the embedded object, so
when you insert another it overlays the original. You cannot change the size of the ob-
ject properly either. You cannot reselect the object to edit it a second time, and the
only way to deselect it is to press escape. You can print the object, but its size will be
minuscule on the sheet of paper. The application is obviously suffering from the same
print scaling problem that was discussed in Chapter 15. The goal in the remainder of
this section is to solve several of these problems.

34.5.3 Understanding the Differences

If you look at the source code that the AppWizard generated for this OLE con-
tainer, you will find that the basic structure of the framework is very familiar.
However, look though the code and note the following differences:

• SAMP.CPP—The application file looks almost exactly like it normally
would, but at the beginning of the

InitInstance

 function you should note the
call to

AfxOleInit

, which starts the OLE DLL and initializes it.
• MAINFRM.CPP—No changes.
• SAMPDOC.CPP—This file is nearly identical to a normal document file,

but instead of inheriting its behavior from

CDocument

 it uses

COleDocu-
ment

. That simple change, however, makes monumental changes in the ca-
pabilities of the class. See the MFC documentation for a list of functions and
a description. The fundamental difference in

COleDocument

 is the fact that
it can automatically maintain a list of OLE objects, which it can serialize to
structured storage and also make available to its views. Also note the addition-
al entries in the message map that call down to specific functions in

COle-
Document

.
• SAMPVIEW.CPP—This file contains modifications that allow it to handle

events on OLE objects, OLE insertions, and other OLE-related tasks. For ex-
ample, the

OnDraw

 function contains code that redraws OLE objects held
by the document. A completely new section handles OLE client support.

• CNTRITEM.CPP—This file contains a class derived from the MFC

COle-
ClientItem

 class. If you look this class up in the MFC documentation, you
will find that it is a large and extremely flexible class that encapsulates the
code that handles the

client site

 interfaces for OLE. Each OLE object in a doc-
ument can be thought of as residing in a client site. The client site interfaces
are the interfaces that an OLE server uses to talk with the client site for its
object. For example, when an OLE server wants to know whether to use in-
place activation when it opens, it can ask this question of the client site. Every
OLE object embedded in the document is an instance of this class. Look

624

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

through the functions for the

COleClientItem

 class in the MFC documen-
tation to get an idea of what you can do with/to the OLE objects that a doc-
ument contains. Look through the comments in CNTRITEM.CPP to get an
idea of some of the behaviors you can modify or enable.

As you can see, much of the code used to implement this OLE container is the
same as the code in any other AppWizard framework. The document class has been
extended so that it can hold a list of OLE objects, but the management of those objects
is largely hidden. The view class has been extended so it can display the OLE objects
for the user, but the details are largely hidden here as well.

34.5.4 Thinking about PowerPoint

If you have ever used the slide editor in Microsoft PowerPoint, you may have
noticed that a PowerPoint slide is nothing but a collection of pieces. There are text
pieces, drawing pieces, chart pieces, and so on. Now that you know a little about OLE,
you can begin to see that PowerPoint is little more than an OLE container combined
with a drawing editor. Using the OLE container framework we have just built, you
can create an application that contains a surprising percentage of PowerPoint’s
capabilities.

To create this application, there are three things we have to do:

1. Modify the framework so it can correctly place and size OLE objects in the
view.

2. Adjust things so printing works correctly.
3. Add in drawing capabilities.

We will tackle these tasks in the order presented.

34.5.5 Adjusting Object Handling

There are three simple adjustments that need to be made to the existing frame-
work in order for the OLE objects held in the container to seem like they are behaving
properly:

1. The user should be able to move an object to a new position.
2. The user should be able to resize the objects.
3. The user should be able to double-click on an object to edit it, or click else-

where on the screen to stop editing it.
To accomplish the first two tasks, you need to modify the class inside CN-

TRITEM.CPP. Each OLE item held in the document is an instance of this class.
Therefore, when the document serializes the OLE objects it contains, it is serializing
instances of this class. Also, when the view class draws the OLE objects, it is drawing
instances of this class. Therefore, we need to modify this class so it can remember
where each OLE object belongs and how big each OLE object is.

We need to add a member variable to the class that will hold the rectangle de-
scribing the size and position of the each object on the screen. This rectangle needs to
be adjusted whenever the user moves or resizes the object. It also needs to be saved

34.5
A

n Intro
d

uc
tio

n to
 O

LE C
o

nta
ine

rs

This book is continuously updated. See http://www.iftech.com/mfc

625

when the object is serialized, or made available to the view when the view wants to
draw the object.

Open the CNTRITEM.H file and add a new member to the attribute section:

CRect m_SizeAndPositionRect;

If you do not like long variable names, consider calling it

r

. However, it will help
make things clearer if you give this member an extremely descriptive name. Now in
CNTRITEM.CPP find the constructor and modify it to initialize the new member:

CSampCntrItem::CSampCntrItem(CSampDoc* pContainer)
: COleClientItem(pContainer)

{
m_SizeAndPositionRect = CRect(10, 10, 200, 200);

}

The size and position chosen here are arbitrary.
Next, find the function named

OnChangeItemPosition

. This function is called
any time the OLE object’s position changes. We need to update

m_SizeAndPositionRect

 whenever that happens, so modify the function as shown
below:

BOOL CSampCntrItem::OnChangeItemPosition(const CRect& rectPos)
{

ASSERT_VALID(this);

if (!COleClientItem::OnChangeItemPosition(rectPos))
return FALSE;

m_SizeAndPositionRect = rectPos;
GetDocument()->UpdateAllViews(NULL, 0, NULL);
GetDocument()->SetModifiedFlag();

return TRUE;
}

This code should make sense: When the position changes, you need to store the
change, update any other views displaying the same information, and mark the docu-
ment as dirty so the changes get written to a file.

Also modify the corresponding function,

OnGetItemPosition

, in the same file
so it retrieves the rectangle properly:

void CSampCntrItem::OnGetItemPosition(CRect& rPosition)
{

ASSERT_VALID(this);

rPosition = m_SizeAndPositionRect;
}

Modify the

Serialize

 function so that it saves the rectangle properly when the
object is written to a file:

void CSampCntrItem::Serialize(CArchive& ar)
{

ASSERT_VALID(this);

COleClientItem::Serialize(ar);

if (ar.IsStoring())

626

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

ar << m_SizeAndPositionRect;
else

ar >> m_SizeAndPositionRect;
}

Finally, in the view class in SAMPVIEW.CPP, you need to adjust the

OnDraw

function so that it loops through all the OLE items held by the document and takes
advantage of the size and position information held in each one, as shown below:

void CSampView::OnDraw(CDC* pDC)
{

CSampDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

POSITION pos = pDoc->GetStartPosition();
while (pos != NULL)
{

CSampCntrItem *item =
(CSampCntrItem*)pDoc->GetNextClientItem(pos);

item->Draw(pDC, item->m_SizeAndPositionRect);
}

}

You can see that this code asks the document for each of its objects, and then
draws them at the proper position using the

Draw

 function inside of

COleClientItem

.
If you compile and run now, and if you insert an OLE object, you will find that you

can resize and move the object to a new position and the document will remember it.
Note that you can run this code under the debugger, but you need to be careful

about how you exit the debugger. If, for example, you have a 16-bit OLE server open
in your container and you select the

Stop Debugging

 option, the server is going to
have a very difficult time understanding what has happened. It is likely that it will cor-
rupt your 16-bit subsystem, and you will need to reboot to fix it. Exit cleanly if at all
possible using the container’s

Exit

 option.
Now we need to add two more bits of code so you can double-click on the object

to select it again, and single-click elsewhere to deselect it. Use the ClassWizard to add
a function for the WM_LBUTTONDBLCLK message to the view class. Inside that
function, the code needs to scan through the list of all objects in the document and
open one if the point clicked is inside the object’s rectangle. Use the following code:

void CSampView::OnLButtonDblClk(UINT nFlags, CPoint point)
{

CSampDoc* pDoc = GetDocument();
m_pSelection = NULL;

// determine selected item
POSITION pos = pDoc->GetStartPosition();

while (pos != NULL)
{

CSampCntrItem *item =
(CSampCntrItem*)pDoc->GetNextClientItem(pos);

if (item->m_SizeAndPositionRect.PtInRect(point))
{

m_pSelection = item;

34.5
A

n Intro
d

uc
tio

n to
 O

LE C
o

nta
ine

rs

This book is continuously updated. See http://www.iftech.com/mfc

627

break;
}

}

// activate the object
if (m_pSelection != NULL)
{

if (GetKeyState(VK_CONTROL) < 0)
m_pSelection->DoVerb(OLEIVERB_OPEN, this);

else
m_pSelection->DoVerb(OLEIVERB_PRIMARY, this);

}

CView::OnLButtonDblClk(nFlags, point);
}

The view class maintains a member named

m_pSelection

 that keeps track of the
currently selected item. Here the

OnLButtonDblClk

 function scans through the list
of OLE objects in the document until it determines that the point clicked is inside one
of them. It then calls the OPEN or PRIMARY verb on that object to open it inside
its proper OLE server.

Use the ClassWizard a second time to add a function for the
WM_LBUTTONDOWN message to the view class. Inside that function, the code
needs to determine if an OLE object is currently active and deactivate it if it is. Use
the following code:

void CSampView::OnLButtonDown(UINT nFlags, CPoint point)
{

COleClientItem* pActiveItem
= GetDocument()->GetInPlaceActiveItem(this);

if (pActiveItem != NULL)
pActiveItem->Close();

m_pSelection = NULL;

CView::OnLButtonDown(nFlags, point);
}

The document class knows which object is active, and you deactivate it by clos-
ing it.

If you compile and run now, you will find that if you insert objects from OLE
servers you can move and resize them. You can double-click on them to edit each one.
Using the different OLE servers available on most machines, you can create fairly re-
spectable screens. With a remarkably small amount of code we have been able to tap
very nicely into the

COleDocument

 and

COleClientItem

 classes in a productive way.
What you cannot do with this particular implementation is handle OLE1 ob-

jects very well. You cannot, for example, move and resize them. The tutorial named
“Contain” in books on-line goes into this topic in some detail and shows you how to
handle it. It also discusses cursor tracking.

628

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

34.5.6 Handling Printing

When you try to print one of your views, you are going to find that there is a
sizing problem caused by the mapping mode, as originally discussed in Chapter 15.
By adding just a few lines of code you can solve this problem.

Use the ClassWizard to add an override for the

OnPrepareDC

 function to the
view class. Set the mapping mode in this function, as shown below:

void CSampView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)
{

pDC->SetMapMode(MM_HIMETRIC);

CView::OnPrepareDC(pDC, pInfo);
}

If you compile and run now, you will find that you can insert an OLE object
and edit it, but as soon as you click elsewhere in the view the object will completely
disappear. If you run the application under the debugger and look at what

m_SizeAndPositionRect

 is being set to when it is set in

OnChangeItemPosition

,
you will see that the object’s rectangle is being saved in device coordinates rather than
logical coordinates. To fix this problem, change the

OnChangeItemPosition

 func-
tion in CNTRITEM.CPP as shown below:

BOOL CSampCntrItem::OnChangeItemPosition(const CRect& rectPos)
{

ASSERT_VALID(this);

if (!COleClientItem::OnChangeItemPosition(rectPos))
return FALSE;

m_SizeAndPositionRect = rectPos;
CClientDC dc(NULL);
dc.SetMapMode(MM_HIMETRIC);
dc.DPtoLP(&m_SizeAndPositionRect);
GetDocument()->UpdateAllViews(NULL, 0, NULL);
GetDocument()->SetModifiedFlag();

return TRUE;
}

This code creates a client DC so it can translate the rectangle’s device coordi-
nates to HIMETRIC logical coordinates.

Compile and run the application. You will now be able to print a document, and
all OLE objects will be properly sized both in print preview and on the sheet of paper.

34.5.7 Handling Drawing

Chapter 15 discussed how to create simple drawing applications and also
showed how to create scrolled views that handle printing. If you look at the instruc-
tions for the first drawing program in Chapter 15 and make the changes specified
there to this OLE framework, you will find you can draw around your OLE objects.
The document will properly serialize the data and reload it. Everything will work as
expected. If you like, create the drawing application with scrolling and printing seen

34.6
A

n Intro
d

uc
tio

n to
 O

LE Se
rve

rs

This book is continuously updated. See http://www.iftech.com/mfc

629

in Section 15.8 and add to it the OLE container capabilities described here. It will
work properly.

34.6 An Introduction to OLE Servers

An OLE server is an application that produces OLE objects that a user can insert
in OLE containers. The AppWizard makes it extremely easy to create OLE servers that
work with containers that support visual editing. In this section you will learn how to
create an AppWizard server framework and modify it to implement a typical server.
The following steps guide you through the process and explain what is going on.

34.6.1 Create the Framework

Create a new SDI framework with the AppWizard. Give the new project the
name “Mand.”

As you go through the AppWizard option screens, select the following options:
•

Choose

Full-Server

 for OLE support. Select

No Automation

 under automation
support. See Appendix B.6.6 for details.

• Enable or disable any application features as you see fit.

34.6.2 Compile and Run

Compile the application and run it. You will find that it looks like any of the
AppWizard applications we created in Part 3. All the menu options are the same, the
tool bar is the same, and so on. Exit the application.

The real difference comes when you try to

insert

 objects created by this new serv-
er into OLE containers. You will find that the “Mand Document” server shows up in
the OLE server list when you choose the

Insert New Object

 menu option in an OLE
container. For example, if you run Microsoft Excel and choose the

Object

 option in
the

Insert

 menu, you will find “Mand Document” in that list. If you insert an object
from this server, it will take over the Excel menu and tool bar and create a new object
on the spreadsheet. The object will be white, and you will not be able to do anything
with it.

34.6.3 Understanding the Differences

If you look at the source code that the AppWizard generated for this OLE server,
you will find that the basic structure of the framework is very familiar. However, look
through the code and note the following differences:

• MAND.CPP—The application file looks almost exactly like it normally
would. You will note that the code declares a static global named

clsid

 that
acts as the class ID for the application (see Section 34.4). At the beginning of
the

InitInstance

 function you should note the call to

AfxOleInit

, which
starts the OLE DLL and initializes it. Several things also happen at the bot-
tom of the

InitInstance

 function. The most important of these is the call to

UpdateRegistry

, which registers the application’s name and class ID with the
registry.

630

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

• MAINFRM.CPP—No changes.
• SAMPDOC.CPP—This file is nearly identical to a normal document file, but

instead of inheriting its behavior from

CDocument

 it uses

COleServerDoc

.
See the MFC documentation for a list of functions and a description.

COleServerDoc

 interacts with

COleServerItem

 to support the activities of an
OLE server.

• SAMPVIEW.CPP—Besides the addition of the

OnCancelEditSrvr

 func-
tion, the view class is identical to any of the view classes seen in Chapter 15.

• IPFRAME.CPP—This file contains a class derived from

COleIFrameWnd

,
which handles the frame window for an object embedded in a container and
being edited in-place. See the MFC documentation for detailed information
on the

COleIFrameWnd

 class.
• SRVRITEM.CPP—This file contains a class derived from

COleServerItem

.
This class encapsulates the interfaces that OLE containers will use to talk to
the server for an embedded object. See the MFC documentation for detailed
information on the

COleServerItem

 class.
Because the document and view classes are nearly identical to the document and

view classes seen in Chapter 15, you could easily create a simple drawing server using
the code that you find in that chapter. However, there are a few details that change. In
the following sections, we will develop an application that implements a simple man-
delbrot set server to demonstrate the steps that you must take when creating any server.

34.6.4 Add a Menu Option

Open the resource file for the application and look at the menu resources. There
are three:

1. IDR_SRVR_EMBEDDED—This is the menu that will appear when the
server is invoked in a container that does

not

 support visual editing. Note that
the

File

 menu contains the

Update

 option that all fully open servers require.
2. IDR_SERVER_INPLACE—This is the menu that will appear when the server

is invoked in a container that

does

support visual editing. Note that the menu
bar does not contain a

File

 menu and that there are two odd vertical separators
on the menu bar. This peculiar structure is necessary so the server can integrate
this menu bar into the menu bar of the container during in-place activation.

3. IDR_MAINFRAME—This is the menu that appears when the server is exe-
cuted as a normal application.
We want to add a menu option named

Change

 that will pop up a dialog to set
the width, height, and number of iterations for the mandelbrot set created by this
mandelbrot server. Open all three of the menu resources. In all three, delete the exist-
ing values from the

Edit

 menus and add a new menu option named

Change

 to the

Edit

 menus.

34.6
A

n Intro
d

uc
tio

n to
 O

LE Se
rve

rs

This book is continuously updated. See http://www.iftech.com/mfc

631

34.6.5 Modify the Document Class

Now open the document files, MANDDOC.CPP and MANDDOC.H. The

Edit

 menu now contains a menu option named

Change

 that will pop up a dialog to
set the width, height, and number of iterations for the mandelbrot server. The pro-
gram will use the information from this dialog to recalculate the mandelbrot set’s
picture and place it in an array held by the document. This array will act as a cache for
the pixel values, and will allow the view to draw the mandelbrot set quickly. The sec-
tions below add the appropriate variables and code to the document file so it can
calculate the mandlebrot set and fill the cache array. The dialog and dialog class are
also created.

34.6.5.1 Add Variables

Add the following variables to the public attribute sec-
tion of the document header file:

CSize size;
WORD numberOfIterations;
CUIntArray cachedPictColors;
COLORREF colors[64];

34.6.5.2 Add Function Prototypes

Add the following two functions to the pri-
vate operation section of the document header file:

void CreatePict();
int CalcColor(double real, double imag);

34.6.5.3 Initialize the Variables

Add the following lines of code to the construc-
tor in MANDDOC.CPP so the new member variables are properly initialized:

size.cx=size.cy=30;
numberOfIterations=10;
int x;
BYTE r=0, g=0, b=0;

for (x=0; x<64; x++)
{

colors[x]=RGB(r, g, b);
if (!(r+=64))

if (!(b+=64))
b+=64;

}

34.6.5.4 Add Helper Functions

Add the following two helper functions to the
bottom of MANSEDOC.CPP:

void CMandDoc::CreatePict()
{

double xstep, ystep;
double x, y;
int i, j;
int index;

ystep=2.0/size.cy;
xstep=2.0/size.cx;

cachedPictColors.SetSize(size.cx*size.cy);

632

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

index=0;
for (j=0, y=-1; j<size.cy; j++, y+=ystep)
{

for (i=0, x=-1; i<size.cx; i++, x+=xstep)
{

cachedPictColors.SetAt(index, CalcColor(x, y));
index++;

}
}

}

int CMandDoc::CalcColor(double real, double imag)
{

double r, i;
double spread;
double tr, ti;
WORD iteration;

r=i=0.0;

for (iteration=0; iteration<numberOfIterations-1; iteration++)
{

tr=r + real;
ti=i + imag;
r=tr*tr - ti*ti;
i=2*tr*ti;
spread=r*r + i*i;
if (spread > 4.0)

break;
}

if (iteration > 63) TRACE("Color Array Overflow!!!\n");

return(iteration);
}

These two functions together calculate the values for the pixels that make up the
mandelbrot set when it is displayed. It stores the values in the cache array.

34.6.5.5 Create a Dialog

Open the resource file. Create a new dialog re-
source. Create three edit areas (see Chapters 15 or 18. for details). Label the three edit
areas with statics named “Width”, “Height”, and “Iterations”. When you are finished,
the new dialog should look like the one shown in Figure 34.7.

Open the ClassWizard while the dialog is visible. Create a new dialog class for
the dialog called

CDlg

. Switch to the member variable section of the ClassWizard and
add member variables for the width, height, and iterations with the names

m_cx

,

m_cy

 and

m_iter

. All three should be

value

 members of type

UINT

. When you click
OK in the ClassWizard it will create the

CDlg

 class.

Include DLG.H at the top of the
document file MANDDOC.CPP.

34.6.5.6 Wire in Menu Handlers

Open the ClassWizard. In the Message Maps
section, select the document class. Create a new COMMAND handler for the

34.6
A

n Intro
d

uc
tio

n to
 O

LE Se
rve

rs

This book is continuously updated. See http://www.iftech.com/mfc

633

ID_EDIT_CHANGE menu option. Edit the code for the

OnEditChange

 function
and change it to the following:

void CMandDoc::OnEditChange()
{

CDlg dlg;
int ret;

dlg.m_cx=size.cx;
dlg.m_cy=size.cy;
dlg.m_iter=numberOfIterations;
ret=dlg.DoModal();
if (ret == IDOK)
{

size.cx=dlg.m_cx;
size.cy=dlg.m_cy;
numberOfIterations=dlg.m_iter;
// build cache of picture colors
BeginWaitCursor();
CreatePict();
EndWaitCursor();

UpdateAllItems(NULL);
UpdateAllViews(NULL);

}
}

This code fills the cache array with values by calling the helper functions that do
the actual math.

34.6.6 Modify OnDraw

 Now that the document has a way to calculate the mandelbrot set and store it,
the view can display it. Modify the

OnDraw

 function in MANDVIEW.CPP so it
contains the following code:

void CMandView::OnDraw(CDC* pDC)
{

CMandDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

int x, y, i;
RECT r;

Figure 34.7

The Parameters dialog

634

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

CBrush brush;
CRect cr;
GetClientRect(&cr);

pDC->SetMapMode(MM_ANISOTROPIC);
pDC->SetWindowExt(pDoc->size.cx, pDoc->size.cy);
pDC->SetViewportExt(cr.Width(), cr.Height());

if (pDoc->cachedPictColors.GetSize() != 0)
{

i=0;
for (y=0; y < pDoc->size.cy; y++)

for (x=0; x < pDoc->size.cx; x++)
{

brush.CreateSolidBrush(
pDoc->colors[pDoc->cachedPictColors.GetAt(i++)]);

r.left=x;
r.right=x + 1;
r.top=y;
r.bottom=y + 1;
pDC->FillRect(&r, &brush);
brush.DeleteObject();

}
}

}

34.6.7 Compile and Run

All of the prior work creates a normal document/view style program that imple-
ments a mandelbrot set viewer. If you compile this code and

run it as a normal
application

, you will find that, when you choose the

Change

 option in the

Edit

 menu
and enter values such as a width of 32, a height of 32, and iterations of 16 and press
the OK button, the program produces a mandelbrot set of the size indicated. It then
stretches that small number of pixels across the face of the application’s client area.
You can increase the number of pixels, but as you would expect the calculation time
will grow.

Now we will make final adjustments so that the application can update itself
properly when used as an OLE server.

34.6.8 Make Server Modifications

To make the program work properly as an OLE server, open the file named
SRVRITEM.CPP. Find the

OnGetExtent

 function and find the following line:

rSize = CSize(3000, 3000); // 3000 x 3000 HIMETRIC units

Replace it with:

rSize = GetDocument()->size;
CClientDC dc(NULL);
dc.LPtoHIMETRIC(&rSize);

Or replace it with:

rSize = m_sizeExtent;

34.6
A

n Intro
d

uc
tio

n to
 O

LE Se
rve

rs

This book is continuously updated. See http://www.iftech.com/mfc

635

When a container asks the server how big its object is, the framework calls

OnGetExtent

. The first piece of replacement code asks the document for its current
size and returns that value after translating it to HIMETRIC units. The second piece
of replacement code uses the current size that the user has selected for the item in the
container. The

m_sizeExtent

 variable is a member of the

COleServerItem

 class and
is set by the container.

34.6.9 Make Server Modifications

In SRVRITEM.CPP, find the

OnDraw

 function. Replace it with the following:

BOOL CMandSrvrItem::OnDraw(CDC* pDC, CSize& rSize)
{

CMandDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

int x, y, i;
RECT r;
CBrush brush;

pDC->SetMapMode(MM_ANISOTROPIC);
pDC->SetWindowExt(pDoc->size.cx, pDoc->size.cy);
pDC->SetViewportExt(rSize.cx, rSize.cy);

if (pDoc->cachedPictColors.GetSize() != 0)
{

i=0;
for (y=0; y < pDoc->size.cy; y++)

for (x=0; x < pDoc->size.cx; x++)
{

brush.CreateSolidBrush(
pDoc->colors[pDoc->
cachedPictColors.GetAt(i++)]);

r.left=x;
r.right=x + 1;
r.top=y;
r.bottom=y + 1;
pDC->FillRect(&r, &brush);
brush.DeleteObject();

}
}

return TRUE;
}

For more information on the anisotropic drawing mode, see Chapter 11. This

OnDraw

 function handles drawing into an OLE container’s window. The code uses
an anisotropic mapping mode so it can stretch the pixels in the cached array into the
available space in the container. It then draws the cached array into the container. You
can see that it looks remarkably similar to the

OnDraw

 function in the view class. The
only real difference is the use of

rSize

 instead of

GetClientRect

. When you create
your own servers, simply remember that you have to handle

OnDraw

 in two places
and make the appropriate adjustments.

636

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

34.6.10 Compile and Run

Compile the application, and then insert it into an OLE container that supports
in-place activation. For example, in Excel you can chose the

Object

 item from the

In-
sert

 menu and choose “Mand Document” from the list. Note that the server properly
takes over the menu bar and tool bar of the container. Select the

Change

 option in
the

Edit

 menu, and then click OK. The new mandlebrot set will be drawn into the
container. You can then stretch and move the embedded item.

Try out both pieces of replacement code for the

OnGetExtent

 function in the
previous section and choose the one that feels better to you.

34.7 An Introduction to OLE Automation

One of the key features of the OLE specification is the automation interface. Au-
tomation allows a programmer to call an OLE-aware application that supports
automation and to use its services by calling functions on the application. For exam-
ple, a Visual Basic programmer can easily activate Microsoft Word, which is OLE
compliant and automation-aware, from a VB program. The VB program can open a
Word document, insert text into that document, and print it. In this case, Word is
being used as a print engine for customized reports. Or the programmer might activate
Excel, which is also OLE compliant and automation-aware, insert several values in a
spreadsheet, and then perform a complex mathematical operation on the values. The
programmer can then retrieve the result. In this case, Excel is being used as a math
engine.

It is extremely easy to add automation to your own OLE servers. You simply
click a check box when you create the application in the AppWizard to make it OLE
automation aware. You can then add two things to the application that other pro-
grammers will access:

properties

 and

method

. A property is a variable that the
programmer can set or read. A method is a function that can have parameters just like
a C++ function. If you like, you can supply

get

 and

set

 methods for each property and
eliminate open properties to completely encapsulate an automation server.

The following sections show you how easy it is to create and use an automation
server. Once you have seen how to add and call one automation function, it will be
trivial to add any number of automation functions to the OLE applications that you
create.

34.7.1 Create the Server

We are going to start by repeating the steps seen in the previous section to create
an OLE server. This time, however,

we will turn on the automation capability

. To do
this uae the AppWizard. Give the new project the name “Auto.”

As you go through the six AppWizard option screens, select the following
options:

•

Choose

Full-Server

 for OLE support. Be sure to enable automation support. See
Appendix B.6.6 for details.

• Enable or disable any application features as you see fit.

34.7
A

n Intro
d

uc
tio

n to
 O

LE A
uto

m
a

tio
n

This book is continuously updated. See http://www.iftech.com/mfc

637

34.7.2 Compile and Run

Compile the application and run it. This step is important because it will register
the server in the registry. You will find that the application looks just like the server
did in Section 34.6.2. If you embed it in an application that is OLE aware, it will cre-
ate a blank white rectangle.

34.7.3 Add an Automation Class

Open the ClassWizard. Go to the OLE Automation section. You need to create
a new class that will contain the automation functions for the application, so add a
new class as described in Appendix B.7.6. Set up the new class with the name “Beeper”
and the class type of

CCmdTarget

.

34.7.4 Add a Method

Add a new method to the new Beeper class by clicking the

Add Method

 button
in the automation section of the ClassWizard. Call the function

BeepSamp

 and give
it a void return value.

Modify the

BeepSamp

 function by adding a single line of code:

void Beeper::BeepSamp()
{

Beep(1000, 1000);
}

34.7.5 Compile and Run

Compile the application and run it as a normal application.

This step will update
the registry, and is a very important step.

 Close the application.

34.7.6 Examine the Registry

Now go to a command line and execute REGEDIT /V. You will find that there
are four sections of the registry that deal with the Auto application we just executed,
as shown in Figures 34.8 and 34.9. All four parts are related. Simply find all four parts
so that you understand that the application you have created has a corresponding sec-
tion in the registry. Auto.Document and Auot.Beeper are joined, and both of them
have unique class IDs.

34.7.7 Activate the Automation Server

This section shows you three different ways to activate the automation server
that you just created.

638

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

Figure 34.9

The third and fourth entries for this application in the registry

34.7.7.1 Activate from Visual Basic

If you have Visual Basic and are familiar
with the fundamentals, you can easily activate the automation server with a tiny Visual
Basic program. Note also that Visual C++ ships with an application called DISPTEST
(in the BIN directory) that is a stripped down version of VB that you can also use for
automation testing.

Create a new application in VB. Create a new form. Create a new button on the
form. Edit the code for the button so it looks like this:

Sub Command1_Click ()
 Dim O As Object
 Set O = CreateObject("Auto.Beeper")
 O.BeepSamp
End Sub

Run the VB program. Click the button. It will beep.

Figure 34.8

The first and second entries in the registry for this application. Having found these,
you can use the class IDs in the Find option to find the other two parts.

34.7
A

n Intro
d

uc
tio

n to
 O

LE A
uto

m
a

tio
n

This book is continuously updated. See http://www.iftech.com/mfc

639

This code causes Visual Basic to open a connection to “Beeper,” the name for
the automation portion of this application. If you don’t like the name “Beeper,” then
create a new application and change it when you create the automation class). The

O

variable then acts as a proxy for the open automation server, and you call functions in
the server through the proxy.

34.7.7.2 Activation from Excel

To connect to the automation server through
Excel, do the following. Select the

Macro

and then

Module

 options in the

Insert

menu. In the Macro Module, type the following code:

Function sample ()
 Dim O As Object
 Set O = CreateObject("Auto.Beeper")
 O.BeepSamp
End Function

This step creates an Excel macro named “sample”. Then, in any sheet, you can
call the macro with a formula like this:

=sample()

Every time the sheet recalculates, you will hear a beep.

34.7.7.3 Activate from other Visual C++ Programs

Create a new Visual C++
application. Use the following code anywhere in your program:

COleDispatchDriver beepDisp;
beepDisp.CreateDispatch(“Auto.Beeper”);
beepDisp.InvokeHelper(1,NULL,VT_EMPTY,NULL,NULL);
beepDisp.ReleaseDisp();

The “1” in the call to

InvokeHelper

 is the dispatch ID of the Beep function.
Each function is numbered sequentially see the ODL file. Optionally, you can call

GetIdsOfName

 before

InvokeHelper

 to translate a function name to the dispatch ID
at runtime. This technique is preferred.

34.7.8 Add a Second Function

Add a new method to the Beeper class by clicking the

Add Method

 button in
the automation section of the ClassWizard. Call the function

xxx

 and give it a void
return value. Additionally, click in the

Parameters

 section of the Add Method dialog
and add a parameter called

x

 of type

short

.
Click the

Edit Code

 button in the automation section of the ClassWizard.
Modify the

xxx

 function by adding a single line:

void Beeper::xxx(short x)
{

Beep(500,x);
}

34.7.9 Activate from Visual Basic

Modify your VB code or Excel macro so that it looks like this:

Function sample()
 Dim O As Object
 Set O = CreateObject("Auto.Beeper")
 O.BeepSamp

640

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

 O.xxx (100)
End Function

Now the program will beep twice, the second time for 100 milliseconds because
of the parameter passed.

Experiment with other parameters, return values, and so on. Add properties and
try setting them. It should be easy to see that the automation interface provides an ex-
tremely flexible and easy-to-use inter-application communication mechanism that
you will be able to exploit in a variety of ways.

34.8 An Introduction to OLE Controls

Using the new ControlWizard built into Visual C++, you can create OLE con-
trols, also known as OCXs. OLE controls replace what were formerly known as VBXs
used in Visual Basic. Because they are based on OLE and have a well-designed inter-
face, OCXs are much more flexible and portable than VBXs. In addition, the Control-
Wizard makes their creation extremely easy.

You can understand the concepts driving OLE controls most easily if you try to
think about normal Windows controls such the button control or the list box control
in an extremely abstract way. These abstractions can then be mapped onto the OCX
framework and you can work on examples that demonstrate each feature.

Imagine that you are a programmer and you want to create a dialog that contains
a push button control. Imagine further that there is no such thing as a Windows but-
ton control or the

CButton

 class. Instead, think about the abstract concept of a button
control. There are two things that you need from this control:

1. The control has certain attributes—things like background and foreground
color, a text string displayed on the button, alignment of the text string, and so
on—and you need to be able to change those attributes. In a normal Windows
button you set attributes like these using a variety of techniques: styles,

SetDlg-
ItemText, SetFont

, and so on. In an abstract control it would be nice to have
some straightforward, simple way to set attributes.

2. The control will receive user events and you need a way to be notified of those
events so you can respond to them in your code. When the user clicks on the
button, for example, you need a way for the button to notify your code of that
event so you can respond to it in appropriate way. In a normal Windows but-
tons this step is handled using command IDs and message maps, as described in
Chapter 4.
Now imagine that you would like to put a list box in the same dialog. An ab-

stract list box will, like the abstract button, need to have attributes and a way to
change them. It will also handle user events and want to communicate them back to
the program. For example, when the user double-clicks on an element in the list, the
list will want to have a way to communicate that event to the program so the program
can respond to it. In addition, the list will need to have certain functions so the pro-
grammer using the control can manipulate the list. For example, the abstract list

34.8
A

n Intro
d

uc
tio

n to
 O

LE C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

641

control needs a way for the programmer to add strings to the list. This task is most
easily accomplished using a function call similar to the

AddString

 function in the

CListBox

 class.
OCX controls work in this sort of abstract way. As the implementer of an OCX

control you can specify attributes that will determine the appearance or behavior of
the control. In OCX controls they are called

properties

. Every OCX is expected to sup-
port a known set of properties called the

stock properties

, and then you add your own
properties beyond that. The stock properties are listed below:

Background color
Border style
Enabled
Foreground color
Font
Text string
You can add other properties as you see fit. For example, if you are implement-

ing a push button control, you might add a “fill color” property that determines what
color the button uses to highlight itself when clicked.

Incidentally, the container that holds a control has a say in how the controls it
contains should look. The container can specify

ambient properties

, and every control
in the container should take on these ambient properties initially and use them unless
they are specifically overridden by the programmer using the control. The ambient
properties of any container are listed below:

Background color
Foreground color
Font
Text alignment
User mode (indicates whether control is in design or use mode)
OCXs also support function calls. They are called

methods

. There are a set of
methods that every OCX supports, called

stock methods

. These stock methods fall into
two categories: property methods and control methods. The stock methods are listed
below. The first two are control methods and the rest manipulate the stock properties:

DoClick Lets the programmer simulate a click
Refresh Redraws the control

GetBackColor, SetBackColor
GetBorderStyle, SetBorderStyle
GetEnabled, SetEnabled
GetForeColor, SetForeColor
GetFont, SetFont
GetText, SetText
GetHwnd
You can add other

custom methods

. For example, if you are creating a list control
you might add an

AddString

 method to add strings to the list. When you add a prop-

642

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

erty of your own to a control, you will add two methods to manipulate the new
property.

Finally, as the implementer of a control you can create

events

 for it to send to the
application using the control. There is a set of

stock events

 that a control should always
send to its container, as listed below:

Click
Double Click
Error
Key Down
Key Press
Key Up
Mouse Down
Mouse Move
Mouse Up
You can add other events as you see fit. When you send an event to the OCX’s

container, it is referred to as

firing

 the event. If you are creating a list control, you
might add one event that gets fired when the user single-clicks on an item in the list,
and another that gets fired when the user double-clicks on an item. The stock events
are in place to handle all of the obvious, low-level events that any application might
want to receive from a control.

34.8.1 Implementing OCXs

The OCX ControlWizard is a separate component of Visual C++ that makes the
creation of OCXs easier. You have to load this component after you install Visual
C++, and you access it from the

Tools

 menu in Visual C++. In addition to the Con-
trolWizard, three other new options in the

Tools

 menu let you register and unregister
the controls that you create and also run a test container that lets you test your
controls.

The joy of working with the Visual C++ ControlWizard is that it makes the pro-
cess of creating an OCX extremely easy. The ControlWizard creates a framework that
contains all the code necessary to implement the stock properties, stock methods, and
stock events. The ControlWizard also uses MFC classes that tend to follow patterns
you are already familiar with. For example, to draw the face of your control, you over-
ride the

OnDraw

 function and place into it drawing commands just like those seen
in Chapter 11 and throughout the rest of the book. The ClassWizard makes it ex-
tremely easy for you to add new events, properties, and methods.

The dread of working with the ControlWizard, and more specifically the frame-
work that it creates, comes from its flexibility. The flexibility expresses itself as
complexity. For example, the

COleControl

 class, a class central to the activities of the
ControlWizard, has 117 member functions. Many other control classes further en-
hance the flexibility, and therefore the complexity. The key thing to keep in mind
when approaching the Control-creation features of Visual C++ is that they all stem
from the basic (and simple) ideas discussed in the previous section. Also keep in mind

34.8
A

n Intro
d

uc
tio

n to
 O

LE C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

643

that you can approach the topic incrementally. Start your learning process here. Then
work through the examples and documentation in the CDK books on-line and exper-
iment on your own until you feel comfortable in this space.

The best way to get started down the OCX path is to use the ControlWizard
to create the base control, see what it does, and then add properties, methods, and
events to the control to see how they work. In the following sections we take this ap-
proach, starting with the base files and modifying them to create a simple “adjuster”
control.

The adjuster control handles two user messages: a left mouse click and a right
mouse click. A left mouse click increments the adjuster, which shows the adjustment
visually with a painted bar on the face of the control. A right mouse click decrements
the adjuster. The control fires an event whenever it is adjusted by the user. Addition-
ally, the control has two properties that the programmer can set: the

range

, which
determines the maximum value of the adjuster, and the

value

, which the programmer
can set or get to change or read the current value of the control. The control also sup-
ports a

zero

 method that zeros the adjuster. Take the following steps to create this
control.

34.8.2 Create the Base OCX

Whenever you start the process of creating a new OCX, you will use the Control-
Wizard to create the base framework. The process is identical to using the AppWizard
to create a base application framework. See Appendix B.8.1 for details. Name the con-
trol “Adj” when you create it.

Look at the code files that the ControlWizard created. Of them, the only one we
will modify in the section is ADJCTL.CPP. This file contains a class derived from

COleControl

, which embodies almost all of the modifiable behavior for an OLE con-
trol. It has quite a few different areas that the ClassWizard can modify. Look up this
class in the on-line documentation and briefly review some of its capabilities.

34.8.3 Experiment with the Control

Compile the code for the new control. To test the control, you must register it.
See Appendix B.8.2.

To actually execute the control to test it, you can use the test container for OCX
controls that comes with Visual C++ (see Appendix B.8.3) or you can insert the con-
trol into a normal dialog or form view as described in Appendix B.8.4. The test
container is much easier for debugging. Select the

Test Container

 option as described
in Appendix B.8.3. Choose the

Insert OLE Control

 option in the

Edit

 menu. Select
“Adj Control” from the list to insert the new control. If you do not find an entry for
the “Adj Control” in the dialog, you either forgot to register the control or you failed
to select the

Available in Insert Dialog

 option as described in Appendix B.8.1. Try
again.

The control should appear in the test container. It will look like a rectangle filled
with an ellipse. You can resize and move the control. Otherwise it is benign.

644

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

Now experiment with some of the features of the test container (make sure that
you click on the control to select it before trying these options). In the edit menu you
can insert and delete controls. You can set ambient properties on the container (al-
though the control will currently ignore them). You can invoke methods on the
control. Currently the only method available is

About

, which displays an About box
for the control. You can invoke different OLE verbs on the control. The most inter-
esting verb right now is

Properties

, but there are several other ways to invoke that
option. The Properties dialog will eventually give programmers an easy way to adjust
the properties of the control when they develop applications with it.

In the

View

 menu you can open up windows to view events and notifications,
although the control generates neither right now. You can also view the control’s
properties in two different ways. Either you can enter the name of a property directly
or you can display the property dialog for those controls that support it.

Read through the documentation that comes with the test container for further
information.

34.8.4 Activate the Stock Properties

When the ControlWizard created the base files, it wired into them the stock
properties for the control. You can activate those properties using the ClassWizard.
Open the ClassWizard and select the

OLE Automation

 tab. Make sure the class name
is

CAdjCtrl

. Click the

Add Property

 button and select the

ForeColor

 property from
the

External Name

 combo box list as described in Appendix B.8.5. Do the same thing
for

BackColor

. Close the ClassWizard.
This action alone will not accomplish anything because the code currently does

not ever use the foreground or background color properties. Find the

OnDraw

 func-
tion in the ADJCTL.CPP file. You can see that it simply paints the background of the
control in white and then draws an ellipse. Replace the old implementation with the
following:

void CAdjCtrl::OnDraw(
CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)

{
CBrush brush(TranslateColor(GetBackColor()));
pdc->FillRect(rcBounds, brush);
CPen pen(PS_SOLID, 2, TranslateColor(GetForeColor()));
CPen *oldPen;
oldPen = pdc->SelectObject(&pen);
pdc->Ellipse(rcBounds);
pdc->SelectObject(oldPen);

}

 This code simply applies the background color to the brush used to paint the
background and the foreground color to the pen used to draw the ellipse. See Chapter
11 for additional information on pens and brushes.

Compile the code. Open the Test Container. Select the

Set Ambient Properties

option in the

Edit

 menu and set the

BackColor

 ambient property to something other
than white. You change the color by clicking the

Choose

 button that you will find

34.8
A

n Intro
d

uc
tio

n to
 O

LE C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

645

toward the bottom of the dialog. Now create an Adj control. You will find it initially
has the appropriate background color. This color was picked up from the container.
Now choose the

Properties

 button in the

View

 menu. Select

ForeColor

 from the

Properties

 combo box. A small button displaying “...” will appear next to the

Value

field. Click it and chose the foreground color. You will find that the control responds
appropriately. If you change the background color of the control, you will find it over-
rides the ambient color.

Open the Notifications window by selecting the

Notification Log

 option in the

View

 menu of the test container. Change the foreground property again and you will
see that a new

notification

 is issued when the property changes. You can change the
behavior of the notification using the radio box at the bottom of the dialog. If you
want to gain more control over how your code handles property changes, then you can
create the property differently in the ClassWizard. Open the ClassWizard and delete
the

ForeColor

 property. Add the property again, but this time try the

Member Vari-
able

 or

Get/Set Function

 options. The latter adds two functions to the
ADJCTL.CPP file that you can fill with appropriate code to handle property changes.
We will see more on notifications below.

34.8.5 Activate the Stock Methods

The two stock methods named

DoClick

 and

Refresh

 also already exist in the
code generated by the ControlWizard. To activate them, open the ClassWizard. Select
the

OLE Automation

 tab and click the

Add Method

 function. Pull down the

Exter-
nal Name

 combo box and select

DoClick

. The dialog will specify the setup for the

DoClick

 stock method. Press

OK

 and do the same thing for

Refresh

. No further
changes are required.

Compile the code and reinsert the control into the Test Container. You will find
that the

Invoke Methods

 option in the

Edit

 menu can now invoke

Refresh

 and

DoClick

 methods, although, right now, these methods do not appear to do anything.

34.8.6 Add Custom Properties

This control needs two custom properties:

range

 and

value

. They are integers.
The

range

 property holds the maximum value for the adjuster, while the

value

 prop-
erty holds the current value of the adjuster.

Open the ClassWizard and select the

OLE Automation

 tab. Add a property
named

value

, as described in Appendix B.8.6. The ClassWizard gives the property
two names. The external name is used by a programmer to adjust the property. When
the value is modified, the notification function gets called so you can respond to the
change in your code. The variable name is used inside the control’s code to access the
property in C++. Use the external property name of

value

 and the ClassWizard will
choose the variable name

m_value

 for the variable name. Use the type

short.

Create the

value

 and

range

 properties. Compile the code and insert the control
into the test container. You will find you can use the

Properties

 option in the

View

menu to modify the two properties.

646

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

Find the constructor in the ADJCTL.CPP file and add code to initialize the two
member variables as shown here:

m_range = 10;
m_value = 0;

Add the same two lines to the

OnResetState

 function further down in the file.
Edit the two notification functions in ADJCTL.CPP so the members stay with-

in range:

void CAdjCtrl::OnRangeChanged()
{

if (m_range < 0)
m_range = 10;

SetModifiedFlag();
Refresh();

}

void CAdjCtrl::OnValueChanged()
{

if (m_value < 0)
m_value = 0;

if (m_value > m_range)
m_value = m_range;

SetModifiedFlag();
Refresh();

}

34.8.7 Add Message Handlers

The

value

 property will be incremented every time the user clicks the left mouse
button, and decremented whenever the user clicks the right mouse button. Mouse
clicks in a control are detected using the same message map technology used through-
out this book. Open the ClassWizard. Choose the

Message Maps

 tab and make sure
the class is set to

CAdjCtrl

. Add functions for WM_LBUTTONUP and
WM_RBUTTONUP. Edit the two new functions so they look like this:

void CAdjCtrl::OnLButtonUp(UINT nFlags, CPoint point)
{

if (m_value < m_range)
m_value++;

COleControl::OnLButtonUp(nFlags, point);
Refresh();

}

void CAdjCtrl::OnRButtonUp(UINT nFlags, CPoint point)
{

if (m_value > 0)
m_value--;

COleControl::OnRButtonUp(nFlags, point);
Refresh();

}

34.8
A

n Intro
d

uc
tio

n to
 O

LE C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

647

Now find the

OnDraw

 function in ADJCTL.CPP and change it to the
following:

void CAdjCtrl::OnDraw(
CDC* pdc, const CRect& rcBounds, const CRect& rcInvalid)

{
CBrush brush1(TranslateColor(GetBackColor()));
pdc->FillRect(rcBounds, &brush1);
CRect r = rcBounds;
r.right = r.left + r.Width() * m_value / m_range;
CBrush brush2(TranslateColor(GetForeColor()));
pdc->FillRect(r, &brush2);

}

You can see that this code simply draws a rectangle on the control. The rectangle
stretches from the left side toward the right. The length of the rectangle is proportion-
al to

m_value/m_range

.

34.8.8 Test the Program

Compile the control and insert it into the test container. When you click with
the left mouse button, the adjuster will increment and display the new value. When
you click the right button, it decrements. You can also adjust the

m_value

 and

m_range

 properties using the

Properties

 option in the

View

 menu.

34.8.9 Add the Zero Method

The specification for this control calls for a

Zero

 method to reset the adjuster to
zero. Add the method as described in Appendix B.8.7. Give the method a void return
type and no parameters. Edit the method’s code by clicking the

Edit Code

 button and
add the following:

void CAdjCtrl::Zero()
{

m_value = 0;
Refresh();

}

Use the

Invoke Method

 option in the

Edit

 menu of the test container to invoke
the

Zero

 method.

34.8.10 Add the Event

This control needs to fire an event whenever the user clicks in it. We will call
this event

Adjusted

. To add the event, open the ClassWizard and see Appendix B.8.8.
The external name of the event should be

Adjusted

, giving it an internal name of

Fire-
Adjusted

. Give it a parameter named

value

 of type

short

.
Now we need to call

FireAdjusted

 at appropriate points in the program. We will
call it in only two places, but different designers might call it in other places as well
(for example, when the

value

 property is set). Modify the functions for the two mouse
messages, as shown below:

void CAdjCtrl::OnLButtonUp(UINT nFlags, CPoint point)
{

648

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

if (m_value < m_range)
m_value++;

COleControl::OnLButtonUp(nFlags, point);
Refresh();
FireAdjusted(m_value);

}

void CAdjCtrl::OnRButtonUp(UINT nFlags, CPoint point)
{

if (m_value > 0)
m_value--;

COleControl::OnRButtonUp(nFlags, point);
Refresh();
FireAdjusted(m_value);

}

Compile the code and insert the control into the test container. Select the

Event
Log

 option in the

View

 menu. Click on the control. You will see that an event gets
fired on every mouse click.

34.8.11 Adding Stock Property Pages

If you select the

Properties

 option in the

View

 menu and click on the

Invoke
Properties Verb

 option, you will see an empty dialog that is designed to make it easier
to set the properties in an OCX. It is easy to fill in this empty dialog.

The pages for the stock properties are already implemented and you can add
them in with very minor effort. If you look toward the top of ADJCTL.CPP, you will
find a property page section. Modify it so it looks like this:

///
// Property pages

// Add more property pages as needed.
// Remember to increase the count!!!!!!!
BEGIN_PROPPAGEIDS(CAdjCtrl,

4

)
PROPPAGEID(CAdjPropPage::guid)
PROPPAGEID(CLSID_CColorPropPage)
PROPPAGEID(CLSID_CFontPropPage)
PROPPAGEID(CLSID_CPicturePropPage)

END_PROPPAGEIDS(CAdjCtrl)

This code specifies that the three stock property pages should be included.

Note
that the BEGIN_PROPPAGEIDS macro accepts the number of pages, and this value must
be updated properly.

Compile the code and insert the control into the test container. Invoke the prop-
erty verb. You will see a property sheet containing four property pages. The General
page is currently empty. The Colors page lets you change the foreground and back-
ground colors. The Font and Picture pages are currently disabled because we have not
added those stock properties into the application yet. For this control, the latter two
pages would probably not be included because the control does not use fonts or
pictures.

34.8
A

n Intro
d

uc
tio

n to
 O

LE C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

649

34.8.12 Modifying the General Page

The ControlWizard created the general property page for you when it created
the control’s framework. It is currently blank. You normally add to it controls that al-
low you to change your control’s custom properties. In our case, we want to add
controls so that the dialog allows modification of the

range

 and

value

 properties.
To add the controls to the general page, open the resource file. Open the dialog

named IDD_PROPPAGE_ADJ. Add two statics and two edit boxes so the dialog ap-
pears as shown in Figure 34.10. Rename the two edit controls IDC_RANGE and
IDC_VALUE.

Now, with the dialog template open as the topmost window in Visual C++, open
the ClassWizard. Choose the

Member Variables

 tab. Double-click on
IDC_RANGE. Your goal is to create a variable that can transfer a value to the

range

property in the control. Name the variable

m_range,

give it a

value

 category and a

UINT

 type. The

Optional OLE Property Name

 field lets you type in a property
name for the control. Use

range

. See Appendix B.8.9 for details. Do this for the
IDC_VALUE control as well.

When you compile the control’s code and insert it in the test container, you can
invoke the properties verb and see your general properties page. It will work exactly as
you expect it to. If it doesn’t, you have probably misspelled the OLE Property Name.
Note that case matters.

34.8.13 Overview of OCX Coding

In the preceding sections, we added stock properties, custom properties, stock
methods, custom methods, and events to the base control. We also added message
handlers and modified the appearance of the control. In all, we wrote a grand total of
about 25 lines of code. The ClassWizard did absolutely everything else, in conjunction
with the MFC classes that make up the control.

You should be able to appreciate how incredibly easy the ClassWizard makes this
process. To add your own methods, properties, and events, simply follow the previous
examples and use the tools that the ClassWizard provides.

Figure 34.10

Creating the General property sheet

650

This book is continuously updated. See http://www.iftech.com/mfc

34
O

LE

34.9 Conclusion

You have seen almost the entire range of OLE functionality at a high level. You
have created containers that can hold OLE servers, servers that fit into OLE containers,
automation servers that fit with OLE automation clients, and OLE controls. You
should be able to use this starting point to bootstrap yourself into the OLE space. Read
through the descriptions of the different classes in the on-line documentation, the MFC
encyclopedia, and technical notes. See the section inthe documentation on OLE. There
is also a book and a variety of other OLE information, including the spec and program-
mer’s reference, on Microsoft’s Developer’s Network CD.

651

35MFC THREADS

The Win32 API provides Windows programmers with a number of advanced capabil-
ities. These capabilities are discussed in detail in the book

Win32 System Services, The
Heart of Windows 95 & Windows NT

 by Marshall Brain, ISBN 0-13-324732-5, and
also in the on-line documentation. Many of these advanced capabilities have yet to be
incorporated into MFC. However, the threading and synchronization capabilities of
Win32 have been encapsulated and are available in MFC classes. The MFC class called

CWinThread

 is the subject of this chapter.
The

CWinThread

 class gives you the ability to significantly improve the respon-
siveness and general “feel” of your applications. The purpose of this chapter is to
introduce you to the class and show you several different ways to use it in your own
applications. This introduction will help you become familiar with the class itself and
its many possibilities.

35.1 Understanding the Possibilities

Threads give you a way to perform seamless background processing in your ap-
plications. If you have never thought about this sort of capability before, it may not
be obvious how important background processing can be. Here are several examples
that will help you to appreciate the value of multi-threading:

• If you create an MDI application, it is often useful to assign a separate thread
to each window. For example, in an MDI communications program that lets
you connect to multiple hosts via multiple modems simultaneously, it simpli-
fies things considerably if each window has its own thread that communicates
with each host.

• In a program that takes a long time to refresh its display because of the com-
plexity of the graphics involved (for example, a visualization program may
have to draw 10,000 polygons to refresh the display in a complicated draw-
ing), it is useful to create a separate thread to handle the redrawing. The user

652

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

interface, with its own thread, remains active for the user while the redrawing
takes place in the background.

• In a complicated simulation program, for example a program that simulates
the activity of organisms in an environment, the design of the program is of-
ten conceptually simpler if each entity has its own thread. The entities are
then fully independent of one another and can respond to their own simula-
tion events individually.

• If you have part of a program that needs to respond to certain high-priority
events very quickly, the problem is easily solved using thread priorities. The
high-priority portion of the code is placed in its own thread and that thread
is given a higher priority than other threads running on the machine. The
high-priority thread then waits for the necessary events. When it senses one,
it will awaken and receive almost all of the CPU cycles available until it com-
pletes its task. It can then go back to sleep waiting for the next event to arrive.

• If you are using an NT machine with multiple processors and you want to
take full advantage of all he CPU power available, you need to break applica-
tions into multiple threads. NT’s unit of division across CPUs is the thread,
so if you have an application that contains only one thread it will, by default,
use only one CPU out of those available. If the program breaks up its work
into multiple threads, NT can run each thread on a different CPU.

• Any task that needs to happen “in the background” while the user continues
to work with the application is easily handled with threads. For example, you
might place lengthy recalculations, page formatting operations, file reading
and writing, and so on. in separate threads that let the activities proceed in
the background without disturbing the user.

As you read through this chapter, keep these examples in mind. They will help
you to understand how you might apply the different techniques that are presented
here.

35.2 Understanding Threads

The basic idea behind a thread is simple. A

thread

 is a separate stream of execu-
tion. That may not mean a thing to you, however, if you are coming from a DOS
background. Let’s start by looking at what multi-processing and multi-threading ac-
tually mean from an operating system standpoint so you can clearly understand how
threads fit into the big picture.

The MS-DOS operating system is a

single-process

 operating system. It can run
one program at a time. You load a program, work with it, quit it, and then run anoth-
er. TSRs can, in certain situations, give an impression of multi-processing, but the
problems that TSRs normally cause show that they are at best an illusion that MS-
DOS was never intended to support.

Microsoft Windows 3.1, as well as Apple’s Macintosh operating system up to
System 7, are

cooperative multi-tasking

 operating environments. Both can run multiple
programs (processes) at the same time. For example, you can run a word processor in

35.2
U

nd
e

rsta
nd

ing
 Thre

a
d

s

This book is continuously updated. See http://www.iftech.com/mfc

653

one window, a spreadsheet in another window, and download a file from a BBS in a
third window. The word

cooperative

 is used because it is up to each program to prop-
erly relinquish control at appropriate times so that all the processes appear to be
working simultaneously. Cooperative multi-tasking works to some degree. However,
a lengthy disk access or other undividable task performed by one program will tend to
monopolize the entire system for a moment and the cooperation breaks down. This
makes cooperative multi-tasking systems seem jerky and unstable in many cases. If one
program locks up, the whole system often dies with it. As soon as one program locks,
it cannot relinquish control to the others and everything stops.

UNIX is a

preemptive multi-tasking

 operating system. The operating system,
rather than individual applications, is in charge of giving CPU time to all the running
processes and it does so as it best sees fit. UNIX gives a process a

time slice

 of CPU
time—perhaps 20 milliseconds or so—and when that amount of time expires the op-
erating

preempts

 the process and gives the next slice of CPU time to another process.
A UNIX machine can therefore have literally hundreds of processes running at one
time and still feel very smooth to the user. If one process locks it has no effect on the
others because the operating system is still in control of slicing the CPU time.

Windows 95 and Windows NT are a

preemptive multi-tasking, multi-threaded

operating systems. Because they use preemptive multi-tasking, they share with UNIX
the same smoothness of operation and process independence. Each process, or appli-
cation, gets time slices from the operating system. Multi-threading goes one step
further. An individual application by default contains one thread, but it can break it-
self into several (or many) independent threads of execution so that, for example, one
thread of an application can send a file to the printer while another is responding to
user input. The operating system gives each thread slices of CPU time. This simple
change in a program’s design can significantly reduce any waiting that the user nor-
mally has to do during lengthy recalculations, screen painting, file reading and
writing, and so on.

Multi-threading also lets you take advantage of multiple CPUs available in many
high-end NT machines. Say, for example, that you purchase an advanced RISC ma-
chine capable of using up to 10 CPU chips, but initially you purchase only one CPU
for it. As part of your learning cycle you write a simple Mandelbrot set program, and
you find that for a window of a certain size it takes 15 seconds to redraw the image of
the Mandelbrot set.

Now you add nine more CPU chips to the machine. When you rerun the Man-
delbrot program, you will find that it still takes almost 15 seconds to execute. NT has
the ability to run different threads on different CPUs, but it cannot do anything with
a single-threaded program but devote one CPU to it. There is no way for NT to divide
a single thread across CPUs. Because NT is itself multi-threaded, the Mandelbrot pro-
gram will speed up slightly because it is not competing with NT’s system threads for
CPU time. However, any one program cannot harness more than one tenth of the
CPU power in a 10-CPU machine unless it is multi-threaded.

654

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

If you multi-thread your Mandelbrot program, NT can run the separate threads
on separate CPUs, and this allows the program to take full advantage of all the avail-
able CPU power. For example, if the Mandelbrot program breaks itself into 10
threads, then one thread will run on each CPU and the program will run roughly ten
times faster. There is no reason to use more than ten threads on a 10-CPU machine,
because each thread incurs a very slight amount of overhead and it is therefore wasteful
to have more than 10. However, you could break the program into 100 threads if you
like, or use one thread for each scan-line of the drawing, if that makes things concep-
tually easier for you in a certain application. There are many cases where breaking an
application into multiple threads actually makes the whole program much easier to
understand, and threads turn out to be remarkably easy to create.

When any process starts in Windows, it by default contains one thread of exe-
cution. For example, when you type “notepad” on the command line or double click
on notepad’s icon in the Program Manager, Windows creates a process, and that pro-
cess has one thread that “runs” notepad’s code. The process is essentially a container
for the global variables, environment strings, the heap owned by the application, and
the thread. The thread is what actually executes the code.

All threads in one process

share

 the variable space of their parent process. Each
thread also has its own stack. When you create a new thread within a process, it has
access to all the global variables and the heap of the parent process. See Figures 35.1
and 35.2. All the problems that arise from the careless use of globals in a normal
program are therefore compounded in a multi-threaded program, because now sev-
eral different threads can modify the same global variables independently of one
another. To solve the problems that tend to arise in such situations, there are

syn-
chronization mechanisms

 built into the Win32 API and MFC.
If you read through Chapter 10, or if you are a long-time user of MFC, you

may be familiar with the

OnIdle

 capability built into the

CWinApp

 class. It is im-
portant to understand the difference between a thread and

OnIdle

. A thread is a
completely separate stream of execution, and the operating system gives the thread
time slices. Once you start a thread it will perform its tasks in a completely indepen-
dent manner. A background thread has no effect on the other threads. The

OnIdle

capability, on the other hand, is intimately tied to the application’s user interface and
central event loop. When there are no events in the event loop, then

OnIdle

 gets
called. However, the event loop will not process the next event until

OnIdle

 returns.
Therefore, the processing that occurs in

OnIdle

 must be subdivided into tasks with
a maximum duration of perhaps one-tenth of a second. Otherwise, the user interface
stalls. The fact that there is only one

OnIdle

 function, intimately tied to the appli-
cation’s event loop, and that

OnIdle

 tasks have to be finely subdivided, makes the
management of the

OnIdle

 function very complicated. All of these problems disap-
pear with threads.

35.3
M

FC
 W

o
rke

r Thre
a

d
s

This book is continuously updated. See http://www.iftech.com/mfc

655

35.3 MFC Worker Threads

MFC divides threads into two types:

worker

 threads and

user-interface

 threads.
Worker threads are simple background threads. They are extremely easy to understand
and use, and are therefore much more common. Probably the easiest way to get started
with threading is to start with small worker thread examples.

Let’s do that by creating a simple AppWizard application that creates a worker
thread that beeps in the background. This is the simplest threading example you can
possibly create because the thread is

completely

 independent of the application that
spawned it.

To create this threading example, start by creating an AppWizard framework.
Call the application “Thd.” Specify an SDI interface and trim the features to a mini-
mum because we will not use them. Open the ClassWizard and override the

OnInitalUpdate

 function in the view class. Add the following code:

UINT ThreadFunction(LPVOID pParam)
{

while (1)
{

Beep(100, 100);
Sleep(1000);

}
return 0;

Figure 35.1

A process just after creation, with one
thread. The process holds the global
variables, heap, and environment strings,
while the thread owns its stack (and
therefore any local variables).

Thread stack

Global variables

Thread

Heap

Process

Environment strings

656

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

}

void CThdView::OnInitialUpdate()
{

AfxBeginThread(ThreadFunction, NULL);

CView::OnInitialUpdate();
}

The

OnInitialUpdate

 function creates the thread by calling

AfxBeginThread

,
which accepts the name of the

thread function

 and a parameter to pass to the thread
function. The thread function here is named

ThreadFunction

, but can be named
anything you like. The thread function must, however, accept an LPVOID parameter
and return a UINT. Also, the thread function cannot be the member of a class. It must
be independent of the class, as shown in this example, because the

CWinThread

 class
uses Win32’s

CreateThread

 function, which only accepts normal functions.
Run the program. You will find that the application beeps once each second un-

til you terminate the application.

Figure 35.2

A process holding three threads. The threads share the globals, heap and
environment strings, while each thread has its own stack (and therefore its own local
variables).

Thread stack

Global variables

Thread 1

Heap

Process

Environment strings

Thread stack

Thread 2

Thread stack

Thread 3

35.4
Thre

a
d

 Te
rm

ina
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

657

When the system executes the program, the view’s

OnInitialUpdate

 function
gets called as the view is created. The call to

AfxBeginThread

 creates an instance of
the

CWinThread

 class, which calls the function in the Win32 API that actually cre-
ates the thread. The thread function executes in the new thread, so the function
executes in a manner that is entirely independent of the application. If the thread
function returns (or if it calls

AfxEndThread

), the thread dies. Otherwise, the thread
function runs until the process that owns the thread—in this case the application—
terminates.

One thing you should note in the thread function is the fact that it calls

Sleep

.
The

Sleep

 function suspends the thread for the length of time specified. While it is
sleeping, the thread consumes no CPU resources. This is an extremely efficient way to
perform this background task—the thread only executes one line of code (the

Beep

function) every second. Because the thread runs in a manner that is totally indepen-
dent of the application, the thread function and its call to

Sleep

 have absolutely no
effect on the user interface for the application.

Run the application again under the debugger. You can set breakpoints in the
thread function, or in the main application thread, and the system will honor them.
You can also select the

Break

 option in the

Debug

 menu to stop a threaded applica-
tion. All the threads will stop. When the program is stopped like this, you can use the

Threads

 option in the

Debug

 menu to view a list of running threads. You can selec-
tively suspend and resume each thread. Try creating two separate thread functions that
beep at different frequencies to experiment with the debugger features.

35.4 Thread Termination

When you run it under the debugger, one thing that you will notice about this
simple beeping program is that it has a memory leak. To understand and fix this mem-
ory leak, you need to have a good working knowledge of the

CWinThread

 class in
MFC. Take a moment now to review the data members and member functions for

CWinThread

 in the MFC documentation. You will also find there several general in-
formation pages that you should scan.

The

CWinThread

 class creates a thread (using Win32’s

CreateThread

 func-
tion) and holds onto its handle with a member variable named

m_hThread

. The

CWinThread

 class also contains several member functions that let you control the
thread or get information about it. For example, you can get or set the thread’s prior-
ity, and you can suspend and resume the thread. The

CWinThread

class additionally
contains several data members and member functions that are useful when creating
user-interface threads. These features are discussed later in this chapter.

When the beeping code in the previous section called the

AfxBeginThread

function, the function created an instance of the

CWinThread

 class for you and re-
turned a pointer to it. To eliminate the memory leak, you need to hold onto the
pointer that

AfxWinThread

 returns and delete that pointer before program termina-
tion. Before deleting the pointer, however, you should terminate the thread. This
termination must be done by the thread itself.

658

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

A thread terminates itself in one of two ways. When the thread function returns,
that terminates the thread. The thread can also call

AfxEndThread

 to terminate itself.
The

AfxEndThread

 function is useful when the thread function has called another
function and that function wants to terminate the thread. The value returned by

re-
turn,

 or the parameter passed to

AfxEndThread

, acts as the exit code for the thread.
We can use all this information to correctly handle termination of the beeping

thread in the previous section. First we need to give the thread a way to know that it
is time to die. In this example we will use the simplest mechanism possible: a global
variable. There is a variety of more exotic methods you can use if you so desire. See

Win32 System Services: The Heart of Windows NT

 for details. You may also want to
look at the MTRECALC example in the MFC samples directory for another view.

When the view is about to die, it can change the global variable so that the thread
dies also. The

CWinThread

class is smart enough to delete itself once it senses the
death of its associated thread so that should solve the problem. The following code at-
tempts to use this technique. To make use of it, open the ClassWizard and add an
override function for the WM_DESTROY message to the view class:

//
// CThdView message handlers

// Set to true to kill the thread
BOOL bKill = FALSE;

// The thread function
UINT ThreadFunction(LPVOID pParam)
{

while (!bKill)
{

Beep(100, 100);
Sleep(1000);

}
return 0;

}

CWinThread *pThread;

// Override for OnInitialUpdate VF. Create with ClassWizard.
void CThdView::OnInitialUpdate()
{

pThread = AfxBeginThread(ThreadFunction, NULL);

CView::OnInitialUpdate();
}

// Handler for WM_DESTROY message. Create with ClassWizard.
void CThdView::OnDestroy()
{

bKill = TRUE;

CView::OnDestroy();
}

35.4
Thre

a
d

 Te
rm

ina
tio

n

This book is continuously updated. See http://www.iftech.com/mfc

659

In this code, you can see that the thread function uses the

bKill

 Boolean to con-
trol the while loop. When it is time for the thread to die, the

OnDestroy

 function sets

bKill

 to TRUE. This should cause the thread’s loop to terminate, which should cause
the thread to return and therefore die, which should cause the instance of

CWin-
Thread

 pointed to by

pThread

 to delete itself, which should end the memory leak.
However, if you run this code under the debugger, you will find that, in most cases,
the memory leak persists.

This problem is caused by the

Sleep

 function in the thread. Although the

OnDestroy

 function has set

bKill

 to TRUE, the thread is probably sleeping. There-
fore, the view proceeds to destroy itself before the thread wakes up and realizes it needs
to die. The following code, although a bit more complicated, truly solves the problem:

//
// CThdView message handlers

// Set to true to kill the thread
BOOL bKill = FALSE;

// The thread function
UINT ThreadFunction(LPVOID pParam)
{

while (!bKill)
{

Beep(100, 100);
Sleep(1000);

}
return 0;

}

CWinThread *pThread;

// Override for OnInitialUpdate VF. Create with ClassWizard.
void CThdView::OnInitialUpdate()
{

pThread = AfxBeginThread(ThreadFunction, NULL);
pThread->m_bAutoDelete = FALSE;

CView::OnInitialUpdate();
}

// Handler for WM_DESTROY message. Create with ClassWizard.
void CThdView::OnDestroy()
{

bKill = TRUE;
WaitForSingleObject(pThread->m_hThread, INFINITE);
delete pThread;

CView::OnDestroy();
}

This code creates the thread with

AfxBeginThread

, and then sets its

m_bAutoDelete

 member to FALSE. This change eliminates the auto-deletion capa-
bility from the

CWinThread

 instance, thereby causing the

CWinThread

 object to

660

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

remain in memory after the thread dies. Because we know that the

CWinThread

 ob-
ject always exists, we can safely use the

WaitForSingleObject

 function in the Win32
API to wait for the thread to terminate. The

WaitForSingleObject

 function blocks
until the thread dies or the time-out expires. Because the time-out is infinite in this
case, the function waits for the thread to terminate and then returns. Once the thread
dies, we can delete the instance of

CWinThread

 and allow the view to close. The
memory leak is eliminated.

35.5 Passing Parameters to Threads

Any thread function can accept one four-byte parameter, which you can use in
any way you like. You can pass in an integer, a Boolean, a pointer to a structure or
class, and so on. One common way to use the parameter is to pass in a pointer that
refers back to the parent of the thread.

To demonstrate the use of the thread function parameter, use the AppWizard to
create a new

MDI

 application. Use the ClassWizard to override the

OnInitialUpdate

function and add a WM_DESTROY handler function in the view. Add the following
two lines to the view’s header file in the attributes section:

BOOL bKill;
CWinThread *pThread;

Then add the following code to the view class:

//
// CDotsView message handlers

// Thread function
UINT DotThread(LPVOID pParam)
{

CDotsView *view = (CDotsView *) pParam;
CRect r;
srand(GetTickCount());

while (!view->bKill)
{

CClientDC dc(view);
view->GetClientRect(&r);

int i = rand() % r.Width();
int j = rand() % r.Height();

dc.SetPixel(i, j, RGB(0,0,0));
}
return 0;

}

// Override for OnInitialUpdate VF. Create with ClassWizard.
void CDotsView::OnInitialUpdate()
{

bKill = FALSE;
pThread = AfxBeginThread(DotThread, this);
pThread->m_bAutoDelete = FALSE;

35.6
Susp

e
nd

ing
 a

nd
 Re

sum
ing

 Thre
a

d
s

This book is continuously updated. See http://www.iftech.com/mfc

661

CView::OnInitialUpdate();
}

// Message handler for WM_DESTROY. Create with ClassWizard.
void CDotsView::OnDestroy()
{

bKill = TRUE;
WaitForSingleObject(pThread->m_hThread, INFINITE);
delete pThread;

CView::OnDestroy();
}

This code creates a thread function that draws random dots into the view. It can
do this because the thread function receives a pointer to the view in its parameter. It
then uses this pointer to access the view’s member variables and to create a DC for the
view. If you run this program, you will find that you can create multiple windows in
the MDI shell, and they will update themselves properly. In addition, because the
code correctly deletes threads as discussed in the previous section, you can close MDI
windows and they will clean themselves up properly.

35.6 Suspending and Resuming Threads

The

CWinThread

 class includes functions that let your application suspend and
resume the threads that it creates. To demonstrate these functions, start with the ap-
plication that you created in the previous section. We will add two menu options to
it that will suspend and resume the thread’s drawing activities.

Open the resource file and open the IDR_DOTSTYPE menu. Add a new menu
named

Thread

 and add to it two options named

Suspend

 and

Resume

. With the
menu open as the topmost window in Visual C++, open the ClassWizard and create
handler functions for both menu options in the view class. Use the following code in
the handlers:

// Handler for suspend option in thread menu
void CDotsView::OnThreadSuspend()
{

pThread->SuspendThread();
}

// Handler for resume option in thread menu
void CDotsView::OnThreadResume()
{

pThread->ResumeThread();
}

Compile and run the application. When you select the

Suspend

 menu option,
the thread will suspend. Click the

Resume

 option to resume drawing. Open several
windows using the

New

 option in the

File

 menu, and you will find that you can se-
lectively suspend individual threads. Also note that if you suspend one thread twice,
you have to resume it twice—the thread maintains a suspend count rather than a bi-
nary flag.

662

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

35.7 Thread Priorities

The Win32 API uses a round-robin priority queue structure to schedule CPU
time among available threads. To understand thread priorities and how to set them,
you need to be familiar with the priority and scheduling mechanisms used by Win-
dows. This section contains a brief overview.

All the threads in a process have a priority relative to their parent process. The
priority of the threads determines the amount of CPU time they receive relative to one
another and relative to other threads in other processes of the same process priority.
You set a thread’s priority using the

SetThreadPriority

 function and retrieve it using
the

GetThreadPriority

 function.
Every process starts with a base priority determined by its

priority class

. NT de-
fines four different classes:

Class Base priority

IDLE_PRIORITY_CLASS 4
NORMAL_PRIORITY_CLASS9 foreground, 7 background
HIGH_PRIORITY_CLASS 13
REALTIME_PRIORITY_CLASS24
A regular process, such as one launched from the Program Manager or the com-

mand line, is “normal.” Operating system threads are given a high or real-time priority
class.

The threads within a process can then adjust their priority relative to the base
priority of the process. When you call

SetThreadPriority

, it accepts one of the fol-
lowing values:

THREAD_PRIORITY_LOWEST-2
THREAD_PRIORITY_BELOW_NORMAL-1
THREAD_PRIORITY_NORMAL+0
THREAD_PRIORITY_ABOVE_NORMAL+1
THREAD_PRIORITY_HIGHEST+2
For example, if a foreground process has a normal priority class and one of its

threads sets its priority to THREAD_PRIORITY_LOWEST, then the thread’s pri-
ority value is 7 (9 - 2 = 7).

Two additional thread priorities set a thread’s priority value to an absolute
number:

THREAD_PRIORITY_TIME_CRITICAL15 or 31 absolute
THREAD_PRIORITY_IDLE1 or 16 absolute
Setting a thread’s priority to THREAD_PRIORITY_IDLE makes the thread’s

priority value 16 if its process’s class is REALTIME_PRIORITY_CLASS and makes it 1
otherwise. Setting a thread’s priority to THREAD_PRIORITY_TIME_CRITICAL
makes the thread’s priority value 31 if its process’s class is
REALTIME_PRIORITY_CLASS and makes it 15 otherwise. (Find the

SetPriority-
Class

 description in the Win32 API documentation for a complete chart.)
Based on the different base priorities of processes and the possible thread prior-

ities, there are a total of 22 different priority values possible, ranging between 1 and

35.7
Thre

a
d

 Prio
ritie

s

This book is continuously updated. See http://www.iftech.com/mfc

663

31. The thread scheduler uses the priority value of all the threads currently in existence
to determine which thread gets the next slice of CPU time.

Think about a typical Windows system in the middle of operation on a typical
day. It has all sorts of threads running. Under Windows NT, if you open the Perfor-
mance Monitor and look at the Threads counter under the Objects object, it will tell
you exactly how many threads currently exist on your machine. On my machine at
this particular moment there are 155. By killing off all the extraneous windows, I can
get it down to 138. All the others are threads associated with different background ser-
vices, operating system tasks, and so on.

At any given moment, a thread can be in any of several states. Some threads are

suspended

. For example, you might have clicked on the

Suspend

 option for one of the
windows in the previous section, so the thread for that window is suspended. These
threads consume no CPU time and will not be scheduled for CPU time until they re-
sume. Some threads are

sleeping

 because they called the

Sleep

 function. These threads
also consume no CPU time, but will be scheduled for CPU time once the sleep time
expires. Some of the threads are

waiting

 for something. For example, one thread might
need user input from the keyboard, while another is waiting for a network packet, and
another is waiting for a sector from the hard disk. They will be scheduled once the re-
source or event they await arrives.

The rest of the threads are

ready

. They have something to do, and the only thing
preventing them from doing it is the fact that there is only one CPU and perhaps five
threads needing to share it. On a multi-CPU machine, there might be two CPUs and
five threads waiting for one of them. Threads in that case are dispatched to both CPUs
by the scheduler.

Windows NT, like most preemptive operating systems, picks a ready thread and
lets it use the CPU for a specified amount of time, a

time slice

, of perhaps 20 millisec-
onds. The thread will normally end up requesting something that is not available, like
a keystroke or a disk sector, before its time slice completes, so the operating system will
stop it and let it wait for what it needs. Otherwise the time slice will elapse and the
scheduler will preempt the thread. It then picks another ready thread and gives it the
next time slice, and so on.

Windows picks the thread that will receive the next time slice using a set of ready
queues arranged by priority. Figure 35.3 shows a typical arrangement. Each queue
works in a round-robin fashion, so a thread that is ready gets put on the end of one of
the priority queues. The queue chosen is determined by the priority number of the
thread. The operating system services all the threads in a given queue in order. If a
thread uses up its time slice and is still ready, it gets put onto the end of its ready queue
again. All the ready threads in the highest priority queue get serviced until that queue
is empty. The system then moves down to the next lower queue and begins servicing
its threads, and so on.

664

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

Figure 35.3

The priority queue structure used by the scheduler, here with seven different threads
ready and waiting for CPU time. The three threads with priority value 9 will be
serviced until they are all waiting for something and there are no ready threads at
priority 9. Then the thread at priority 8 will be serviced, and so on.

Given this description of Windows’ priority structure, it is easy to see how one
can easily wreak havoc with it. For example, say that you take a thread that is CPU-
bound—that is, one that never sleeps, requests keyboard input or disk sectors, and so
on—and you then set the thread’s priority just one level up by changing it to
THREAD_PRIORITY_ABOVE_NORMAL after you create the thread. This simple
act will essentially lock up all the other normal processes currently running. The
scheduler services it continually, at the expense of

all

 threads below it. The operating
system threads that are in higher process classes still run, so the whole machine does
not lock up, but all of the normal processes would appear to die. There are some safe-
guards, including variable thread priorities for threads with priorities below 16, but in
general high priority threads that are CPU-bound cause problems.

There is an important lesson here. If you have a thread you know will always be
ready—that is, a thread that is compute bound—you should probably lower its prior-
ity so that it does not stall all the threads below it in the scheduler. Alternatively, you
can cause it to sleep occasionally or frequently to give the threads below it some time
slices. An idle thread with priority value 1

never

 gets a time slice unless

all

 threads

thread 22 thread 83 thread 45

thread 61

thread 93 thread 77

thread 48

11

10

9

8

7

6

5

4

One queue for each priority value

12 ...

3 ...

Priority

Value

35.7
Thre

a
d

 Prio
ritie

s

This book is continuously updated. See http://www.iftech.com/mfc

665

above it are waiting for something. Therefore, it may be a reasonable practice to set
your compute-bound threads to the absolute priority THREAD_PRIORITY_IDLE
so that they don’t cut off any other processes. If every application did that, things
would work well.

Similarly, you should never give a thread a high priority unless you

know

 that it
will frequently wait, and that it will not use much CPU time when it becomes ready.
For example, you might place a call to

WaitCommEvent

 in a high-priority thread so
that it is waiting for a certain communications event such as the arrival of a character.
The thread can then quickly process that character and wait again. Design the appli-
cation so a normal priority thread actually does something with the character
retrieved, or set the priority of the high-priority thread back to normal during process-
ing so you do not starve everything else.

You can use the following code to demonstrate thread priorities and experiment
with different possibilities. It is a modification of the code from the previous section.
This version creates two separate threads, one that draws red dots (a low-priority
thread), and another that draws blue dots (a normal priority thread). You can suspend
and resume the blue dot thread from the menu. Add the following three lines to the
view’s header file in the attributes section:

BOOL bKill;
CWinThread *pThread1;
CWinThread *pThread2;

Then modify the code in the

CDotsView

 class so it looks like this:

//
// CDotsView message handlers

// Thread function for blue dots
UINT DotThread1(LPVOID pParam)
{

CDotsView *view = (CDotsView *) pParam;
CRect r;
srand(GetTickCount());

while (!view->bKill)
{

CClientDC dc(view);
view->GetClientRect(&r);

int i = rand() % r.Width();
int j = rand() % r.Height();

dc.SetPixel(i, j, RGB(0,0,255));
}
return 0;

}

// Thread function for red dots
UINT DotThread2(LPVOID pParam)
{

CDotsView *view = (CDotsView *) pParam;
CRect r;

666

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

srand(GetTickCount());

while (!view->bKill)
{

CClientDC dc(view);
view->GetClientRect(&r);

int i = rand() % r.Width();
int j = rand() % r.Height();

dc.SetPixel(i, j, RGB(255,0,0));
}
return 0;

}

// Override for OnInitialUpdate VF. Create with ClassWizard.
void CDotsView::OnInitialUpdate()
{

bKill = FALSE;
pThread1 = AfxBeginThread(DotThread1, this);
pThread1->m_bAutoDelete = FALSE;
pThread2 = AfxBeginThread(DotThread2, this);
pThread2->m_bAutoDelete = FALSE;
pThread2->SetThreadPriority(THREAD_PRIORITY_LOWEST);

CView::OnInitialUpdate();
}

// Message handler for WM_DESTROY. Create with ClassWizard.
void CDotsView::OnDestroy()
{

bKill = TRUE;
WaitForSingleObject(pThread1->m_hThread, INFINITE);
delete pThread1;
WaitForSingleObject(pThread2->m_hThread, INFINITE);
delete pThread2;

CView::OnDestroy();
}

// Handler for suspend option in thread menu
void CDotsView::OnThreadSuspend()
{

pThread1->SuspendThread();
}

// Handler for resume option in thread menu
void CDotsView::OnThreadResume()
{

pThread1->ResumeThread();
}

The

OnInitialUpdate

 function creates the two threads, and it adjusts the red
thread’s priority to the THREAD_PRIORITY_LOWEST. The

OnDestroy

 function
terminates both threads. The

OnThreadSuspend

 and

OnThreadResume

 functions
handle the corresponding menu options and suspend and resume the blue thread.

35.8
Sub

c
la

ssing
 C

W
inThre

a
d

This book is continuously updated. See http://www.iftech.com/mfc

667

When you run the application, you will find that the window fills quickly with
blue dots. You will also find an occasional red dot, as the scheduler’s variable priorities
kick in to prevent total starvation of the red thread. Note, however, that the red
thread’s execution is

extremely

 rare. If you suspend the blue thread, the red thread will
pick up to full speed because it is not competing with anything (provided no other
process on the system has a compute-bound thread at higher priority).

Now try a second experiment. Open a second child window in the MDI frame.
In one of the windows suspend the blue thread. Now tile the windows. You can see
exactly how often the red thread gets executed in relation to the blue thread. Try run-
ning two separate instances of the same application and run the same experiment. Use
this framework to conduct a variety of priority experiments of your own until you feel
comfortable with the different thread priorities and how they work.

35.8 Subclassing CWinThread

One problem frequently faced by application designers is the “long redraw”
problem. For example, if you have a complex drawing or painting program that re-
quires several minutes to update the screen, it can be annoying for the user when the
hourglass cursor prevents the use of the rest of the application. In this section we ex-
amine how to solve this problem by subclassing the

CWinThread

 class.
To simulate a long calculation, we will again use the Mandelbrot set. Even on

extremely fast machines, the redraw time for a large Mandelbrot set can be quite an-
noying. To experience the annoyance for yourself, create a new MDI application with
the AppWizard. Call it “Mandel”. Open the resource file and in the
IDR_MANDTYPE menu add an option called

Draw

 to the

Window

 menu. In the
view class, use the ClassWizard to add a menu handler for this new menu option and
put into it the following code:

// Command handler for Draw menu option
void CMandelView::OnWindowDraw()
{

GetDocument()->UpdateAllViews(0, NULL, 0);
}

Add a variable of the following type to the attributes section of the view’s header
file:

DWORD colors[64];

Change the view class’s constructor so that it initializes the member variable:

CMandelView::CMandelView(): m_thread(0)
{

WORD x;
BYTE red=0, green=0, blue=0;

for (x=0; x<64; x++)
{

colors[x] = RGB(red, green, blue);
if (!(red += 64))

if (!(green += 64))
blue += 64;

668

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

}
colors[63] = RGB(255,255,255);

}

Use the ClassWizard to override the

OnInitialUpdate

 function in the view class
and delete its code so it looks like this:

void CMandelView::OnInitialUpdate()
{
}

You are doing this so

OnUpdate

 does not get called when the application first
starts. This means that the only time

OnUpdate

 will be called is when you select the

Draw

 menu option.
Then use the ClassWizard again and add code to the view’s

OnUpdate

 function
as shown below:

const int NUM_ITERATIONS=64;

const double left = -1.0;
const double right = 1.0;
const double top = -1.0;
const double bottom = 1.0;

typedef struct
{

double real;
double imag;

} complex;

void CMandelView::OnUpdate(CView* pSender,
LPARAM lHint, CObject* pHint)

{
CRect r;
double xstep, ystep;
double x, y;
int i,j;
WORD iter;
complex k;
complex z;
double real, imag, spread;

CClientDC dc(this);
GetClientRect(&r);

ystep = (double) (bottom - top) / r.Height();
xstep = (double) (right - left) / r.Width();

for (y=top, j=0; y <= bottom; y += ystep, j++)
{

for (x=left, i=0; x<=right; x += xstep, i++)
{

k.real = x;
k.imag = y;
z.real=z.imag=0.0;

for (iter=0; iter<NUM_ITERATIONS-1;
iter++)

35.8
Sub

c
la

ssing
 C

W
inThre

a
d

This book is continuously updated. See http://www.iftech.com/mfc

669

{
real = z.real + k.real;
imag = z.imag + k.imag;
z.real = real * real -

imag * imag;
z.imag = 2 * real * imag;
spread = z.real * z.real +

z.imag * z.imag;
if (spread > 4.0)

break;
}
dc.SetPixel(i, j, colors[iter]);

}
}

}

Compile the code and

run it under the debugger

. By running under the debugger
you will have an easy way to terminate the application should you find it too annoy-
ing. Resize the MDI child window so it is fairly small, and choose the new

Draw

 menu
option in the

Window

 menu. The Mandelbrot set will redraw. Note that, while it is
redrawing, the rest of the application’s user interface is locked. You cannot click in the
menus, move the child windows, etc. If you use the

New Window

 option in the

Win-
dow

 menu to create several MDI windows for the same document, you will find that
the problem is multiplied as all windows slowly update one by one.

The problems seen here can be solved with threads. However, we may not want
to use the simple approach taken in the previous examples. There are two conflicting
problems that can arise from the simple approach:

1. In the previous examples, the structure of the code guaranteed that the thread
would start at the same time the view did and that it would only need to start
once. Therefore, the

OnDestroy

 function could simply delete

pThread

. In this
Mandelbrot code, the

OnWindowDraw

 function will need to start the thread
many times. Therefore, the deletion of the

CWinThread

 object becomes more
complicated. It would be nice to have the thread object auto-delete and elimi-
nate this problem, but you need it for menu item enabling and disabling.

2. Once the application starts drawing the set, it would be nice to have the

Draw

menu option disable itself and then re-enable itself once the thread completes.
This means that the thread object needs to remain in existence following the
completion of the thread so you can examine the thread exit code with the
Win32 API’s

GetExitCodeThread

 function. This function returns
STILL_ACTIVE while the thread is active, and the thread’s return value once it
terminates. If the instance of

CWinThread

 automatically deletes itself, then
there is no way to determine completion of the thread.
The easiest way to solve both these problems is to derive a class from

CWin-
Thread

 and then create an instance of this derived class in the view’s constructor. This
way you are able to start the thread multiple times, using the

CreateThread

 function
in

CWinThread

, without having to worry about deletion. Also, you can structure the

670

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

implementation of the derived class so that some of the messiness seen in prior exam-
ples gets encapsulated in the derived class.

The ClassWizard gives you an easy way to derive a new class from

CWin-
Thread

. Add a new class using the ClassWizard. Give the class the name

CMandelThread

. Select

CWinThread

 for the class type. Take a look at the overrid-
able functions for this class in the MFC documentation—several of them are
interesting.

There are a number of changes we need to make to the

CMandelThread

 class
to adapt it to the task at hand. First we need to create a thread function and copy into
it the Mandelbrot drawing code. We can also copy the color array, the color array ini-
tialization, and other constants and structures having to do with the Mandelbrot
calculation. The drawing code needs to know about the view so we can pass that in
through the constructor. The class can also handle starting, termination, and detec-
tion in member functions. When you get done, the header and code files for the

CMandelThread

 class should look like those shown in Listings 35.1 and 35.2.

Listing 35.1
The mandel.h file

// mandelth.h : header file
//

//
// CMandelThread thread

class CMandelThread : public CWinThread
{

DECLARE_DYNCREATE(CMandelThread)
protected:

CMandelThread(); // protected constructor used by dyncreate
public:

CMandelThread(CView *view); //public constructor

// Attributes
public:

CView *pView;
BOOL bKill;
DWORD colors[64];

// Operations
public:

// Overrides
// ClassWizard generated virtual function overrides
//{{AFX_VIRTUAL(CMandelThread)
public:
virtual BOOL InitInstance();
virtual int ExitInstance();
//}}AFX_VIRTUAL
void Kill();

35.8
Sub

c
la

ssing
 C

W
inThre

a
d

This book is continuously updated. See http://www.iftech.com/mfc

671

BOOL Start();
BOOL Running();

// Implementation
public:

virtual ~CMandelThread();

// Generated message map functions
//{{AFX_MSG(CMandelThread)

// NOTE - the ClassWizard will add and
// remove member functions here.

//}}AFX_MSG

DECLARE_MESSAGE_MAP()
};

//

Listing 35.2
The mandelth.cpp file

// mandelth.cpp : implementation file
//

#include "stdafx.h"
#include "mandel.h"
#include "mandedoc.h"
#include "mandelth.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

///
// Thread function

const int NUM_ITERATIONS=64;

const double left = -1.0;
const double right = 1.0;
const double top = -1.0;
const double bottom = 1.0;

typedef struct
{

double real;
double imag;

} complex;

UINT HandleDrawing(LPVOID pParam)
{

CMandelThread *thread = (CMandelThread *) pParam;

672

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

CRect r;
double xstep, ystep;
double x, y;
int i,j;
WORD iter;
complex k;
complex z;
double real, imag, spread;

CClientDC dc(thread->pView);
thread->pView->GetClientRect(&r);

ystep = (double) (bottom - top) / r.Height();
xstep = (double) (right - left) / r.Width();

for (y=top, j=0; y <= bottom; y += ystep, j++)
{

for (x=left, i=0; x<=right; x += xstep, i++)
{

if (thread->bKill)
return 0;

k.real = x;
k.imag = y;
z.real=z.imag=0.0;

for (iter=0; iter<NUM_ITERATIONS-1;
iter++)

{
real = z.real + k.real;
imag = z.imag + k.imag;
z.real = real * real -

imag * imag;
z.imag = 2 * real * imag;
spread = z.real * z.real +

z.imag * z.imag;
if (spread > 4.0)

break;
}
dc.SetPixel(i, j, thread->colors[iter]);

}
}
return 0;

}

//
// CMandelThread

IMPLEMENT_DYNCREATE(CMandelThread, CWinThread)

CMandelThread::CMandelThread()
{
}

CMandelThread::CMandelThread(CView *view)
{

35.8
Sub

c
la

ssing
 C

W
inThre

a
d

This book is continuously updated. See http://www.iftech.com/mfc

673

pView = view;
m_bAutoDelete = FALSE;
m_pThreadParams = this;
m_pfnThreadProc = HandleDrawing;

WORD x;
BYTE red=0, green=0, blue=0;
for (x=0; x<64; x++)
{

colors[x] = RGB(red, green, blue);
if (!(red += 64))

if (!(green += 64))
blue += 64;

}
colors[63] = RGB(255,255,255);

}

CMandelThread::~CMandelThread()
{
}

BOOL CMandelThread::InitInstance()
{

return TRUE;
}

int CMandelThread::ExitInstance()
{

return CWinThread::ExitInstance();
}

// Kills a running thread
void CMandelThread::Kill()
{

bKill = TRUE;
WaitForSingleObject(m_hThread, INFINITE);

};

// Starts the thread running
BOOL CMandelThread::Start()
{

bKill = FALSE;
return CreateThread();

};

// Returns TRUE if the thread is running
BOOL CMandelThread::Running()
{

DWORD bStatus;
::GetExitCodeThread(m_hThread, &bStatus);
if (bStatus == STILL_ACTIVE)

return TRUE;
else

return FALSE;
}

674

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

BEGIN_MESSAGE_MAP(CMandelThread, CWinThread)
//{{AFX_MSG_MAP(CMandelThread)

// NOTE - the ClassWizard will add and
// remove mapping macros here.

//}}AFX_MSG_MAP
END_MESSAGE_MAP()

//
// CMandelThread message handlers

The most interesting thing happening in this code is inside the constructor.
There are two undocumented member variables in the CWinThread class named
m_pfnThreadProc and m_pThreadParams. They hold the address of the thread
function and the thread function’s parameter, respectively. When you call CreateTh-
read in the CWinThread class, it looks at these two members so it can start the thread
function. Having set them, CreateThread will work properly. The top part of the
class contains the thread function along with several declarations and constants that it
needs.

In the view class, the constructor and destructor work together to allocate and
destroy the thread:

//
// CMandelView construction/destruction

CMandelView::CMandelView()
{

pThread = new CMandelThread(this);
}

CMandelView::~CMandelView()
{

delete pThread;
}

You can then use the ClassWizard to create message handlers for OnInitialUp-
date, OnUpdate, and OnDestroy, as well as for the Draw menu option’s
COMMAND and UPDATE_COMMAND_UI messages:

//
// CMandelView message handlers

void CMandelView::OnUpdate(CView* pSender,
LPARAM lHint, CObject* pHint)

{
pThread->Start();

}

void CMandelView::OnWindowDraw()
{

GetDocument()->UpdateAllViews(0, NULL, 0);
}

void CMandelView::OnUpdateWindowDraw(CCmdUI* pCmdUI)
{

35.9
U

se
r Inte

rfa
c

e
 Thre

a
d

s

This book is continuously updated. See http://www.iftech.com/mfc

675

pCmdUI->Enable(!pThread->Running());
}

void CMandelView::OnInitialUpdate()
{
}

void CMandelView::OnDestroy()
{

pThread->Kill();
CView::OnDestroy();

}

As you can see, the encapsulation of the thread into a thread class significantly
simplifies the implementation of the view class that uses it.

35.9 User Interface Threads

In all the previous examples we have concentrated on worker threads. There is
another form or thread in MFC called a

user-interface thread

. While a worker thread
performs its tasks in the background and has no real connection to the user interface
unless you create one with the thread function’s parameter, a user interface thread is
intended to operate as a part of the user interface. It has its own window and can pro-
cess events separately from the main window.

To create a user interface thread, you use the ClassWizard to derive a new class
from

CWinThread

. Inside that class you create your user interface. Then at some
point in the program you create the user-interface thread by calling

AfxBeginThread

.
To try this out, create an application with the ClassWizard. Then derive a new

class from

CWinThread

. Call the new class

CUIThread

. In the CPP file for that class
place the code shown in Listing 35.3.

Listing 35.3
The implementation for the CUIThread class

// uithread.cpp : implementation file
//

#include "stdafx.h"
#include "uit.h"
#include "uithread.h"

#ifdef _DEBUG
#undef THIS_FILE
static char BASED_CODE THIS_FILE[] = __FILE__;
#endif

//
// CUIThread

IMPLEMENT_DYNCREATE(CUIThread, CWinThread)

CUIThread::CUIThread()

676

This book is continuously updated. See http://www.iftech.com/mfc

35
M

FC
 T

hr
e

a
d

s

{
}

CUIThread::~CUIThread()
{
}

class CWindow : public CFrameWnd
{

CStatic *cs;
public:

CWindow();
~CWindow();

};

CWindow::~CWindow()
{

delete cs;
}

CWindow::CWindow()
{

Create(NULL, "Extra Window", WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

cs = new CStatic();
cs->Create("Hello World",

WS_CHILD | WS_VISIBLE | SS_CENTER,
CRect(50, 80, 150, 150), this);

}

BOOL CUIThread::InitInstance()
{

// create a new frame window
m_pMainWnd = new CWindow();
m_pMainWnd->ShowWindow(SW_SHOWNORMAL);
m_pMainWnd->UpdateWindow();
return TRUE;

}

int CUIThread::ExitInstance()
{

return CWinThread::ExitInstance();
}

BEGIN_MESSAGE_MAP(CUIThread, CWinThread)
//{{AFX_MSG_MAP(CUIThread)

// NOTE - the ClassWizard will add and
// remove mapping macros here.

//}}AFX_MSG_MAP
END_MESSAGE_MAP()

If you look through Listing 35.3, you will find that it looks remarkably like the
program in Chapter 1. This code creates a new window that displays the words “Hello
World.” When you create an instance of the thread, it will create a new window sep-

35.10
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

677

arate from the main window. That window can contain anything you like, as
discussed throughout the rest of this book.

To create this extra window from anywhere else in the program, you can call the
following line:

AfxBeginThread(RUNTIME_CLASS(CUIThread));

That will create an instance of the new thread and, therefore, the new window.
See the MFC documentation for further information on user-interface threads.

35.10 Conclusion

 The code in Listing 35.3 has a nice circularity to it. We started in Chapter 1
with the simplest possible MFC program. From there we have worked through a tre-
mendous quantity and variety of information to get to a point where you can now
create applications inside applications using

CWinThread

 class.
It is our hope that this information is useful to you, and that you are able to take

it and build exciting applications of your own. If you manage to put a really neat app
together, send us some e-mail as described in Appendix C and let us know. We would
like to hear from you.

679

AUNDERSTANDING C++:
AN ACCELERATED INTRODUCTION

A.1 Tutorial One—Introduction

For many people the transition from C to C++ is not easy. In fact, this transition
is often accompanied by quite a bit of anxiety because C++ is surrounded by a certain
aura that makes it inaccessible. For example, you can pick up a book on C++, random-
ly turn to a page, and encounter paragraphs like this:

“From a design perspective, private derivation is equivalent to contain-
ment except for the (occasionally important) issue of overriding. An im-
portant use of this is the technique of deriving a class publicly from an
abstract base class defining an interface and privately from a concrete
class providing an implementation. Because the inheritance implied in
private derivation is an implementation detail that is not reflected in the
type of the derived class, it is sometimes called 'implementation inherit-
ance' and contrasted to public declaration, where the interface of the
base class is inherited and the implicit conversion to the base type is al-
lowed. The latter is sometimes referred to as sub-typing or 'interface inher-
itance'.”

[From “The C++ Programming Language, second edition”, by Bjarne
Stroustrup, page 413]

It is difficult to get started in an environment that is this obtuse.
The goal of these tutorials is to help you to gain an understanding of the funda-

mental concepts driving C++ in a quick and painless way. They let you begin thinking
in an “object-oriented way.” Once you understand the fundamentals, the rest of the
language is relatively straightforward because you will have a framework on which to
attach other details as you need them. Once you understand its underlying themes and
vocabulary, C++ turns out to be a remarkable language with quite a bit of expressive
power. Used correctly, it can dramatically improve your productivity as a
programmer.

These tutorials answer three common questions:
• Why does C++ exist, and what are its advantages over C?
• What tools are available in C++ to express object-oriented ideas?
• How do you design and implement code using object-oriented principles?

680

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

Once you understand the basic tools available in C++ and know how and why
to use them, you have become a C++ programmer. These tutorials will start you down
that road and make other C++ material much easier to understand.

These tutorials assume you already know C. If that isn't the case, spend a week
or two acclimating yourself to the C language and then come back to these tutorials.
C++ is a superset of C, so almost everything that you know about C will map straight
into this new language.

The tutorials start with a brief explanation of why C++ exists, and what it is try-
ing to accomplish. C++ is a response to a number of problems that arise in large
programming projects, and the language makes a lot more sense if you view it in that
light. The next section describes enhancements in C++ that overcome and correct de-
ficiencies in the C language. The remainder of the tutorials introduce the concepts of
object-oriented programming, and the ways in which C++ handles those ideas:

• Tutorial One—Introduction
• Tutorial Two—C++ Enhancements to C
• Tutorial Three—Vocabulary
• Tutorial Four—Classes
• Tutorial Five—Inheritance
• Tutorial Six—Operator Overloading
• Tutorial Seven—Working with Pointers
• Tutorial Eight—Virtual Functions
Tutorials Six and Seven get a little deep into pointer details—if you feel uncom-

fortable with pointers right now skip them and move to Tutorial Eight.
The market is flooded with C++ books. If you want another source of C++ in-

formation go to a bookstore and find one that you feel comfortable with. It won't hurt
to have several perspectives on this language.

A.1.1 Why does C++ Exist?

People who are new to C++, or who are trying to learn about it from books, often
have two major questions: 1) “Everything I read always has this crazy vocabulary—
'encapsulation,' 'inheritance,' 'virtual functions,' 'classes,' 'overloading,' 'friends'—
Where is all of this stuff coming from?” and 2) “This language—and object-oriented
programming in general—obviously involve a major mental shift, so how do I learn
to think in a C++ way?” Both these questions can be answered, and the design of C++
as a whole is much easier to swallow, if you know what the designers of C++ were try-
ing to accomplish when they created the language. If you understand why the
designers made the choices they did, and why they designed certain features into the
language, then it is much easier to understand the language itself.

Language design is an evolutionary process. A new language is often created by
looking at the lessons learned from past languages, or by trying to add newly conceived
features to a language. Languages also evolve to solve specific problems. For example,
Ada was designed primarily to solve a vexing problem faced by the Pentagon. Pro-
grammers writing code for different military systems were using hundreds of different

A
.1

Tuto
ria

l O
ne

—
Intro

d
uc

tio
n

This book is continuously updated. See http://www.iftech.com/mfc

681

languages and it was impossible to later maintain or upgrade the systems because of
this. Ada tries to solve some of these problems by combining the good features of
many different languages into a single language.

Another good example of the evolutionary process in computer languages oc-
curred with the development of structured languages. These languages arose in
response to a major problem unforeseen by earlier language designers: the overuse of
the goto statement in large programs. In a small program, goto statements are not a
problem. But in a large program, especially when used by someone who

likes

 goto
statements, they are terrible. They make the code completely incomprehensible to
anyone who is trying to read it for the first time. Languages evolved to solve this prob-
lem, eliminating the goto statement entirely and making it easier to break large
programs down into manageable functions and modules.

C++ is an “object-oriented” language. Object-oriented programming is a reac-
tion to programming problems that were first seen in large programs being developed
in the 70s. All object-oriented languages try to accomplish three things as a way of
thwarting the problems inherent in large projects:

1. Object-oriented languages all implement “data abstraction” in a clean way
using a concept called “classes.” We will look at data abstraction in much more
detail later because it is a central concept in C++. Briefly, data abstraction is a
way of combining data with the functions used to manipulate the data so that
implementation details are hidden from the programmer. Data abstraction
makes programs much easier to maintain and upgrade.

2. All object-oriented languages try to make parts of programs easily reusable and
extensible. This is where the word “object” comes from. Programs are broken
down into reusable objects. These objects can then be grouped together in dif-
ferent ways to form new programs. Existing objects can also be extended. By
giving programmers a very clean way to reuse code, and by virtually forcing
programmers to write code this way, it is much easier to write new programs by
assembling existing pieces.

3. Object-oriented languages try to make existing code easily modifiable without
actually changing the code. This is a unique and very powerful concept, because
it does not at first seem possible to change something without changing it.
Using two new concepts however—

inheritance

 and

polymorphism

—it is possi-
ble to do just that. The existing object stays the same and any changes are lay-
ered on top of it. The programmer's ability to maintain and adjust code in a
bug-free way is drastically improved using this approach.
Because C++ is an object-oriented language, it possesses the three object-oriented

benefits discussed above. C++ adds two other enhancements of its own to clean up prob-
lems in the original C language or to make programming in C++ easier than it is in C:

1. C++ adds a concept called “operator overloading.” This feature lets you specify
new ways of using standard operators like “+” and “>>” in your own programs.

682

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

For example, if you want to add a new type such as a complex number type to a
C program, the implementation will not be clean. To add two complex num-
bers, you will have to create a function named “add” and then say
“c3=add(c1,c2);”, where c1, c2, and c3 are values of the new complex number
type. In C++, you can

overload

 the “+” and “=” operators instead, so that you
can say, “c3 = c1 + c2”. In this way, new types are added to the language in a
completely seamless manner. The overloading concept extends to all functions
created in C++.

2. C++ also cleans up the implementation of several portions of the C language,
most importantly I/O and memory allocation. The new implementations have
been created with an eye toward operator overloading, so it is easy to add new
types and provide seamless I/O operations and memory allocation for them.
Let's look at some examples of problems that you have probably run across in

your C programming exploits and then look at how they are solved in C++.
The first example can be seen in every library that is built in C. The problem is

demonstrated in the code below, which sets a string to a value and then concatenates
another string onto it:

char s[100];

strcpy(s, "hello ");
strcat(s, "world");

This code is not very pretty, but the format is typical of every library you create
in C. The string type is built out of the array-of-characters type native to C. Because
the new type is not part of the original language, the programmer is forced to use func-
tion calls to do anything with it. What you would like to do instead is be able to create
a new type and have it seamlessly blend in with the rest of the language. Something
like this:

string s;

s = "hello ";
s += "world";

If this were possible, the language would be infinitely extensible. C++ supports
this sort of extension through

operator overloading

 and

classes

. Notice also that by using
the

string

 type, the implementation is completely hidden. That is, you do not know
that—or if—

string

 has been created using an array of characters, a linked list, etc., and
it appears to have no maximum length. Therefore it is easy to change the implemen-
tation of the type in the future without adversely affecting existing code.

Another example using a library can be seen in the implementation of a simple
stack library. The function prototypes for a typical stack library (normally found in
the header file) are shown below:

void stack_init(stack s, int max_size);
int stack_push(stack s, int value);
int stack_pop(stack s, int *value);
void stack_clear(stack s);
void stack_destroy(stack s);

A
.1

Tuto
ria

l O
ne

—
Intro

d
uc

tio
n

This book is continuously updated. See http://www.iftech.com/mfc

683

The user of this library can push, pop and clear the stack, but before these oper-
ations are valid the stack must be initialized with

stack_init

. When finished with the
stack, the stack must be destroyed with

stack_destroy

. But what if you forget the ini-
tialization or destruction steps? In the former case, the code will not work and it can
be very difficult to track down the problem unless all the routines in the library detect
initialization failure and report it. In the latter case, the failure to destroy the stack
properly can cause memory leaks that are again very difficult to track down. C++
solves this problem using

constructors

 and

destructors

, which automatically handle ini-
tialization and destruction of objects such as stacks.

Continuing with the stack example, notice that the stack as defined can push
and pop integers. What if you want to create another stack that can handle reals and
another for characters? You will have to create three separate libraries, or alternatively
use a union and let the union handle all different types possible. In C++, a concept
called

templates

 lets you create just one stack library and redefine the types stored on
the stack when it is declared.

Another problem you might have had as a C programmer involves changing li-
braries. Say, for example, you are using the

printf

 function defined in the stdio library
but you want to modify it so it can handle a new type you have recently created. For
example, you might want to modift

printf

 so it can print complex numbers. You are
out of luck unless you happen to have the source code for

printf

. And even if you have
the source, modification won't do a lot of good because that source is not portable,
nor do you have the right to copy it. There really is no way to extend a C library easily
once it has been compiled. To solve your output problem, you will have to create a
new function to print your new type. If you have more than one new type, you prob-
ably will have to create several different output functions and they will all be different.
C++ handles all of these problems with its new technique for standard output. A com-
bination of operator overloading and classes allow new types to integrate themselves
into the standard C++ I/O scheme.

While thinking about the

printf

 function, think about its design and ask your-
self this: Is that a good way to design code? Inside

printf

 there is a

switch

 statement
or an if-else-if chain that is parsing the format string. A %d is used for decimal num-
bers, a %c is used for characters, a %s is used for strings, and so on. There are at least
three problems with this implementation:

1. The programmer has to maintain that

switch

 statement and modify it for each
new type that is to be handled. Modification means that new bugs might be
introduced.

2. There is no guarantee that the user will match up the data parameters with the
format string, so the whole system can fail catastrophically.

3. It is inextensible—unless you have the source you cannot extend the

printf

statement.
C++ solves these problems completely by forcing the programmer to structure

the code in a new way. The switch statement is hidden and handled automatically by
the compiler through

function overloading

. It is impossible to mismatch the parame-

684

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

ters, first because they are not implemented as parameters in C++, and second because
the type of the variable automatically controls the switching mechanism that is imple-
mented by the compiler.

C++ solves many other problems as well. For example, it solves the “common
code replicated in many places” problem by letting you factor out common code in a
third dimension. It solves the “I want to change the parameter type passed into a func-
tion without changing the function” problem by letting you overload the same
function name with multiple parameter lists. It solves the “I want to make a tiny
change to the way this works, but I don't have the source for it” problem, and at the
same time it also solves the “I want to redo this function completely but not change
the rest of the library” problem using inheritance. It makes the creation of libraries
much cleaner. It drastically improves the maintainability of code. And so on.

You have to change your way of thinking slightly in order to take advantage of
much of this power, and it turns out that you generally have to consider the design of
your code up front a little more. If you don't, you lose many of the benefits. As you
can see however, you gain a great deal in return for your investment. As in everything
else, there is a tradeoff, but overall the benefits outweigh the disadvantages.

A.1.2 Cleaning up C

The changes that make C++ different from C come in two categories: 1) changes
that fix problems in C or enhance it, and 2) changes that add object-oriented exten-
sions to C. The second category of changes is far more significant because they are the
ones that involve a mental shift. The first category of changes enables many of those
in the second category, however, so we will start with them first.

A.2 Tutorial Two—C++ Enhancements to C

Everything you ever wrote in C works in C++. However, in many cases C++ of-
fers a better way to handle a given task. In other cases C++ offers a second way to do
something, and the option gives you more flexibility. In this section we will examine
C++ extensions to C. Many of these extensions were not added for their own sake, but
instead “enable” object-oriented features that we will see in later tutorials.

This tutorial contains a lot of detail. Don't panic—just scan it for now if you
like, and then come back and study the necessary sections as they are needed later on.
These concepts have been collected here for easy reference because they are used at
many different places.

A.2.1 Comments

C++ supports the old-style multi-line C comment, as well as a new single line
form denoted by the “//” symbol. For example:

// get_it function reads in input values
void get_it()
{
 // do something.
}

A
.2

Tuto
ria

l Tw
o

—
C

++ Enha
nc

e
m

e
nts to

 C

This book is continuously updated. See http://www.iftech.com/mfc

685

Everything from the “//” to the end of the line is ignored. You can use both com-
menting styles interchangeably in a C++ program.

A.2.2 Type Casting

In C, you cast a type by placing a type name in parentheses and placing it in
front of the variable name, as shown below:

int i;
float f;

f = (float) i;

In C++ a second format is also supported. It makes the cast look like a function
call, as shown here:

int i;
float f;

f = float(i);

We will see later, when we begin discussing classes, that there is a reason for this
new format.

A.2.3 Input and output

A.2.3.1 Terminal I/O

One of the most obvious differences between C and C++
is the replacement of the stdio library in C with the iostream library in C++. The ios-
tream library takes advantage of a number of the features of the C++ object-oriented
extensions (we will see detailed examples later), and therefore makes the addition of
new user-defined type I/O much easier. The iostream library also replaces all the ca-
pabilities found in the stdio library, so it is important to know how to use the basic
features of the new library as you translate code to C++.

Use of the iostream library for basic input and output is straightforward. Two
simple examples are shown below:

cout << "hello\n";

or equivalently:

cout << "hello" << endl;

Both forms produce the same output, and cause the word “hello” followed by a
new line to appear on standard out. The word

cout

 indicates stdout as the destination
for the output, and the

<<

 operator (the

insertion operator

) is used to gather the items.
Two other standard output destinations are predefined:

cerr

 for unbuffered error in-
formation and

clog

 for buffered error information.
Any of the standard types can be written using the technique shown above: in-

tegers, floats, characters, and pointers to characters. Multiple items can either be
strung together on a single line or stacked on multiple lines. For example:

int i = 2;
float f = 3.14
char c = 'A';
char *s = "hello";

cout << s << c << f << i << endl;

686

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

produces the output:

helloA3.142

and it is the same as:

cout << s << c;
cout << f;
cout << i << endl;

The

cout

 mechanism automatically understands addresses and formats them for
hex output. For example, if

 i

 is an integer, the statement:

cout << &i <<endl;

prints the address of

 i

 in hex format. If

p

 is a pointer to

i

, printing

p

 also prints
the address of

i

 in hex format. There are cases, however, where this formatting rule
does not hold. Printing

s

, where

 s

 is a pointer to a character, produces the string point-
ed to by

s

 rather than the address held by

s

. To remedy this situation, cast

s

 to a void
pointer as shown below if you want to see its address:

cout << (void *) s;

Now the address held by

s

 will be shown in hex format. If you wish to display
an address as a decimal number rather than in hex format, cast it to a

long

 integer:

cout << long(&i);

This line prints the address of

i

 in decimal format. In the same way, an

int

 cast
is used to print out the integer value of a character:

cout << int('A');// produces 65 as output

You may notice that the << operator—known in C as the shift left operator—
has been stolen to handle output in C++. If you wish to use it for shifting left within
an output line, then parentheses should be used:

cout << (2 << 4);// produces 32 as output

To format output, you can use several techniques. Information can be spaced by
adding in spaces or tabs as literal strings, as shown below:

int i = 2;
float f = 3.14
char c = 'A';
char *s = "hello";

cout << s << " " << c << "\t" << f
<< "\t"<< i << endl;

There are several other manipulators that can be inserted into an output stream
(on many systems you will have to include “iomanip.h” to use these):

• dec Use decimal base
• oct Use octal base
• hex Use hex base
• endl End of line
• ends End of string ('\0')
• flush Flush output buffer
• setw(w) Set output width to w (0 is default)
• setfill(c) Set fill character to c (blank is default)
• setprecision(p) Set float precision to p

A
.2

Tuto
ria

l Tw
o

—
C

++ Enha
nc

e
m

e
nts to

 C

This book is continuously updated. See http://www.iftech.com/mfc

687

The statement:

cout << "[" << setw (6) << setfill('*') << 192;
cout << "]" << endl;
cout << hex << "[" << setw (6);
cout << setfill('*') << 192 << "]" << endl;
cout << setprecision(4) << 3.14159 << endl;

produces:

[***192]
[****c0]
3.142

You can see from the above examples that certain variable and function names
should not be used to avoid losing the manipulators built into the iostream library.

Input is handled in a similar manner, using the

cin

 input stream and the “>>”

extraction

 operator. For example, the statement:

int i,j,k;

cin >> i >> j >> k;

will read three integer values from stdin into

i

,

j

, and

k

. White space is automat-
ically used as a separator and ignored. When reading into a string variable, the input
is read word by word, where words are separated by white space. White space charac-
ters are ignored when reading into a character. This behavior can be overridden by
explicitly reading strings and lines (see below). All of the standard types handled by

cout

 are handled by

cin

. The

cin

 stream can also be used in a while loop that termi-
nates when EOF is detected, as shown below:

while (cin >> i)
cout << i;

The

cin

 stream automatically breaks string input into words and terminates on
EOF.

A.2.4 File Input and Output

Input and output to text files are handled by including the file “fstream.h” and
by then declaring variables of type

ifstream

, and

ofstream

 respectively. For example,
the following program reads from a file named “xxx” and writes to a file named “yyy”:

#include <iostream.h>
#include <fstream.h>

void main()
{
 char c;
 ifstream infile(“xxx”);
 ofstream outfile(“yyy”);

 if (outfile && infile) // They will be 0 on err.
 while (infile >> c)
 outfile << c;
}

The

infile

 and

outfile

 variables are passed the file name on initialization and are
used just as

cin

 and

cout

 are used. This code does not work as expected, however, be-

688

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

cause blanks, tabs, and '\n' characters at the end of each line are ignored as white space
when using << on a character. Instead, the “get” function can be used, as shown below:

while (infile.get(c))
 outfile << c;

or:

while (infile.get(c))
 outfile.put(c);

It is also possible to read complete lines by calling the “getline” function in the
same manner as used for the “get” function. To open a file for appending, use the
following:

ofstream("xxx", iosapp);

This line, along with the “.get” function notation, will make more sense once
you know more about C++. The fact that

ofsteam

 sometimes takes one parameter and
other times takes two is built into C++ (see Section 2.6).

Note that no “close” function is needed for file input and output. A file auto-
matically closes itself when the file variable goes out of scope. If you do need to
explicitly close a file, you can say:

outfile.close();

A.2.5 String I/O

Input can be read from strings in memory, and output can be sent to strings in
memory, duplicating the action of

sscanf

and

sprintf

. To do this, you must include
the file “strstrea.h” and then declare input and output strings. An output string is
shown below:

char s[100];
ostrstream outstring(s,100);

outstring << 3.14 << " is pi" << ends;
cout << s;

The string

s

 is filled with the text “3.14 is pi”. If

s

 is overfilled,

outstring

 will
automatically stop placing values into it.

If a string

s

 exists and you wish to read from it, you can use an input string
stream as shown below:

char *s = "3.14 12 cat";
istrstream instring(s, strlen(s));
float f;
int i;
char t[100];

instring >> f >> i >> t;

The iostream library has many other capabilities not discussed here. For more
information see the C++ documentation supplied with the compiler—it contains a
complete reference on the I/O library.

A.2.6 Variable Declarations

Variables are declared in C++ as they are in C. Variables can be declared any-
where in the code in C++, returning things almost to the point of FORTRAN in terms

A
.2

Tuto
ria

l Tw
o

—
C

++ Enha
nc

e
m

e
nts to

 C

This book is continuously updated. See http://www.iftech.com/mfc

689

of flexibility. The variable comes into existence when it is declared and ceases to exist
when the ending brace of the current block of code is reached. For example, in the
following code:

{

int i;

... code ...

int j;

... code ...

int k=func(i,j);

... code ...

}

All three variables come into existence at the point of declaration and disappear
at the closing brace.

A.2.7 Constants

In C you create a constant by using the macro preprocessor. An example is
shown below:

#define MAX 100

When the program is compiled, the preprocessor finds each occurrence of the
work MAX and replaces it with the string 100.

In C++, the word “const” is used instead, and it is applied to normal variable
declarations as shown below:

const int MAX=100;

The

int MAX=100;

 portion is formatted exactly the same way as a normal dec-
laration. The word

const

 in front of it simply defines that the variable MAX cannot
be subsequently changed.

The use of uppercase characters for constant variable names is a C tradition
which you may choose to uphold or ignore.

The

const

 modifier can also be used in parameter lists to specify the valid usage
of a parameter. The three functions below demonstrate different uses of const.

void func1(const int i)

{

i=5; // cannot modify a constant

}

void func2(char * const s)

{

s="hello"; // cannot modify the pointer

}

void func3(const char * s)

{

s="hello"; // this is OK

*s='A'; // cannot modify what is pointed to

}

The usage shown in

func2

 should almost always be used when a

char*

 parame-
ter is passed.

690

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

A.2.8 Function Overloading

One of the most powerful new features in C++ is called “function overloading.”
An overloaded function has several different parameter lists. The language distinguish-
es which function to call based on pattern-matching the parameter list types. Here is
an extremely simple demonstration of the process:

#include <iostream.h>

void func(int i)
{

cout << "function 1 called" << endl;
cout << "parameter = " << i << endl;

}

void func(char c)
{

cout << "function 2 called" << endl;
cout << "parameter = " << c << endl;

}

void func(char *s)
{

cout << "function 3 called" << endl;
cout << "parameter = " << s << endl;

}

void func(char *s, int i)
{

cout << "function 2 called" << endl;
cout << "parameter = " << s;
cout << ", parameter = " << i << endl;

}

main()
{

func(10);
func('B');
func("hello");
func("string", 4);
return 0;

}

When this code is executed, each version of the function

func

 is called based on
parameter-list matching. You will use this capability a great deal in C++ once you get
used to the idea. For example, if you create a function that initializes a module, you
can have it call different code depending on whether it is passed a string, an integer, a
float, and so on.

A.2.9 Default Arguments

C++ also allows you to give default values to parameters—if the parameter is not
passed, the default value is used. This capability is demonstrated in the following code:

#include <iostream.h>

A
.2

Tuto
ria

l Tw
o

—
C

++ Enha
nc

e
m

e
nts to

 C

This book is continuously updated. See http://www.iftech.com/mfc

691

void sample(char *s, int i=5)
{

cout << "parameter 1 = " << s << endl;
cout << "parameter 2 = " << i << endl;

}

main()
{

sample("test1");
sample("test1",10);
return 0;

}

The first function call will output the default value 5 for the parameter

i

, while
the second call will output the value 10.

When creating default parameters, you need to avoid ambiguity between the de-
fault parameter lists and other overloaded parameter lists. For example, given the
above function definition for

sample

, it is not possible to create an overloaded version
that accepts a single

char*

 parameter—the compiler would be unable to pick which
function to call in the case where it is passed a string.

A.2.10 Memory Allocation

C++ replaces the C memory allocation function

malloc

 and the deallocation
function

free

 with

new

 and

delete

, respectively, and in the process makes them much
easier to use.

New

 and

delete

 allow user-created types to be allocated as easily as exist-
ing types.

The following code shows the simplest use of new and delete. A pointer to an
integer points to a block of memory created by

new

:

int *p;
p = new int;
*p = 12;
cout << *p
delete p;

It is also possible to allocate blocks consisting of arrays of varying length using a
similar technique. Note the use of

delete []

 for deleting the array:

int *p;
p = new int[100];
p[10] = 12;
cout << p[10];
delete [] p;

The value 100 can be a variable if desired.
When working with user-defined types,

new

 works just the same way. For
example:

typedef node
{

int data;
node *next;

} node;

main()
{

692

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

node *p;
p=new node;
p->date = 10;
delete p;

}

We will see in later tutorials that the

delete

 operator is very sophisticated when
working with user-defined classes.

A.2.11 Reference Declarations

In C, pointers are frequently used to pass parameters to functions. For example,
the following

swap

 function swaps the two values passed:

void swap(int *i, int *j)
{

int t = *i;
*i = *j;
*j = t;

}

main()
{

int a=10, b=5;

swap(&a, &b);
cout << a << b <<endl;

}

C++ provides a

referencing

 operator to clean up the syntax a bit. The following
code works in C++:

void swap(int& i, int& j)
{

int t = i;
i = j;
j = t;

}

main()
{

int a=10, b=5;

swap(a, b);
cout << a << b <<endl;

}

The parameters

i

 and

j

 declared as type

int&

 act as references to the integers
passed (read

int&

 as “a reference to an integer”). When a variable is assigned to the
reference variable, the reference picks up its address and mimics the actual location of
the assigned variable. For example:

int a;
int &b=a;

a=0;
b=5;
cout << a << endl;

A
.3

Tuto
ria

l Thre
e

—
V

o
c

a
b

ula
ry

This book is continuously updated. See http://www.iftech.com/mfc

693

This code produces 5 as its output because

b

 references

a

. It is the same as using
pointers and address operators in C but the syntax has been greatly simplified. Note
that

b

 must be initialized at creation as shown.

A.3 Tutorial Three—Vocabulary

The last tutorial focused on elements of the C++ language that extend C or cor-
rect problems inherent in it. These modifications are fairly easy to understand. The
other part of C++ is the object-oriented extensions. These additions to the language
are not so easy to understand. Whereas the

cout

 capability is simply another way to
handling printing—which you already understand—many of the object-oriented ex-
tensions will be unfamiliar. The purpose of this chapter is to give you your first
exposure to some of the general ideas. Then we will look at the C++ syntax that sup-
ports these concepts and come back and look at the concepts again.

A.3.1 C++ Vocabulary

Look at the world around you. You can understand a good bit about the struc-
ture, vocabulary, and organization of C++ by looking at the structure and organization
of the real world as well as the vocabulary that we use to talk about it. Many of the
design elements of C++—and object-oriented languages in general—try to emulate
the way we interact with the real world.

For example, whenever you look around yourself you see a large number of ob-
jects. We organize all the objects around us in our minds by arranging them in
hierarchical categories or “classes.” For example, you have in your hands a book. A
book is a general class of object. You might say, “This object I am holding is classified
as a book.”

A hierarchy of object classes surrounds the class “book,” and it extends in two
directions. Books are a member of the more general class “publications.” Specific types
of books also exists: computer books, fiction books, biographical books, and so on.
The hierarchy extends both toward the general and the more specific. At this point
you are holding a single, particular book. In OOP lingo, you are holding an “instance”
of the class “book.”

Books have certain attributes that are shared by all books: They have a cover, sev-
eral chapters, no advertising, and so on. They also have attributes shared by
publications in general: a title, a date of publication, a publisher, and so on. They have
attributes that are shared by all physical objects: a location, size, shape, and weight.
This idea of shared attributes is very important in C++. C++ models the concept of
shared attributes using

inheritance

.
There are certain things you do with and to different objects, and those actions

change from object to object. For example, you can read a book, and you can flip
its pages. You can look at the title, find a specific chapter, look something up in the
index, count the number of pages, and so on. These actions are largely unique to
publications: You never find yourself flipping the pages of a hammer, for example.
However, there are actions that are generic to all physical objects, such as picking

694

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

them up. C++ takes this fact about the world into account as well, again using
inheritance.

The hierarchical nature of object categories, as well as our hierarchical organi-
zation of object attributes and actions, are all embedded into the syntax and
vocabulary of C++. For example, when designing a program you will break it down
into objects, each of which has a “class.” You will “inherit” features of a “base class”
when you create a “derived class.” That is, you will create general object classes and
then make more specific classes from them, deriving the particular from the general.
You will “encapsulate” the data found in an object with “member functions”, and
as you extend a class you will “overload” and “override” the functions of the base
class. Confused? Let's look at a quick example to see what all these words actually
mean.

The classic example of object-oriented programming is a graphics program that
allows you to draw objects—lines, rectangles, circles, and such—on the screen. What
do all these objects share in common? All objects have a location on the screen. They
might also have a color. These attributes are possessed by every shape shown on the
screen. Therefore, as a program designer you would create a “base class”—another
way to think about it is “a generic object class”—that holds attributes found in all
objects appearing on the screen. The base class might be called “shape” to identify it
in a generic sort of way. You would then “derive” different objects—circles, squares,
lines—from this base class, adding in new attributes that are specific to these objects.
A specific circle drawn on the screen using the circle class would then be an “instance”
of the circle class, which inherited some of its behavior from the more generic shape
class.

It is possible to create this sort of hierarchy with normal structures in C, but it
is not nearly as easy to do as it is in C++. C++ contains syntax to handle inheritance.
For example, in C you could create a base structure that holds the object's location on
the screen and color. Then specific object structures could include this base structure
and add to it. C++ makes this process easier, and then goes one step further. In C++,
functions can be bonded into a structure as well and this is called a “class.” So the base
class might have “member functions”, as they are called in C++, that allow an object
to be moved and recolored. The “derived classes” can use these member functions as
they are, or add in new member functions to increase functionality, or override exist-
ing member functions to change behavior.

The most important feature differentiating C++ from C is this idea of a “class,”
both at a syntactic and a conceptual level. Classes let you use all the normal object-
oriented programming features—encapsulation, inheritance, and polymorphism—in
your C++ programs. They also are the framework on which other features, such as
“operator overloading” (the ability to redefine operators such as “+” and ">“ for newly
created data types), are built. That all may sound like gibberish now, but as you be-
come familiar with the concepts and vocabulary you will begin to see the power of
these new techniques.

A
.3

Tuto
ria

l Thre
e

—
V

o
c

a
b

ula
ry

This book is continuously updated. See http://www.iftech.com/mfc

695

A.3.2 The Evolution of Classes

Given the amount of conceptual power embodied in the class concept, it is in-
teresting to note that the syntax remains fairly straightforward. A class is simply an
extension of a C structure. Basically a class allows you to create a structure and then
permanently bind all related functions to that structure. This process is known as

en-
capsulation

. It is a very simple concept, but it is the heart of object-oriented
programming:

data + functions = object

. Classes can also be built on top of other classes
using

inheritance

. Under inheritance, a new class extends its base class. Finally, new
classes can modify the behavior of their base classes, a capability known as

polymorphism

.
This is a new way of thinking about your code—it is three-dimensional thinking.

You can consider a straight-line piece of code (one that has no functions) as one-dimen-
sional code. It starts at the beginning and ends at the end and that's it. Then you add
functions to it to remove some of the redundancies and give names to some of the big
pieces. That's two-dimensional code. Now we are going to add a third dimension to
that, grouping functions and data together into classes so that the code is further orga-
nized. The class hierarchy created by inheritance adds the third dimension. And just as
flying is much harder to master than driving because flying adds a third dimension to
the mix, object-oriented programming can take some time to master.

One of the best ways to understand classes and their importance to you as a pro-
grammer is to understand how and why they evolved. The roots of the class concept
lie in a topic known as “data abstraction.”

Let's imagine that you are watching a typical room full of college freshmen write
a program. Imagine a group of such students who are in their first-semester Pascal
course. Once they know how to create

if

 statements and loops and arrays they are pret-
ty much ready to write code, but they don't yet know how to organize their thinking.
If you ask them to create a simple program they create a blob of code that does the job
somehow. It won't be pretty, but it will work.

Imagine that you have asked these students to create a program that can play the
“cannon” game. If you have been around computers for 15 years or so then you are
familiar with this game because it was very common on early personal computers: The
player sees a cannon and a target sitting on terrain that changes from game to game.
The goal is to set the angle of the cannon and the amount of powder so that the can-
non ball hits the target, missing any hills or other obstacles in the terrain.

Assume that the terrain data exists in a text file consisting of pairs of coordinates.
The coordinates are endpoints of the line segments that define the terrain. The stu-
dents figure out that they need to read this file in so they can draw it, and they also
need it in memory so they can check for intersections of the cannon ball's path with
the terrain to determine where the cannon ball “lands.” So what do they do? They de-
clare a global array to hold the coordinates, read the file into the array, and then use
the array whenever it is needed anywhere in the program.

The problem with this approach is that the array has now embedded itself in
their code. If a change is ever required—say from an array to a linked list—the pro-

696

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

gram will probably be thrown out and rewritten because it contains so many specific
references to the array that change is impossible. From a production-programming
standpoint this is not good because data structures frequently change in a large
program.

A better way to design the program is to use an “abstract data type.” In this ap-
proach, the programmer first tries to decide how the data will be used. In our terrain
example, the programmer might think, “Well, I need to be able to load in the terrain
data from wherever it comes from, and to draw the terrain on the screen, and to see if
the cannon ball's path intersects with the terrain.” Notice that this is done abstractly—
there is no mention of an array or a linked list anywhere. Then the programmer creates
functions to implement those capabilities. The functions might be named

load_terrain

,

draw_terrain

, and

check_terrain_intersection

. These functions are
used throughout the program.

The functions act as a barrier. They hide the actual data structure from the pro-
gram. If the data structure later has to change, say from an array to a linked list, the
majority of the program remains unaffected—only the three functions have to change.
The programmer has succeeded in creating an “abstract data type.”

Many languages formalize this concept. In Pascal you can use a “unit,” in C you
can use a “library.” Both allow you to create and separately compile a file containing
the data structure and the functions that access it. You can specify that the data struc-
ture be “hidden,” which means that the array can only be accessed by the functions in
that unit. In addition, the unit can be compiled so the code inside is hidden as well:
Other programmers can call the functions because of a publicly available interface, but
they cannot see or modify the actual code.

Pascal units and C libraries represent a step in an evolutionary chain. They start
to attack the problem of data abstraction but they do not go far enough. They work,
but there are problems:

1. Most importantly, there is no easy way to modify or extend the behavior of the
unit after it is compiled.

Wind: 10mph

A
.4

Tuto
ria

l Fo
ur—

Sim
p

le
 C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

697

2. These abstract types don't mesh with the original language very well. Syntacti-
cally they are a mess, and they don't use any of the operators like the “normal”
types do. For example, if you create a new type for which an addition operation
is natural, there is no way for you to use the plus sign to signify the operation—
you have to create a function called

add

 instead.
3. If you hide an array in a unit, you can have only one array. You cannot create

multiple instances of the data type unless you modify the code and break the
data-hiding principle in the process.
C++ classes eliminate these deficiencies.

A.3.3 C++ and Data Abstraction

In response to these problems, object-oriented languages such as C++ offer easy,
extensible ways to implement data abstraction. All you have to do is modify your
thinking patterns so you think about problems in an “abstract” way. This mental shift
is fairly easy once you have seen some examples.

First of all you want to try to think in terms of “data types.” Whenever you create
a data type you need to think of all the things you will want to do with that data type
and then bind the functions you create to the type. For example, say that you are cre-
ating a program that requires a rectangle data type containing two coordinate pairs.
You should think, “What will I need to do with this type?” You might come up with
the following actions: set it to a value, check for equality with another rectangle, check
for intersection with another rectangle, and check to see if a point is inside the rectan-
gle. If you need a terrain data type, you go through the same process and come up with
functions to load the terrain data, draw the data, and so on. You then bind these func-
tions to the data. Doing this for each data type you need in a program is the essence
of object-oriented program.

The other essential technique used when thinking in an object-oriented way in-
volves training your mind to think in a “generic-to-specific” hierarchy. For example,
when thinking about a terrain object, you might notice some similarities between it
and a list. After all, somewhere in there is a list of coordinates that is loaded from the
file. A list is a generic object that can be used in many places. So you would try to cre-
ate a generic list class and then build the terrain object on top of it. We will examine
this process in detail as we go through more examples in the following tutorials.

A.4 Tutorial Four—Simple Classes

We can use a specific example to firm up some of the ideas from the last section.
In this tutorial we will look at a simple address list program implemented in C and see
how it can be moved to C++ by adding a class.

A.4.1 An Address List Program

Let's say you want to create an address list program that manages a list of names
and addresses. The first thing you want to do to create this program is describe the

698

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

program in English. It turns out that a good English description also helps to find ob-
jects in a program, and this is useful when designing C++ code. The description helps
you to see the objects you need to create, as well as the functions that will go with each
object. Here is a typical description:

I want to create an address list program. The program will hold a list of
names and addresses. The user will be able to add entries to the list, print
the list to the screen, and find entries in the list.

You can see that this is a very high-level description. It doesn't talk about the
user interface, loading and saving information on disk, error checking, the record for-
mat, or the data structure used. All of that would come later. The point of this
description is to see what it

does

 talk about. In particular, it talks about an object—a

list

—and a set of actions that go with the object—adding, printing, and finding. Now
let's take the description further:

The list can be loaded from disk and saved to disk. When the program
begins, it will load the list and then display a menu that lets the user select
from the following options: add, delete, find, and quit. When the user se-
lects quit, the list will be saved and the program will terminate.

From this description, you can see that there are two more actions for the list
object—load and save. You can also see two new objects developing—the

menu

 ob-
ject and the

program

 object. Two actions are listed for the menu: display and
selection. The program object currently has three actions: initialization, menu display,
and termination.

The point to gain from this example is that an application breaks down into ob-
jects fairly naturally. As you describe the program, you begin to see objects in the
description. They are generally the nouns in the description. You also can see the func-
tions for the object—they are the verbs. One technique for finding objects in a
program is to describe it, make a list of nouns from that description, and then throw
out obvious things like “the user.” What's left is a set of objects that the program will
have to deal with. Then make a list of verbs and use them to form functions for each
object.

A.4.2 An Old-Style Program

Let's start creating this address list program by implementing it in C. Then we
will move it to C++ by adding a class. The following listing shows a very simple im-
plementation of the address list using normal functions. The program can add
elements to the list, print the list to the screen, or find an item in the list. The list is
held in a global array.

#include <iostream.h>
#include <string.h>

typedef struct
{

char name[20];
char city [20];
char state[20];

A
.4

Tuto
ria

l Fo
ur—

Sim
p

le
 C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

699

} addrStruct;

const int MAX=10;
addrStruct list[MAX];
int numInList;

void addName()
{

if (numInList<MAX)
{

cout << "Enter Name: ";
cin >> list[numInList].name;
cout << "Enter City: ";
cin >> list[numInList].city;
cout << "enter State: ";
cin >> list[numInList].state;
numInList++;

}
else
{

cout << "List full\n";
}

}

void printOneName(int i)
{

cout << endl;
cout << list[i].name << endl;
cout << list[i].city << endl;
cout << list[i].state << endl;

}

void printNames()
{

int i;

for (i=0; i<numInList; i++)
printOneName(i);

cout << endl;
}

void findName()
{

char s[20];
int i;
int found=0;

if (numInList==0)
{

cout << "List empty\n";
}
else
{

cout << "Enter name to find: ";
cin >> s;
for (i=0; i<numInList; i++)

700

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

{
if (strcmp(s,list[i].name)==0)
{

printOneName(i);
found=1;

}
}
if (!found)

cout << "No match\n";
}

}

void paintMenu()
{

cout << "Address list Main Menu\n";
cout << " 1 - add to list\n";
cout << " 2 - print list\n";
cout << " 3 - find name\n";
cout << " 4 - quit\n";
cout << "Enter choice: ";

}

void main()
{

char choice[10];
int done=0;
numInList=0;
while (!done)
{

paintMenu();
cin >> choice;
switch(choice[0])
{

case '1':
addName();
break;

case '2':
printNames();
break;

case '3':
findName();
break;

case '4':
done=1;
break;

default:
cout << "invalid choice.\n";

}
}

}

This program has a fairly typical structure and organization. Functions are used
to break up the code. One function handles each of the menu options, one paints the
menu, and the function

printOneName

 holds a piece of redundant code used in two
places in the program. This program demonstrates the two main uses for functions—
decomposition/naming and redundancy removal.

A
.4

Tuto
ria

l Fo
ur—

Sim
p

le
 C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

701

There is one fundamental problem with this program: The code is strongly
bonded to the global array variable. As shown in the figure below, the array is global
and it is referenced directly throughout the program:

There is no easy way to change the array to another data structure without re-
writing most of the code. This code has nothing to do with the list implemented by
the array—it simply is in the wrong place.

The idea behind data abstraction is to protect variables such as the global array
from direct manipulation by the program. By isolating the variables implementing the
list from the rest of the program with function calls, we can accomplish three things:

1. It is much easier to replace the list with different data structures later on,
because only the list functions need changing.

2. The program is better organized—the list concept is separated from the rest of
the code as much as possible.

3. The list functionality can be used elsewhere in other programs now that it
stands on its own.
In C you would make the program look like this:

#include <iostream.h>
#include <string.h>

typedef struct
{

char name[20];
char city [20];
char state[20];

} addrStruct;

//-------- data and functions for the list -------
const int MAX=10;
addrStruct list[MAX];
int numInList;

Global array

code

702

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

void listInit()
{

numInList=0;
}

void listTerminate()
{
}

int listFull()
{

if (numInList>=MAX) return 1; else return 0;
}

int listEmpty()
{

if (numInList==0) return 1; else return 0;
}

int listSize()
{

return numInList;
}

int listAdd(addrStruct addr)
{

if (!listFull())
{

list[numInList++]=addr;
return 0; // returns 0 if OK

}
return 1;

}

int listGet(addrStruct& addr, int i)
{

if (i<listSize())
{

addr=list[i];
return 0; // returns 0 if OK

}
return 1;

}
//--

void addName()
{

addrStruct a;

if (!listFull())
{

cout << "Enter Name: ";
cin >> a.name;
cout << "Enter City: ";

A
.4

Tuto
ria

l Fo
ur—

Sim
p

le
 C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

703

cin >> a.city;
cout << "enter State: ";
cin >> a.state;
listAdd(a);

}
else

cout << "List full\n";
}

void printOneName(addrStruct a)
{

cout << endl;
cout << a.name << endl;
cout << a.city << endl;
cout << a.state << endl;

}

void printNames()
{

int i;
addrStruct a;

for (i=0; i<listSize(); i++)
{

listGet(a,i);
printOneName(a);

}
cout << endl;

}

void findName()
{

char s[20];
int i;
int found=0;
addrStruct a;

if (listSize==0)
cout << "List empty\n";

else
{

cout << "Enter name to find: ";
cin >> s;
for (i=0; i<listSize(); i++)
{

listGet(a, i);
if (strcmp(s,a.name)==0)
{

printOneName(a);
found=1;

}
}
if (!found)

cout << "No match\n";
}

}

704

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

void paintMenu()
{

cout << "Address list Main Menu\n";
cout << " 1 - add to list\n";
cout << " 2 - print list\n";
cout << " 3 - find name\n";
cout << " 4 - quit\n";
cout << "Enter choice: ";

}

void main()
{

char choice[10];
int done=0;
listInit();
while (!done)
{

paintMenu();
cin >> choice;
switch(choice[0])
{

case '1':
addName();
break;

case '2':
printNames();
break;

case '3':
findName();
break;

case '4':
done=1;
break;

default: cout << "invalid choice.\n";
}

}
listTerminate();

}

At the top of the program are seven functions as well as the variables used to im-
plement the list. The goal of the functions is to completely protect, or

encapsulate

, the
variables. Using the

list...

 functions it is possible to do anything that this program
needs to do to the list without using any of the actual variables that implement the list.
The functions act as a wall between the variables and the program. With this program
structure, any change to the implementation of the list (for example, changing the ar-
ray to a linked list) has no effect on the program itself—only the seven functions must
be modified. The structure of this program is shown in the following diagram:

Many of these functions may seem trivial. For example, the

listTerminate

 func-
tion contains no actual code at all. But it is there because of future possibilities—if the
implementation changes to a linked list, there will need to be a function that deletes
all the elements in the list to avoid memory leaks. The

listSize

 function contains just
one line here, but if the list were implemented using a binary tree the function would

A
.4

Tuto
ria

l Fo
ur—

Sim
p

le
 C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

705

have to recursively traverse the tree to count all the elements and it would be much
larger. What we have done is think of all the functions that might actually be needed
for a generic list no matter how it is implemented.

While the implementation above is successful in isolating the list from the rest
of the program, it has several problems. For example, anyone could come along and
modify the program, calling the variables directly and defeating the wall of functions.
In other words, there is no enforcement of the wall. Also, it is not easy to use two of
these lists in one program. All the functions are tightly bound to a single array. You
could get around this problem by passing the array in as a parameter, but that gets
messy. C++ solves both problems with classes.

A.4.3 Creating a Class

The following code takes the data and the seven list functions from the previous
listing and implements them as a C++ class. It then uses that class in the program:

#include <iostream.h>
#include <string.h>

typedef struct
{

char name[20];
char city [20];
char state[20];

} addrStruct;

const int MAX = 10;

class List
{

addrStruct list[MAX];

Global array

code

Array functions -

Access the global

array directly

706

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

int numInList;
public:

List(): numInList(0) // constructor
{
}
~List() // destructor
{
}
int Full()
{

if (numInList>=MAX) return 1; else return 0;
}
int Empty()
{

if (numInList==0) return 1; else return 0;
}
int Size()
{

return numInList;
}
int Add(addrStruct addr)
{

if (!Full())
{

list[numInList++]=addr;
return 0; // returns 0 if OK

}
return 1;

}
int Get(addrStruct& addr, int i)
{

if (i<Size())
{

addr=list[i];
return 0; // returns 0 if OK

}
return 1;

}
};
//---

List list;

void addName()
{

addrStruct a;

if (!list.Full())
{

cout << "Enter Name: ";
cin >> a.name;
cout << "Enter City: ";
cin >> a.city;
cout << "enter State: ";
cin >> a.state;
list.Add(a);

A
.4

Tuto
ria

l Fo
ur—

Sim
p

le
 C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

707

}
else

cout << "List full\n";
}

void printOneName(addrStruct a)
{

cout << endl;
cout << a.name << endl;
cout << a.city << endl;
cout << a.state << endl;

}

void printNames()
{

int i;
addrStruct a;

for (i=0; i<list.Size(); i++)
{

list.Get(a,i);
printOneName(a);

}
cout << endl;

}

void findName()
{

char s[20];
int i;
int found=0;
addrStruct a;

if (list.Size()==0)
cout << "List empty\n";

else
{

cout << "Enter name to find: ";
cin >> s;
for (i=0; i<list.Size(); i++)
{

list.Get(a, i);
if (strcmp(s,a.name)==0)
{

printOneName(a);
found=1;

}
}
if (!found)

cout << "No match\n";
}

}

void paintMenu()
{

cout << "Address list Main Menu\n";

708

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

cout << " 1 - add to list\n";
cout << " 2 - print list\n";
cout << " 3 - find name\n";
cout << " 4 - quit\n";
cout << "Enter choice: ";

}

int main()
{

char choice[10];
int done=0;

while (!done)
{

paintMenu();
cin >> choice;
switch(choice[0])
{

case '1':
addName();
break;

case '2':
printNames();
break;

case '3':
findName();
break;

case '4':
done=1;
break;

default:
cout << "invalid choice.\n";

}
}
return 0;
// list destroys itself when it goes out of scope.

}

The list class is near the top of the program and starts with the words

class List

.
This is just a type declaration—the actual

instance

 of the list appears at the line:

List list;

This line declares a variable named

list

 of the type

class List.

Notice that the

List

 class starts off looking very much like a structure. It declares
two variables in the same way a structure would. These are called

data members

. It then
contains the word “public”: This word indicates that the following functions will be
known to any code using this class. The opposite word is “private” and is used when
functions or variables are to remain hidden from the rest of the program. The variables
and functions defined in a class are by default private unless you specifically make
them public as shown here (the two data members are private by default and the seven
functions are public).

Following the data members come the

member functions

. These are the functions
that can be applied to instances of this class. The first two functions—

List

 and

~List

—are unique and are called the

constructor

 and the

destructor

, respectively. The

A
.4

Tuto
ria

l Fo
ur—

Sim
p

le
 C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

709

constructor is

automatically

 called when any instance of this class comes into existence.
In this case, the instance comes into existence at the start of program execution be-
cause it is declared as a global variable, but constructors of local variables are called
when the local variable comes into existence and constructors of pointers are activated
when

new

 is called on the pointer. The constructor has the same name as the class
itself:

List(): numInList(0) // constructor
{
}

The initialization of the

numInList

 data member is unique here. Another way
to do it would be to say:

List() // constructor
{

numInList = 0;
}

However, the first form is more efficient at runtime because of the way C++ in-
ternally initializes classes. The syntax, when used as shown in this constructor,
initializes the data member

numInList

 to 0 and should be used whenever initializing
data members in a constructor.

The destructor

~List

 is called

automatically

 when the instance goes out of scope
or is deleted. The remaining functions look just like C functions. They are unique
only in that they are tightly bound to the class variables and can reference the class
variables at any time.

The variable

list

 is an instance of this class. If

list

 were a plain structure it would
be declared in about the same way, and it acts the same here. The variable

list

 is as big
as the size of its data members. The functions do not actually take up any space in each
instance of the class. The syntax of the language simply allows them to be declared,
and used, with instances of the class.

The instance

list

 is used throughout the program. Each time something needs
to be done to

list

 you find the instance name

list

 followed by a dot and then a function
name. This again follows the syntax of a structure. The dot says, “call the member
function of the class

List

 on the specific instance

list

.”
This may not all make immediate sense and that's OK. The important thing to

gather from this example is that all we have done is take some data—in this case, an
array and an integer—and the functions needed to manipulate the variables, and we
have bound them together into a

class

. Now the variables cannot be directly accessed
by the rest of the code. Because they are private within the class, they can be accessed
only by the class's member functions and not by any other part of the program. The
list object—data and functions glued together into an object—can only be accessed
via the member functions.

A.4.4 A Simpler Example

The last example was fairly large. Let's look at a

Stack

 class to review some of
the concepts learned in a smaller setting.

#include <iostream.h>

710

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

class Stack
{

int stk[100];
int top;

public:
Stack(): top(0) {}
~Stack() {}
void Clear() {top=0;}
void Push(int i) {if (top<100) stk[top++]=i;}
int Pop()
{

if (top>0) return stk[--top];
else return 0;

}
int Size() {return top;}

};

int main()
{

Stack stack1, stack2;

stack1.Push(10);
stack1.Push(20);
stack1.Push(30);
cout << stack1.Pop() << endl;
stack2=stack1;
cout << stack2.Pop() << endl;
cout << stack2.Pop() << endl;
cout << stack1.Size() << endl;
cout << stack2.Size() << endl;
return 0;

}

This program consists of two parts: the

Stack

 class and the

main

 function. The
class defines the

Stack

 type and two instances of this type are declared inside of

main

.
Each of the instances will have its own copy of the

stk

 and

top

 data members, and a

sizeof

 operation on each would indicate that just enough space (202 or 404 bytes, de-
pending on the environment) is allocated for each. A class uses just as much space as
a structure with the same data members would—there is no memory overhead for the
member functions.

 The class contains a constructor, a destructor, and four other functions, each of
which is public. Because the functions are public they can be called by any instance of
the class. The constructor is called when stack variables are instantiated, and the de-
structor is called when they go out of scope. Inside the

main

 function, different calls
to the other four functions are made by using the instantiation name followed by a dot
followed by a function name. For example:

stack1.Push(10);

This line indicates that the value 10 should be pushed onto

stack1

. The instance

stack1

 holds two pieces of data (

stk

 and

top

) which contain values. This line says,
“Call the function

Push

 on the structure help in

stack1

—apply the statements in

Push

 and the value 10 to the actual array and integer held within

stack1

. There are

A
.4

Tuto
ria

l Fo
ur—

Sim
p

le
 C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

711

two completely separate stacks in this program:

stack1

 and

stack2

. A statement like

stack2.Push(5)

 means that 5 should be pushed onto the structur

stack2

.
The assignment statement midway down the

main

 function is interesting. It
does the same thing that an assignment between two structures would—the values of
the data members on the right side are copied to the data members on the left:

stack2 = stack1;

After the assignment statement the two stacks contain the same values. This nor-
mally works fine, but if any of the data members are pointers you have to be careful.
We will see a good example of this problem in Tutorial Seven.

A.4.5 A Rectangle Class

How do you decide what should be turned into an object and what shouldn't?
Essentially what you do is take each little group of related data elements that you can
find in a program, attach some functions to it, and make a class. In the stack example
above, the array

stk

 and the integer

top

 are the data elements needed by the stack. Sev-
eral useful functions relate to that little data grouping (

Push

,

Pop

,

Clear

, and

Size

).
Together the data and functions make a class.

Say you have to remember the coordinates for a rectangle in one of your pro-
grams. Your variables are labeled

x1

,

y1

,

x2

, and

y2

—

x1

 and

y1

 represent the upper
left corner and

x2

 and

y2

 represent the lower right corner. Together they represent a
rectangle. What are some useful functions that go with these values? You need to be
able to initialize them (a perfect job for the constructor), and maybe it would be handy
to find the area and perimeter of the rectangle. The class might look like this:

class Rect
{

int x1, y1, x2, y2;
public:

Rect(int left=0,int top=0,
int right=0,int bottom=0):
x1(left), y1(top), x2(right), y2(bottom)

{
}
~Rect() {}
int Height() { return (y2-y1); }
int Width() { return (x2-x1); }
int Area() { return Width()*Height(); }
int Perimeter() { return 2*Width()+2*Height();}

};

If you simply look at a program you are building and try to find each natural
grouping of data along with some functions that are useful for manipulating that data,
you will go a long way toward objectifying your programs.

A.4.6 Class Specifics

Let's review a few of the specifics learned in this tutorial. First, each class has a
constructor and a destructor. The constructor is called when an instance of the class
comes into existence and the destructor is called when the instance is destroyed. The
following program can help you learn about constructors and destructors:

712

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

#include <iostream.h>

class Sample
{

int num;
public:

Sample(int i): num(i)
{

cout << "constructor " << num
<< " called" << endl;

}
~Sample()
{
cout << "destructor " << num

<< " called" << endl;}
};

int main()
{

Sample *sp;
Sample s(1);

cout << "line 1" << endl;
{

Sample temp(2);
cout << "line 2" << endl;

}
cout << "line 3" << endl;
sp = new Sample(3);
cout << "line 4" << endl;
delete sp;
cout << "line 5" << endl;
return 0;

}

Try running this code on paper and predict what it will do. Then run the pro-
gram with a single-stepping debugger and see what happens.

Data members and member functions can be public or private, depending on
their role in the program. It is good to strive toward the goal of no public data mem-
bers. A public member can be used anywhere in the program, while a private member
can only be used by a function that is a member of the class. Let's modify the

Rect

class slightly to see what this means:

class Rect
{

int x1, y1, x2, y2;
public:

Rect(int left=0,int top=0,
int right=0,int bottom=0):
x1(left), y1(top), x2(right), y2(bottom)

{
}
~Rect() {}

private:
int Height() { return (y2-y1); }
int Width() { return (x2-x1); }

A
.4

Tuto
ria

l Fo
ur—

Sim
p

le
 C

la
sse

s

This book is continuously updated. See http://www.iftech.com/mfc

713

public:
int Area() { return Width()*Height(); }
int Perimeter() { return 2*Width()+2*Height();}

};

Now the

Width

 and

Height

 functions are private. They can be called as shown
here because

Area

 and

Perimeter

 are member functions. But if you try the following:

Rect r;
...
cout << r.Height();

You will get a compiler error because

Height

 is private.
Assignment between two instances of a class simply copies the data members

from one instance to the other. For example:

Rect r1,r2;
...
r1=r2;

is the same as saying:

r1.x1 = r2.x1;
r1.y1 = r2.y1;
r1.x2 = r2.x2;
r1.y2 = r2.y2;

Finally, there are two accepted ways to specify member functions. The examples
seen previously represent one method, called

inline

 functions. The code below shows
the second method, here applied to the

Rect

 class:

class Rect
{

int x1, y1, x2, y2;
public:

// the constructor uses default param. See tutor 2
Rect(int left=0,int top=0,

int right=0,int bottom=0);
~Rect();
int Height();
int Width();
int Area();
int Perimeter();

};

Rect::Rect(int left, int top, int right, int bottom):
x1(left), y1(top), x2(right), y2(bottom)

// default values are understood from the prototype
{
}

Rect::~Rect()
{
}

int Rect::Height()
{

return (x2-x1);
}

int Rect::Width()

714

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

{
return (y2-y1);

}

int Rect::Area()
{

return Width()*Height();
}

int Rect::Perimeter()
{

return 2*Width()+2*Height();
}

This form is generally much easier to read when the functions in the class are
long. The

Rect::

 portion specifies the class to which the function belongs. The class
definition itself contains what are essentially prototypes for the class functions.

There are many other things you can do with a class, but to create simple data-
abstracting collections of functions and data the material presented here is all you
need. Now we can start creating hierarchies from these classes.

A.5 Tutorial Five—Inheritance

Let's say you have a list class and now you want to modify it. In the old world
of programming you would take the source and start changing things. In the object-
oriented world of programming you do things differently. What you do instead is
leave the existing class alone and then layer your changes on top of it using a process
called

inheritance

. Layering through inheritance lies at the very heart of object-orient-
ed programming. It is a totally different way of doing things, but it has several
important advantages:

1. Let's say you bought the list class from someone else, so you don't have the
source code. By leaving the existing class alone and layering your changes on
top of it you don't

need

 to have the source.
2. The existing class is completely debugged and tested. If you modify its source,

it has to go through the testing process again to be re-certified. Changes you
make might also have side effects that aren't detected immediately. By layering
the changes on top of the existing class, the existing class never changes and
therefore remains bug-free. Only the new pieces must be tested.

3. The layering process forces you to think in a generic-to-specific way. You create
a generic class like a list, and then layer specificity on top of it. A nice bonus to
this way of thinking is that the generic classes are useful in many different pro-
grams. A list, for example, is useful in a lot of places. Each new program layers
its own specifics onto the generic list, but the generic list stays the same every-
where.

4. If the “base class” is improved, all classes built on top of it take advantage of
those improvements without modification. For example, say the list class is

A
.5

Tuto
ria

l Five
—

Inhe
rita

nc
e

This book is continuously updated. See http://www.iftech.com/mfc

715

changed so it sorts 10 times faster than it used to. Now every class built on top
of the list class sorts 10 times faster as well, without modifying anything.
It is these benefits that get people excited about object-oriented programming.

A.5.1 Inheritance Example

Let's look at a specific example to get a feel for how inheritance works. Say you
have purchased a simple list manager. It has the ability to insert at a specified location,
to get items from the list, and to return the size of the list. The code for this list class
is shown below, along with a small piece of test code:

#include <iostream.h>

class List
{

int array[100];
int count;

public:
List(): count(0) {}
~List() {}
void Insert(int n, int location)
{

int i;
for (i=count; i>=location; i--)

array[i+1] = array[i];
array[location]=n;
count++;

}
int Get(int location) {return array[location];}
int Size() { return count; }

};

void main()
{

List list;
int i, value;

for (i=0; i<10; i++)
list.Insert(i,i);

list.Insert(100,5);
list.Insert(200,7);
list.Insert(300,0);
for (i=0; i<list.Size(); i++)

cout << list.Get(i) << endl;
}

The class contains no error checking to keep it small—obviously you would
want to add some if this were a commercial product.

Now let's say you want to modify this class to add two features. First, you want
to have a sorted insertion function so that the class maintains a sorted list. Second, you
want to keep track of the total sum of all items in the list. Rather than cycling through
all elements in the list each time the

sum

 function is called, you want to keep a run-
ning total as each item is inserted.

716

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

Obviously, one way to do this is to simply modify the

List

 class shown above.
In C++ you use inheritance to make the changes instead. We will create a

SortedList

class by inheriting the

List

 class and modifying it. Let's start by adding the sorted in-
sertion feature:

class SortedList: public List
{
public:

SortedList():List() {}

SortedInsert(int n)
{

int i,j;

i=0;
do
{

j = Get(i);
if (j < n) i++;

} while (j < n && i<Size());
Insert(n, i);

}
};

The

List

 class is totally unchanged—we have simply created the

SortedList

 class
on top of it. The

SortedList

 class

inherits

 its behavior from the

List

 class—it is

derived

from the

List

 class. The

List

 class is the

base class

 for

SortedList

.
The

List

 class is inherited on the fist line:

class SortedList: public List

The colon indicates that we are inheriting something. The word

public

 indi-
cates that we want the public functions and variables in

List

 to remain public in the

SortedList

 class. We could have also used

private

 or

protected

. In either of these cases
any

public

 variables and functions in the inherited class would be converted in the de-
rived class. The use of

public

 here is standard.
The following diagram shows what is happening:
The

SortedList

 class simply extends the

List

 class. Anyone using the

SortedList

class has access to the functions available in

List

 as well as the new functions available
in

SortedList

.
The constructor for

SortedList

 is also new—we have used a colon here to call
the constructor for the inherited class:

SortedList():List() {}

This line says that the constructor named

List

 from the base class should be
called and the

SortedList

 constructor needs to do nothing of its own.
In the remainder of the

SortedList

 class we simply add the new

SortedInsert

function into the class. This new function makes use of the old

Insert

,

Get

, and

Size

functions from the

List

 class as needed, but it does not access any of the

List

 class data
members directly because it can't—they are private to the

List

 class, so they cannot be
seen in the inheriting class.

Say you wanted to have a variable or a function that seems private to outside us-
ers of a class but seems public to classes that inherit the class. For example, say that the

A
.5

Tuto
ria

l Five
—

Inhe
rita

nc
e

This book is continuously updated. See http://www.iftech.com/mfc

717

SortedList

 class needed direct access to the

array

 variable in

List

 to improve its per-
formance, but we still want to keep normal instances of

List

 and

SortedList

 from
accessing the array directly. The word

protected:

 can be used in the same manner as

public:

 or

private:

 to indicate this behavior. By declaring

array

 as a protected member
in

List

, it would be accessible by the derived-class

SortedList

 but not by normal in-
stances of

List

 or

SortedList

.
Now let's add the totaling capability to the

SortedList

 class. To do this we will
need to add a new variable, and we will also need to modify the

Insert

 function so that
each insertion adds to the total. The code is shown below:

class SortedList: public List
{
private:

int total;
public:

SortedList():List(), total(0) {}
void Insert(int n, int location)
{

total = total + n;
List::Insert(n, location);

}
int GetTotal() { return total; }
SortedInsert(int n)

List class

private:

array

count

public:

 Get(int)

Insert(int,int)

Size()

SortedList class

List()

~List()

public:

SortedList()

SortedInsert()

public:List

List

SortedList

718

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

{
int i,j;
i=0;
do
{

j = Get(i);
if (j < n) i++;

} while (j < n && i<Size());
Insert(n, i);

}
};

In this version of the

SortedList

 class we have added a new data member named

total

, a new member function

GetTotal

 to retrieve the current total, and a new func-
tion

Insert

 that

overrides

 the existing

Insert

 function. We have also modified the

SortedList

 constructor so it initializes

total

. Now whenever the

SortedList

 class is
used and the

Insert

 function is called, the

new

 version of the

Insert

 function will be
accessed instead of the old version in

List

. The same goes for the

SortedInsert

 func-
tion as well—when it calls

Insert

 it is calling the

new

 version.
The code for the new

Insert

 function is straightforward:

void Insert(int n, int location)
{

total = total + n;
List::Insert(n, location);

}

This function first adds the new value to the total. It then calls the

old

Insert

function inherited from the base class so the value is inserted in the list properly. The

List::

 specifies from which class in the hierarchy the

Insert

 function should be chosen.
This is only a two-level hierarchy so it is a simple decision here, but in a hierarchy that
has several layers of inheritance you can use this technique to choose a specific func-
tion from many. It is this layering, and the ability to work and think in a multi-level
inheritance hierarchy as shown here, that gives C++ its 3-dimensional feel.

A.5.2 A More Advanced Example

Let's take what we have learned about inheritance and use it to create a realistic
example class. What we would like to do is create a new number class called a “multi-
precision integer,” or mint. This integer type will work like a normal integer, but it
will have up to 100 digits (for now—later we will see how to extend it to have as many
digits as memory will hold using linked lists). A mint allows you to do things like find
the actual value for 60! or find the 300th value in a Fibonacci series.

What is a good way to create the new class in an object-oriented programming
environment? One way to think about it is to think in a generic-to-specific way. For
example, what is a multi-precision integer? It is simply a list of digits. Therefore, you
can start by creating a generic list class that has all the insertion features needed to im-
plement a mint and then layer the mint functionality on top of it.

How do we decide which features are needed in the list? A good way to do this
is to think about what you will have to do with the digits in typical mint operations,
and then use those thoughts to create the list class. Alternatively, you would have a list

A
.5

Tuto
ria

l Five
—

Inhe
rita

nc
e

This book is continuously updated. See http://www.iftech.com/mfc

719

class lying around and you would simply build on top of it. Let's take the first ap-
proach because we don't have a good list class lying around.

How do you initialize a mint? The mint will start off containing no digits. We
will then add one digit at a time to create the new mint. For the value 4,269 the mint
would look like this:

Each square in this diagram represents one element in the list, and each element
in the list contains an integer value between 0 and 9. At the list level we need to be
able to add digits to the beginning or the end of the list, depending on where the initial
value came from.

Now let's look at a simple addition, as shown in the figure below:

To implement addition we will want to start with the last digits of the two mints
being summed, add them together, and insert the resulting digit in the new mint being
formed as the sum. Then we will go to the previous two digits and do the same thing,
and so on. We will therefore need an efficient way to move through the lists from end
to beginning (for example,

GetLast

 and

GetPrevious

 functions), and we will also
need a way to be able to tell when we have hit the beginning of the list (perhaps a re-
turn value from

GetPrevious

 can indicate that the action is not possible or a

Size

function can indicate how far to go).
From this discussion and our previous work with lists we can surmise that the

list will probably need to have the following capabilities:
constructor and destructor
AddToFront
AddToEnd
GetFirst
GetLast
GetPrevious
GetNext
Size
Clear
The code below implements the list:

class List

4 2 6 9

4 2 6 9

6 3 9 6 0+

6 8 2 2 9

720

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

{
int array[100];
int count;
int pointer;

public:
List(): count(0), pointer(0) {}
~List() {}
void AddToFront(int n)
{

int i;
for(i=count; i>=1; i--)

array[i]=array[i-1];
array[0]=n;
count++;

}
void AddToEnd(int n)
{

array[count++]=n;
}
// &n is a reference - see tutor 2
int GetFirst(int &n)
{

if (count==0)
return 1;

else
{

n=array[0];
pointer=0;
return 0;

}
}
int GetLast(int &n)
{

if (count==0)
return 1;

else
{

n=array[count-1];
pointer=count-1;
return 0;

}
}
int GetPrevious(int &n)
{

if (pointer-1<0)
return 1;

else
{

pointer--;
n=array[pointer];
return 0;

}
}
int GetNext(int &n)
{

if (pointer+1>count-1)

A
.5

Tuto
ria

l Five
—

Inhe
rita

nc
e

This book is continuously updated. See http://www.iftech.com/mfc

721

return 1;
else
{

pointer++;
n=array[pointer];
return 0;

}
}
int Size() { return count; }
void Clear() { count = 0; }

};

This code should all be fairly straightforward to you at this point.

List

 is simply
a generic list of integers. A data member named

pointer

 points to one of the elements
in the list and is moved by the four

Get...

 functions. Each of these functions returns
0 on success and 1 on failure (for example, if

pointer

 is not on element 0 of the list
then there is a previous element to get and

GetPrevious

 function will return a 0). The
two

Add...

 functions add at the beginning and end of the list respectively—they cur-
rently contain no error checking. The

AddToFront

 function contains an inherent
inefficiency because it must move the entire contents of the array down one element
for each insertion.

The

Mint

 class inherits

List

 and uses it to build the actual mint type. It imple-
ments two constructors (a

default constructor

 that accepts no parameters and a second
constructor that accepts a string and uses it to fill the list), as well as functions that add
two mints and print a mint. The code is shown below:

class Mint: public List
{
public:

Mint():List() {}
Mint(char *s):List()
{

char *p;
for (p=s; *p; p++)

AddToEnd(*p-'0');
}
void Add(Mint &a, Mint &b)
{

int carry, temp;
int erra, errb, na, nb;

carry=0;
Clear();
erra=a.GetLast(na);
errb=b.GetLast(nb);
while (!erra || !errb)
{

if (erra)
temp=nb+carry;

else if (errb)
temp=na+carry;

else
temp=na+nb+carry;

AddToFront(temp%10);

722

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

carry=temp/10;
erra=a.GetPrevious(na);
errb=b.GetPrevious(nb);

}
if (carry>0)

AddToFront(carry);
}
void Print()
{

int n, err;

err=GetFirst(n);
while(!err)
{

cout << n;
err=GetNext(n);

}
 cout << endl;

}
};

The following

main

 function tests the mint class by adding two numbers and
printing the sum:

void main()
{

Mint a("1234567");
Mint b("1234");
Mint c;

c.Add(a,b);
c.Print();

}

The constructors and the

Print

 function are simple and straightforward. The

Add

 function may remind you of your grade school days, because it is doing addition
the old-fashioned way. It starts with the last digits of the two numbers being summed,
adds those digits, saves the result in the current mint, and remembers the carry value.
It then moves forward through the list. Because it is likely that the two mints will not
have an equal number of digits, the code must continually check to make sure it has
not run out of digits in one or the other mint. It does this using

erra

 and

errb

. As soon
as both mints have run out it checks

carry

 and saves one last digit if necessary.
Running the test code you will see that the

Mint

 class works as advertised and
can add two numbers of up to 100 digits each. After you use the

Mint

 class for awhile,
however, you begin to see a problem with the

Add

 function—there is no way to say
something like “m = m + 1", or in the format necessary here “m.Add(m, one);” where

one

 has been initialized to “1”. The reason for this lies in the fact that

Add

 must clear
out the destination of the result before it can place a value into it, and this forces the
loss of needed data in the case shown here.

The solution to this problem lies in the creation of a temporary holding value
for the result during the actual addition. Then at the end of the function, the final re-
sult is copied into the current instance. The

this

 pointer is used to solve the problem,
as shown below:

A
.5

Tuto
ria

l Five
—

Inhe
rita

nc
e

This book is continuously updated. See http://www.iftech.com/mfc

723

void Add(Mint &a, Mint &b)
{

int carry, temp;
int erra, errb, na, nb;
Mint x;

carry=0;
erra=a.GetLast(na);
errb=b.GetLast(nb);
while (!erra || !errb)
{

if (erra)
temp=nb+carry;

else if (errb)
temp=na+carry;

else
temp=na+nb+carry;

x.AddToFront(temp%10);
carry=temp/10;
erra=a.GetPrevious(na);
errb=b.GetPrevious(nb);

}
if (carry>0)

 x.AddToFront(carry);
 *this = x;

}

In this version of

Add

 a temporary value named

x

 has been created. The results
of the addition are placed into

x

 digit by digit. The last line of the function copies

x

into the current instance. The

this

 pointer is available in every instance of a class in
C++—it points to the current instance. That is,

this

 is a pointer that points to the data
members (the structure) that make up the current instance. In this case we use

this

because it saves code. The alternative would be to replace the last line with:

array = x.array;
count = x.count;
pointer = x.pointer;

The value

*this

 is the structure pointed to by

this

, and it is more expedient to
copy the whole structure at once.

As a final example of the

Mint

 class, let's use it to implement a Fibonacci num-
ber finder. The Fibonacci series is as follows:

1, 1, 2, 3, 5, 8, 13, 21, 34, etc.
Each number in the series is the sum of the prior two numbers. To implement

this feature we will need a way to check for equality in mints so we can make a loop.
The following member function can be added to the

Mint

 class to check for equality
between two mints:

int Equal(Mint &a)
{

if (a.Size()!=Size())
return 0;

else
{

int i, na, nb;
a.GetFirst(na);

724

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

GetFirst(nb);
for (i=0; i<a.Size(); i++)

if (na!=nb)
return 0;

else
{

a.GetNext(na);
GetNext(nb);

}
return 1;

}
}

Given the existence of this function, then the following code will find the 100th
number in the Fibonacci series:

void main()
{

Mint max("100");
Mint counter("1"), one("1");
Mint t1("0"), t2("1");
Mint d;

do
{

d.Add(t1,t2);
t1=t2;
t2=d;
counter.Add(counter,one);

} while (!counter.Equal(max));
d.Print();

}

The code uses two values

t1

 and

t2

 to remember the previous two values. They
are added together and then shifted down by one. The counter is then incremented
and the loop continues until the counter has reached the desired value. Using this
code, the 100th number was found to be 354,224,848,179,261,915,075.

A.5.3 Conclusion

In this tutorial you have seen how inheritance is used to create class hierarchies
and how the existence of inheritance tends to favor the development of code using a
generic-to-specific style. The

Mint

 class is a perfect example of this phenomena—a ge-
neric list was used to build the

Mint

 class because a mint is nothing more than a list
of digits.

Although we have accomplished our goal, the

Mint

 class is not very well-inte-
grated into the language. We would like to use the “+” operator for addition and the
“==” operator to check for equality. We will see how to do this in the next section.

A.6 Tutorial Six—Operator Overloading

In the last tutorial we implemented a version of the

Mint

 class, ending up with
code that calculates members of the Fibonacci series. The code used to perform the
calculation looked like this:

A
.6

Tuto
ria

l Six—
O

p
e

ra
to

r O
ve

rlo
a

d
ing

This book is continuously updated. See http://www.iftech.com/mfc

725

void main()
{

Mint max("100");
Mint counter("1"), one("1");
Mint t1("0"), t2("1");
Mint d;

do
{

d.Add(t1,t2);
t1=t2;
t2=d;
counter.Add(counter,one);

} while (!counter.Equal(max));
d.Print();

}

What we would like instead is to be able to write code that looks “normal,” like
this:

void main()
{

Mint max("100");
Mint counter("1");
Mint t1("0"), t2("1");
Mint d;

do
{

d = t1 + t2;
t1=t2;
t2=d;
counter = counter + "1";

} while (! (counter==max));
cout << d << endl;

}

C++ allows this sort of seamless melding of new types using a process called

op-
erator overloading

. The normal operators like “+”, “==”, and “<<“ are overloaded so
that they can handle the new types.

Some operator overloading involves the use of

friend

 functions. A friend func-
tion is just like a normal C function, but it is permitted to access private members of
the class within which it is declared. The fact that it is a normal C function means that
it does not have access to a

this

 pointer and it can be called without having to name a
class that it operates on. For example, a normal member function such as

Insert

 in the

List

 class requires an instantiation of the list to be called:

List lst;
...
lst.Insert(5);

A friend function does not necessarily require a class instantiation because it does
not have a

this

 pointer.

726

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

Almost every operator in C++ can be overloaded:
+ - * / % ^ & |
~ ! , = < > <= >=
++ — << >> == != && ||
+= -= /= %= ^= &= |= *=
<<= >>= [] () -> ->* new delete
Many of these are never seen, much less overloaded, but by overloading all the

common operators like “+” and “==” you can make a class much easier to use.
The code below shows the

Mint

 class redone so the “+”, “==”, and “<<“ opera-
tors are overloaded, along with a piece of test code that uses all three:

class Mint: public List
{
public:

Mint():List() {}
Mint(char *s):List()
{

char *p;
for (p=s; *p; p++)

AddToEnd(*p-'0');
}

 friend Mint operator+ (Mint &a, Mint &b)
{

int carry, temp;
int erra, errb, na, nb;
Mint x;

carry=0;
erra=a.GetLast(na);
errb=b.GetLast(nb);
while (!erra || !errb)
{

if (erra)
temp=nb+carry;

else if (errb)
temp=na+carry;

else
temp=na+nb+carry;

x.AddToFront(temp%10);
carry=temp/10;
erra=a.GetPrevious(na);
errb=b.GetPrevious(nb);

}
if (carry>0)

x.AddToFront(carry);
return x;

}

int operator==(Mint &a)
{

if (a.Size()!=Size())
return 0;

else

A
.6

Tuto
ria

l Six—
O

p
e

ra
to

r O
ve

rlo
a

d
ing

This book is continuously updated. See http://www.iftech.com/mfc

727

{
int i, na, nb;
a.GetFirst(na);
GetFirst(nb);
for (i=0; i<a.Size(); i++)

if (na!=nb)
return 0;

else
{

a.GetNext(na);
GetNext(nb);

}
return 1;

}
}

friend ostream& operator<< (ostream& s, Mint &m)
{

int n, err;

err=m.GetFirst(n);
while(!err)
{

s << n;
err=m.GetNext(n);

}
return s;

}
};

void main()
{

// add two numbers
Mint a("1234567");
Mint b("1234");
Mint c;

c = a + b;
cout << "it's fine " << c << "...really" << endl;
cout << a + "3333" << endl;

// find the 100th fibbinocci number
Mint counter;
Mint t1, t2;
Mint d;

t1 = "0";
t2 = "1";
counter = "1";
do
{

d = t1 + t2;
t1 = t2;
t2 = d;
counter = counter + "1";

} while (! (counter == "100"));

728

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

cout << d << endl;
}

Let's start by looking at the “==” function:

int operator== (Mint &a)

Because this function is a member of the

Mint

 class, this header says that the op-
erator should return an integer, use what's on the left side of the == as

this

, and use
what is on the right hand side of the == as

a

. In the code for the == operator function,
when we use a function like

GetFirst

 directly we are referring to the value on the left
side of the ==. A function call of the form

a.GetFirst

 refers to the right side of the ==:

Mint b, m;
...
if (b == m)

The rest of the code is identical to the

Equal

 function we saw in Tutorial Five.
The returned integer value is used as the result of the comparison. With this function
in place, our “==” operator is called whenever the compiler finds an “==” operator be-
tween two values of type

Mint

.
The over loaded “+” operator is a friend function:

friend Mint operator+ (Mint &a, Mint &b)

It is declared as a friend because we do not want it to automatically use the left
side of a plus statement as

this

 because that would clear it (as discussed in Tutorial
Five). Because it is a friend it acts as a normal C function without a

this

 pointer. It
adds the two mints passed and returns the resulting mint.

In the

main

 function there are several statements of the following form:

c = "3333"

and
c = c + "1";
How does the compiler know what to do? How does it know to convert “1” to

a mint? Because we have a mint constructor that accepts a

char*

 type, the constructor
is automatically invoked in an attempt to make the + operator's types match up. If we
created another constructor that accepted a

long

 parameter, then we would also be
able to write code like this:

c = c + 1;

The conversion of the integer value would be automatic as well. The following
statement will

not

 work:

c = "2222" + "3333";

 The compiler does not have anything to tell it that the “+” should be adding
mints, so it cannot make the conversion—one side of the “+” must be a mint to cue
the compiler.

The << operator is also overloaded. The function must be a friend because the
left parameter is not of the class type. It must accept a reference to an

ostream

 param-
eter and then to a parameter of the class type. It must also return a reference to

ostream

. Having done this however, the code is simple. With this function in place
any C++ output operation using a mint will work.

The >> operator is overloaded in a similar way:

friend istream& operator>> (istream& s, Mint& m)
{

A
.7

Tuto
ria

l Se
ve

n—
W

o
rking

 w
ith Po

inte
rs

This book is continuously updated. See http://www.iftech.com/mfc

729

buf[100];

s >> buf;
m = buf; // calls the constructor
return s;

}

Other operators such as ++, +=, !=, etc. are easily overloaded using the examples
above. For some of the more esoteric operators, see a book such as Lippman's.

A.7 Tutorial Seven—Working with Pointers

When a class contains data members that are pointers, there are several concerns
that must be addressed to make the class “work”. For example, when an instantiation
of the class is destroyed, the destructor should make sure that all allocated blocks of
memory within the class are deleted. Another example involves the assignment oper-
ator: the standard “copy all data members” behavior for the “=” operator that we have
seen until now has worked fine, but it does not work with pointers.

To get a feel for the differences let's implement a stack class both with an array
and with pointers. Here is the array version, along with a main function containing
test code (this is identical to the code we saw in Tutorial Four):

#include <iostream.h>

class Stack
{

int stk[100];
int top;

public:
Stack(): top(0) {}
~Stack() {}
void Clear() {top=0;}
void Push(int i) {if (top<100) stk[top++]=i;}
int Pop()
{

if (top>0) return stk[--top];
else return 0;

}
int Size() {return top;}

};

void main()
{

Stack stack1, stack2;

stack1.Push(10);
stack1.Push(20);
stack1.Push(30);
cout << stack1.Pop() << endl;
stack2=stack1;
cout << stack1.Size() << endl;
cout << stack2.Size() << endl;
cout << stack2.Pop() << endl;
cout << stack2.Pop() << endl;

}

730

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

The code below implements the same stack using pointers, but it has several
problems that will be discussed in a moment:

typedef struct node
{

int data;
node *next;

} node;

class Stack
{

node *top;
public:

Stack(): top(0) {}
~Stack() { Clear(); }
void Clear()
{

node *p=top;
while (p)
{

top = top->next;
delete p;
p = top;

}
}
void Push(int i)
{

node *p = new node;
p->data = i;
p->next = top;
top = p;

}
int Pop()
{

if (top != 0)
{

int d = top->data;
node *p=top;
top = top->next;
delete p;
return d;

}
else return 0;

}
int Size()
{

int c=0;
node *p=top;
while (p)
{

c++;
p = p->next;

}
return c;

}
};

A
.7

Tuto
ria

l Se
ve

n—
W

o
rking

 w
ith Po

inte
rs

This book is continuously updated. See http://www.iftech.com/mfc

731

This is a fairly complete class. It properly cleans up after itself in its destructor
and works the same way as the previous stack class. However, this class does not work
as expected after an assignment statement such as:

stack1 = stack2;

The following diagram demonstrates what is happening. When the assignment
operation executes, it simply copies the data members from

stack2

 to

stack1

, leaving
one copy of the data on the heap with two pointers accessing it:

After the assignment, the pointers

stack1.top

 and

stack2.top

 both point to the
same chain of memory blocks. If one of the stacks is then cleared, or if one executes a

Pop

, the other pointer will be pointing to memory that is no longer valid. On many
machines, the code will compile fine and everything will look OK for awhile during
execution. But as the system runs, the rot sets in and things gets flakier and flakier for
no apparent reason until the program finally crashes.

What is needed is a way to redo the assignment operation to create a copy of the
memory blocks. But where is the assignment operator coming from and how can it be
modified?

A.7.1 Default Functions

Whenever you create any class, four

default

 functions are created automatically
unless you override them by creating your own. They are:

• The default constructor
• The default copy constructor
• The default assignment operator
• The default destructor
The default constructor is invoked whenever you declare an instance of a class

and pass it no parameters. For example, if you create a class

Sample

 and you create no
constructors for it, then the following statement invokes the default constructor on

s

:

Sample s;

The following initialized declaration of

s2

 invokes the copy constructor:

Sample s1;

Sample s2 = s1;

stack1.top

stack2.top

0

data

next

Legend

732

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

The default destructor is called whenever a variable goes out of scope, and the
default assignment operator is called whenever a normal assignment occurs. You can
override any of the defaults by creating functions of your own. For example, if you
create

any

 constructor then the default constructor is not created.
The code below can be used to gain an understanding of what the default con-

structor and destructor do:

#include <iostream.h>

class Class0
{

int data0;
public:

Class0 () { cout << "class0 constructor" << endl; }
~Class0 () { cout << "class0 destructor" << endl; }

};

class Class1
{

int data1;
public:

Class1 () { cout << "class1 constructor" << endl; }
~Class1 () { cout << "class1 destructor" << endl; }

};

class Class2: public Class1
{

int data2;
 Class0 c0;
};

void main()
{

Class2 c;
}

The class

Class2

 has neither constructor nor destructor, but when you run this
code the following output is produced:

class1 constructor
class0 constructor
class0 destructor
class1 destructor

What has happened is that the compiler created a default constructor and de-
structor for

Class2

. The behavior of the default constructor is to call the base class
default constructor as well as the default constructor for all data members that are
classes. The default constructor calls the destructors for the base class and class data
members.

Let's say you create a new constructor for

Class2

 that accepts an integer. The
compiler will still call the necessary default constructors for the base class and class data
members. The following code demonstrates the process:

class Class2: public Class1
{

int data2;

A
.7

Tuto
ria

l Se
ve

n—
W

o
rking

 w
ith Po

inte
rs

This book is continuously updated. See http://www.iftech.com/mfc

733

Class0 c0;
public:

Class2(int i)
{

cout << "class2 constructor" << endl;
}

};

void main()
{

Class2 c(1);
}

This also works, producing the following output:

class1 constructor
class0 constructor
class2 constructor
class0 destructor
class1 destructor

But now you cannot declare an uninitialized variable of type

Class2

 because
there is no default constructor. The following code demonstrates:

Class2 c(1);// OK
Class2 e;// not OK--no default constructor

It is also impossible to declare arrays of a class unless there is no default construc-
tor defined. Therefore, you should recreate the default constructor yourself by creating
a constructor with an empty parameter list whenever you create other constructors.

The assignment operator and copy constructor are created automatically as well.
Both simply copy the data members from the right side of the equal sign to the left.
In the case of our stack class we want to eliminate these default functions and use our
own so that assignment works correctly. Below are the two new functions for the stack
class, along with a function

Copy

 that is shared by both:

void Copy(const Stack& s)
{

node *q=0;
node *p=s.top;

while (p)
{

if (top==0)
{

top = new node;
q=top;

}
else
{

q->next = new node;
q = q->next;

}

q->data = p->data;
p = p->next;

}
q->next=0;

734

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

}
Stack& operator= (const Stack& s) //assignment
{

if (this == &s)
return *this;

Clear();
Copy(s);
return *this;

 }
Stack(const Stack& s): top(0) // copy constructor
{

Copy(s);
}

The function for the assignment operator starts by checking for the case of
equivalent assignment, as in:

s = s;

If it finds this situation it does nothing. It then clears the recipient and copies
the linked list on the heap so that the left side of the assignment has its own copy of
the stack. The copy constructor is just like any other constructor and is used to handle
the following cases:

Stack s1;
s1.Push(10);
s1.Push(20);
Stack s2(s1);// copy constructor invoked
Stack s3 = s1;// copy constructor invoked

With the assignment operator and copy constructor in place, the

Stack

 class is
complete—it can handle any condition that may arise.

A.7.2 Conclusion

This may all seem like a lot of work to go through, but generally it is only nec-
essary when working with pointers. What is happening is that you are actually having
to secure your pointer-based structures against any contingency so the data is

always

valid. In many C programs the programmer will make an assumption such as, “I can
point several pointers at the same blocks on the heap and it will be OK because in this
part of the code nothing modifies the blocks.” However, if another programmer
comes along and violates that assumption accidentally, the program can break in mys-
terious and hard-to-track ways. That can never happen with a secure C++ class because
all the contingencies are covered.

You can see that the implementation shown above is inefficient, however. What
if, in certain places, you

want

 to have only one copy of the blocks on the heap. For
example, what if the data on the heap occupies many megabytes, and you can't afford
to make a copy? What you can do in that case is use a technique such as a reference
count—each instance increments a static global variable that keeps count of the num-
ber of instances using the single copy of the data on the heap. Then in each destructor
you can decrement the counter. Only when a destructor, after decrementing the
counter, detects that no other instance is using the data in the heap does it actually
delete all the heap blocks containing the data.

A
.8

Tuto
ria

l Eig
ht—

V
irtua

l Func
tio

ns

This book is continuously updated. See http://www.iftech.com/mfc

735

A.8 Tutorial Eight—Virtual Functions

In these tutorials we have seen many examples of inheritance because inheritance
is very important to object-oriented programming. We have seen that inheritance al-
lows data members and member functions to be added in the derived class. We have
also seen several examples where we used inheritance to

change

 the behavior of a func-
tion. For example, in Tutorial Three we saw an example where the

Insert

 function of
a base

List

 class was overridden to implement a totaling feature. A similar hierarchy is
shown below, using a base class called

List

 and a derived class called

TotalingList

:

#include <iostream.h>

class List
{

int array[100];
int count;

public:
List(): count(0) {}
void Insert(int n) { array[count++]=n; }
int Get(int i) { return array[i]; }
int Size() { return count; }

};

void ManipList(List list)
{

// do things to the list
list.Insert(100);
list.Insert(200);
// do things to the list

}

class TotalingList: public List
{

int total;
public:

TotalingList(): List(), total(0) {}
void Insert(int n)
{

total += n;
List::Insert(n);

}
int GetTotal() { return total; }

};

void main()
{

TotalingList list;
int x;

list.Insert(10);
list.Insert(5);
cout << list.GetTotal() << endl;
ManipList(list);
cout << list.GetTotal() << endl;
for (x=0; x<list.Size(); x++)

cout << list.Get(x) << ' ';

736

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

cout << endl;
}

In this code, the class

List

 implements the simplest possible list with the three
member functions

Insert

,

Get

, and

Size

, as well as the constructor. The function

Ma-
nipList

 is an example of some arbitrary function that uses the

List

 class, and it calls
the insert function twice simply as an example.

The

TotalingList

 class inherits the

List

 class and adds in a data member named

total

. This member holds the current total of all the numbers held in the list. The

In-
sert

 function is overridden so that

total

 is updated at each insertion.
The

main

 function declares an instance of the

TotalingList

 class. It inserts 10
and 5, and prints out the total. It then calls

ManipList

. It might surprise you that this
actually compiles—if you look at the prototype for

ManipList

you can see that it ex-
pects a parameter of type

List

, not

TotalingList

. But C++ understands certain things
about inherited classes, one of them being that a parameter of a base class type should
accept any class derived from that base class as well. Therefore, because

TotalingList

is derived from the

List

 class,

ManipList

 will accept it. This is one of the features of
C++ that makes inheritance so powerful—you can create derived classes and pass them
to existing functions that know only about the base class.

When the code shown above runs, however, it does not produce the correct re-
sult. It produces the output:

15
15
10 5
This output indicates that not only did the totaling not work, but the 100 and

200 were never inserted in the list during the call to

ManipList

. Part of this problem
is occurring because of an outright error in the code—the parameter accepted by

Ma-
nipList

 must be a pointer or a reference or no values are returned. Modifying the
prototype for

ManipList

 to the following partially fixes the problem:

void ManipList(List& list)

Now the output looks like this:
15
15
10 5 100 200
It is educational to single-step through the

ManipList

 and watch what happens.
When the calls to the

Insert

 functions occur, they route themselves to

List::Insert

rather than

TotalingList::Insert

.
This problem can also be solved, however. It is possible in C++ to create a func-

tion with the prefix

virtual

, and this causes C++ to call the version of the function

in
the derived class

. That is, when a function is declared as virtual, the compiler can call
versions of the function that did not even exist when the code calling the function was
written. To see this, add the word

virtual

 in front of the

Insert

 functions in both the

List

 and

TotalingList

 classes, as shown below:

class List
{

A
.8

Tuto
ria

l Eig
ht—

V
irtua

l Func
tio

ns

This book is continuously updated. See http://www.iftech.com/mfc

737

int array[100];
int count;

public:
List(): count(0) {}
virtual void Insert(int n) { array[count++]=n; }
int Get(int i) { return array[i]; }
int Size() { return count; }

};

void ManipList(List& list)
{

// do things to the list
list.Insert(100);
list.Insert(200);
// do things to the list

}

class TotalingList: public List
{

int total;
public:

TotalingList(): List(), total(0) {}
virtual void Insert(int n)
{

total += n;
List::Insert(n);

}
int GetTotal() { return total; }

};

Actually it is only necessary to place it in front of the function name in the base
class, but it’s a good habit to perpetuate it in all derived classes as well to give some
indication of what is happening.

Now when you execute the program, you will get the correct output:
15
315
10 5 100 200
What is happening? The word

virtual

 in front of a function tells C++ that

you
plan to create new versions of this function in derived classes

. That is, it lets you state fu-
ture intentions for a class. When the virtual function is called, C++ looks at the class
that called the function and picks the version of the function

for that class

, even if the
derived class did not exist at the time that the function call was written.

What all this means is that in many cases you have to think into the future when
you are writing code. You have to think, “will I or anyone else ever need or want to
change the behavior of this function?” If the answer is “yes,” the function should be
declared as a virtual function.

You have to pay attention to several things for virtual functions to work correct-
ly. For example, you have to actually predict the need for the function and remember
to make it virtual in the base class. Another point can be seen in the program above—
try removing the

&

 from the parameter in the

ManipList

 function and then single-
step through the code. Even though the

Insert

 function is tagged as virtual, the

738

This book is continuously updated. See http://www.iftech.com/mfc

A
U

nd
e

rs
ta

nd
in

g
 C

++
: A

n
A

c
c

e
le

ra
te

d
 In

tro
d

uc
tio

n

List::Insert

 function is called instead of the

TotalingList::Insert

 function. The be-
havior changes because the parameter type

List

 is acting like a type cast when the

&

is not there. Any class passed in is cast back to the base

List

 class. With the

&

 in place,
this casting does not happen.

You see virtual functions everywhere in C++ class hierarchies. A typical hierarchy

expects

 you to be changing behavior in the future to customize the library to your ap-
plication. Virtual functions are also frequently used when the creator of the class

cannot

 know what you will do with the class. For example, say that you are using a user
interface class that implements buttons on the screen. When you create an instance of
the button it paints itself onto the screen and behaves as a button should by highlight-
ing itself when the button is clicked by the user. However, the person who wrote the
class has no idea what people using the class plan to have the button do when it is
clicked. In such cases, the author will create a virtual function named something like

handleEvent

 that is called whenever the button is clicked. Then you override that vir-
tual function with a function of your own that handles the button event properly.

A.8.1 Conclusion

We have covered quite a bit of ground in these tutorials, but you are probably
left with the impression that we have only scratched the surface. And that is true to a
certain degree—C++ is a very deep language, with many subtleties and quirks that are
only mastered with experience. C is like that, only on a much smaller scale.

The only way to fully understand this language is to write, and read, a lot of C++
code. You can learn a great deal by using and studying class libraries that other people
have developed.

The many advantages of this language become apparent once it is fully under-
stood. So start coding. . .

739

BUSING THE VISUAL C++
COMPILER AND TOOLS

This book is designed to be "version free." The goal is to create a book that can be updated
on the web each time Visual C++ changes versions so that we can save you the cost of buying
a new book every six months. To accomplish this goal, we have isolated all version-specific
features in this appendix. When a new version appears on the market, we will update this
appendix on the web immediately, and you can access our updates, changes and supple-
ments free of charge. See http://www.iftech.com/mfc for details.

The purpose of this appendix is to give you a tour of the Visual C++ compiler
and the different tools that you can use with it to make programming easier. These
tools include the debugger, the browser, the AppWizard and the ClassWizard. By un-
derstanding these tools completely you can make the most of this rich and powerful
programming environment. This appendix was produced using VC++ version 4.1.

To simplify this discussion as much as possible, we will start with

console pro-
grams

. A console program works strictly in text mode. Once you have mastered these
simple programs, we will then move on to try a small MFC application, followed by
larger applications using the AppWizard and ClassWizard.

For information on the different resource editors, see Chapter 6. For informa-
tion on the AppWizard and ClassWizard, see Chapters 14 through 18, as well as Part
5. See also the Visual C++ User's Guide in the on-line documentation for specific ref-
erence information about Visual C++ tools and features.

B.1 Compiling and Executing a Console Program with Visual C++

Given its power and flexibility, Visual C++ is remarkably easy to use. This sec-
tion shows you how to enter, compile, and execute a simple program using Visual C++
so you can quickly become familiar with the basic features. You will take the following
steps:

1. Prepare the environment
2. Enter the code

740

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

3. Create a project file
4. Build the project
5. Execute the program

For this simple example, you should use the program shown in Listing B.1.

Listing B.1
A simple console program

// simple.cpp

#include <iostream.h>

void loop()
{

int x=0;
while (x<5)
{

cout << x << endl;
x++;

}
}

void main()
{

cout << "Starting the loop\n";
loop();
cout << "ending\n";
cout << "Press return to continue: ";
char s[100];
cin.getline(s, 100);

}

B.1.1 Preparing the Environment

 Open Visual C++ by double-clicking on its icon. If you are opening from a new
installation, Visual C++ will open in an empty state. However, if Visual C++ has been
used previously it is possible that it will automatically open project and/or code files
because it remembers the open windows from its last session. For this exercise you will
want to close these files. In the Windows menu you will find a Close All option. If it
is enabled select it. Also, use the Close Workspace option in the File menu to close
any open project. Now Visual C++ is in an empty state and you can begin a new
project.

B.1.2 Creating a Project

Every application you create in Visual C++ must have a project workspace. If you
are familiar with the concept of a makefile, you can think of project file as a makefile
that you manipulate graphically using tools in Visual C++. The project file stores sev-
eral important pieces of information about your program:

B.1
C

o
m

p
iling

 a
nd

 Exe
c

uting
 a

 C
o

nso
le

 Pro
g

ra
m

 w
ith V

isua
l C

++

This book is continuously updated. See http://www.iftech.com/mfc

741

1. It remembers all of different source files that make up the application. In this
simple application there is only one small source file, but most real applications
contain several source code files. The project file will also keep track of which
files have already been compiled so it compiles only those that have changed.

2. It remembers the type of application that you want to build: console, windows,
etc. It is also possible to build such things as libraries and DLL files by changing
the type of the project.

3. It remembers options specific to your project. These include compiler, linker,
and resource options, as well as other specifics about the project.

 To create a new project for Listing B.1, choose the

New

 option in the

File

 menu
again. It will present you with the New dialog we have already seen in Figure B.1. This
time select the

Project Workspace

 option and click the

OK

 button.
You will see a

New Project

Workspace

 dialog like the one shown in Figure B.2.

Figure B.1

Opening a new window

Figure B.2

The new project workspace dialog

742

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Enter the name “Simple” in the

Project Name

 field of the New Project dialog.
Select the project type from the Project Type combo box. You will want your project
to be a

Console Application

 as shown in Figure B.2. Choose the directory in which
you want your new project directory to be created. Click the

Create

 button. Visual
C++ will create a new Project Workspace as well as a new directory for it.

B.1.3 Entering the Code

Choose the

New

 option in the

File

 menu to open a new editing window. You
will see a dialog like the one shown in Figure B.1 that lets you choose the type of file
you wish to create. In this case we want to create a

Text

 window so we can enter the
code in Listing B.1. Click the

OK

 button on the New dialog and you will see a new
text window.

This new window will act a great deal like any standard text editor you have used
in Windows. The only real difference is that the editor will color certain words to help
you see them better. Type in the code shown in Listing B.1. Save the code to a file
named SIMPLE.CPP using the

Save

 option in the

File

 menu.
You may notice certain behaviors in the editor that you do not like. In many cas-

es you can change those behaviors by selecting the

Options

 option in the

Tools

 menu.
You will see a dialog like the one shown in Figure B.3. You can change the editor's
colors, its font, its treatment of tabs and so on in this dialog.

Figure B.3

The Options dialog

B.1.4 Adding the Code to the Project

Choose the

Files In Project

 option in the

 Insert

 menu. See Figure B.4. Select
SIMPLE.CPP from the list and click the

OK

 button.

B.1
C

o
m

p
iling

 a
nd

 Exe
c

uting
 a

 C
o

nso
le

 Pro
g

ra
m

 w
ith V

isua
l C

++

This book is continuously updated. See http://www.iftech.com/mfc

743

Figure B.4

The Insert Files into Project dialog

B.1.5 Examining the Windows

You will now have two windows open in Visual C++. The first is the source file
itself. The second is the Project Workspace window. See Figure B.5. The workspace
window contains three tabs: one for the FileView, one for the ClassView and one for
the InfoView (see section B.6.2 also). If you look at the FileViewit contains one file:
SIMPLE.CPP.

The steps you have taken in this section have let you:

1. Create and name the project

2. Choose the type of project.

3. Choose the directory for the project files.

4. Add a source file to the project.

You are now ready to build the application.

Figure B.5

The project workspace window for this
project

744

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

B.1.6 Building the Application

To build the application, choose the

Build

 option in the

Build

 menu. This op-
tion will compile the source file and link it to form an executable.

As it compiles and links, Visual C++ will place progress messages in an Output
pane at the bottom of the Visual C++ window. (If for some reason this pane is not
visible, choose the

Output

 option in the

View

 menu. This pane is dockable, so you
can move it or place it in a free-floating window.) This pane also shows you any com-
piler errors that the system detects. You can double-click on an error message and the
system will jump to the offending line in your program and show you an error message
on the status line. You can also get more information about the error message itself by
single-clicking on the error message in the output pane and pressing the F1 key.

B.1.7 Executing the Application

To execute the application, choose the

Execute

 option in the

Project

 menu.
You will see a text window and it will display the output of the application. Press the
Enter key to terminate the application.

B.2 Debugging

The Visual C++ debugger is extremely powerful, but also extremely easy to use.
You can use it to find problems in your own code. When working with MFC code,
you can also use the debugger to step into the actual MFC source code to learn about
what it is doing. As discussed in Chapter 13, looking at the MFC source can also help
you to resolve assertions that you have violated.

In order to use the debugger, you must create a

debug version

 (as opposed to a

release version

) of your application when you build it. This is the default, but you can
make sure you are building a debug version by choosing the

Set Default Configura-
tion

 option in the

Build

 menu. A debug version of the program contains a wide
variety of information required by the debugger and makes the size of your executable
larger than the release version. See Chapter 13 for more information about the specific
features of the debugging version of an MFC application.

There are many different things that you can do with the debugger:

1. You can run a program under the debugger using the

Go

 option.

2. You can stop execution of a program running under the debugger using the

Stop Debugging

 option, or restart it from the beginning with the

Restart

option. You can also interrupt it midstream in a resumable way using the

Break

option.

3. You can single step through the program one line at a time. If the current line
of code calls a function, you can either

Step Into

 the function or

Step Over

 it.
In the first case you are taken to the first line of the function. In the second
case, the function executes completely and returns. If you are inside a function,

B.2
D

e
b

ug
g

ing

This book is continuously updated. See http://www.iftech.com/mfc

745

you can

Step Out

 of it. In this case the function will complete, return to its
caller and stop there.

4. You can place the cursor on any executable line in the program and step to that
line by selecting the

Step To Cursor

 option.
5. You can examine specific exceptions or Threads. See Chapters 13 and 35 for

details.
6. You can set breakpoints in your code and manipulate them with the

Break-
points

 option.
7. You can examine a variable in the

Quick Watch

window. This window lets you
see the current value of any variable, modify the variable's value, or add the
variable to the

watch window

 so that its value is visible at each step of the pro-
gram's execution.

8. At the bottom of the

View

 menu you can monitor the state of the program
with the following windows:

Watch

,

Locals

,

Registers

,

Memory

,

Call Stack

,
and

Disassembly

. The first five windows are dockable. The

Watch

,

Locals

, and

Call Stack

 windows deal with information at the source code level and are gen-
erally more useful to the C++ programmer. The call stack window is particu-
larly useful in the case of crashes: It shows the set of function calls currently
pending on the call stack. For example, if the

main

 function called a function
named

A

, and function

A

 called a function named

B

 and you are currently on a
line within function

B

, then the call stack will show

main, A

, and

B

. You can
double-click on any line in the call stack to see the function in your source
code.
Many of the options just described are echoed in the standard and debug tool

bars, as shown in Figure B.6. The debug tool bar should become visible once you be-
gin debugging by selecting the

Go

 option in the

Debug

 menu of the

Build

 menu, but
if you cannot find it choose the

Toolbars

 option in the

View

 menu and click on

Debug

.
One of the best ways to become familiar with the debugger is to use it to walk

through some simple code. To try out the debugger with SIMPLE.CPP, take the fol-
lowing steps.

B.2.1 Run the Program

If you select the

Go

 option in the

Debug

 menu of the

Build

 menu (or press the
equivalent tool bar button), the program will execute under the debugger. It will ap-
pear to run in exactly the same way as it did when you used the

Execute

 option in the

Project

 menu. However, if the program enters an infinite loop you have the option
to use the

Break

 option in the

Debug

 menu to halt execution and examine the
problem.

You can also set breakpoints. Then when you select the

Go

 option, the program
will run until it hits a breakpoint. To set a breakpoint you can click on a line of code

746

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

and click the tool bar button that sets breakpoints. A small dot to the left of the line
marks it as a breakpoint. Set a breakpoint, and then select

Go

. Execution will halt at
the breakpoint. You can then select

Go

 to continue execution, or perform any other
debugger operation.

B.2.2 Single-Step

Choose the

Stop Debugging

 option if it is available to stop execution of the cur-
rent program. Then resize the Visual C++ window so it takes up about half the screen.
Set a breakpoint somewhere in the code. Choose the

Go

 option. The debugger will
begin execution of the program, display the output window, and stop on the break-
point. Reposition the output window so both it and Visual C++ are visible
simultaneously. Choose

Step Over

 or press its accelerator key repeatedly to step
through the entire program to completion. Note that when you step over the call to
the

loop

 function the entire function executes and returns all in one step.

Now step through the application again, but when you get to the

loop

 function
choose the

Step Into

 option instead. Now you can single-step through the function
itself.

Note that if you choose

Step Into

 on a line that produces output, you will single
step into the source code for its implementation. This is sometimes useful.

Figure B.6

The debugging tool bar options

Go

Set Breakpoint

Disassembly

Call Stack

Memory

Registers

Locals

Watch

Quick Watch

Run to Cursor

Step out

Step over

Step into

Stop debugging

Restart

B.3
C

o
m

p
iling

 M
FC

 Pro
g

ra
m

s

This book is continuously updated. See http://www.iftech.com/mfc

747

At any time while you are single-stepping, you can choose the

Go

 option to
complete execution of the program or to run to a breakpoint. You can also click on a
line and choose

Run to Cursor

 to run to a specific line without setting a breakpoint.
If you are inside the

loop

 function you can also choose the

Step Out

 function to com-
plete the

loop

 function and return to its caller. Try out all these options.

B.2.3 Getting Information

Single step into the

loop

 function and select the

Call Stack

 option in the

View

menu. You will see a window that shows you the call stack. In this program, the

main

function has called the

loop

 function. This is fairly obvious here, but in a large pro-
gram this little window can be a lifesaver. The Call Stack window is dockable, so you
can leave it floating or dock it anywhere along the edge of the Visual C++ window.

Now highlight the variable

x

 and choose the

Quick Watch

 option. You can see
its current value (or you can see its value simply by letting the cursor rest on it). You
can change its value if you like or add the variable to the

Watch

 window. If you add
it to the

Watch

 window, choose the

Watch

 option in the

View

 menu to make the

Watch

 window visible. The

Watch

 window is dockable, so you can watch variables
there as you single-step. The

Quick Watch

 window, on the other hand, is a dialog.
With the

Watch

 window visible, single-step through the program and watch

x

increment.
Now choose the

Variables

 option. This window shows you all of the local vari-
ables for the current function. This window is also dockable.

B.3 Compiling MFC Programs

The code from Chapters 1 and 2 appears again in Listing B.2. This section
shows you how to create a project file and compile the code. You will find that many
of the steps echo the steps for the console program: You have to create a project, type
in the code, add the code file to the project, and build the project.

Listing B.2
hello.cpp - A simple “Hello world” program in MFC.

//hello.cpp

#include <afxwin.h>

// Declare the application class
class CHelloApp : public CWinApp
{
public:

virtual BOOL InitInstance();
};

// Create an instance of the application class
CHelloApp HelloApp;

748

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

// Declare the main window class
class CHelloWindow : public CFrameWnd
{

CStatic* cs;
public:

CHelloWindow();
};

// The InitInstance function is called each
// time the application first executes.
BOOL CHelloApp::InitInstance()
{

m_pMainWnd = new CHelloWindow();
m_pMainWnd->ShowWindow(m_nCmdShow);
m_pMainWnd->UpdateWindow();
return TRUE;

}

// The constructor for the window class
CHelloWindow::CHelloWindow()
{

// Create the window itself
Create(NULL,

"Hello World!",
WS_OVERLAPPEDWINDOW,
CRect(0,0,200,200));

// Create a static label
cs = new CStatic();
cs->Create("hello world",

WS_CHILD|WS_VISIBLE|SS_CENTER,
CRect(50,80,150,150),
this);

}

To create a new project for HELLO.CPP, choose the New option in the File
menu. You will see a dialog like the one shown in Figure B.1. You want to create a
new project workspace, so select Project Workspace from the list and click the OK
button. You will see a new project dialog like the one shown in Figure B.2. This dialog
lets you specify the name of the project, the directory in which to store the project file,
and the type of project you want to create.

Type the word “hello” into the Project Name field in the upper left corner of
the dialog. For the Project Type field choose the

Application option because for this ex-
ample you will be creating a simple MFC application. DO NOT CHOOSE THE "MFC
APPWIZARD" PROJECT TYPE - CHOOSE "APPLICATION". Choose an appropri-
ate directory. Create the project.

Now you need to type in the code from Listing B.2. In the File menu select the
New option. You will see a selection dialog like the one that you see in Figure B.1.
Choose the Text option and click the OK button. This will create a new editor win-
dow. Type the code into the editor window (or copy and paste the file from the
diskette–it would be beneficial to actually type it because it will force you to look at ev-

B.3
C

o
m

p
iling

 M
FC

 Pro
g

ra
m

s

This book is continuously updated. See http://www.iftech.com/mfc

749

ery word in the program and start to get used to each one). Once you are finished
entering the file, save it into the new project directory, giving it the name
HELLO.CPP.

Add the HELLO.CPP file to the project by choosing the

Files Into Project

 op-
tion in the

Insert

 menu and selecting HELLO.CPP.

Choose the

Settings

option in the

Build

 menu. In the

General

 tab, change the

Microsoft Foundations Classes

 combo box to

Use MFC in a Shared DLL

. If you fail
to do this the project will not link.

Having created the project file, added the code file to it, and having set up the
project properly for MFC code, you are ready to compile the program. In the

Build

menu you will find three different compile options:

1. Compile HELLO.CPP
2. Build HELLO.EXE
3. Rebuild All

The first option simply compiles the source file listed and forms the object file
for it. This option does not perform a link, so it is useful only for quickly compiling a
file to check for errors. The second option compiles all the source files in the project
that have been modified since the last build and then links them to form an execut-
able. The third option recompiles all the source files in the project and relinks them.
It is a “compile and link from scratch” option that is useful after you change certain
compiler options or move to a different platform.

In this case, choose the

Build HELLO.EXE

 option in the

Project

 menu to
compile and link the code. You will see, in the bottom area of the Visual C++ window,
messages that indicate progress as the code compiles.

If you see compiler errors, simply double click on the error message in this out-
put area. The editor will take you to that error. Compare your code against Listing B.2
and fix the problem. If you see a mass of linker errors, it probably means that you spec-
ified the project type incorrectly in the workspace dialog. Delete your new directory
and recreate it again following the instructions given above.

To execute the program, choose the

Execute HELLO.EXE

 option in the

Build

menu. A window appears with the words “Hello World.” The window itself has the
usual decorations: a title bar, re-size areas, minimize and maximize buttons, and so on.
Inside the window is a static label displaying the words “Hello World.” Note that the
program is complete. You can move the window, re-size it, minimize it, and cover and
uncover it with other windows. With a very small amount of code you have created a
complete Windows application. This is one of the many advantages of using MFC.

To terminate the program, click on its system menu and select the

Close

 option.
Here is a recap of the steps you took in this chapter. You may want to repeat

them just so they become more familiar to you:

1. You created a new project named “hello”
2. You created a new code file named “hello.cpp” from Listing B.2,
3. You added the code file to the project,

750

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

4. You adjusted the settings in the project file to identify the code as MFC code,
5. You compiled and ran the program.

For further instructions on compiling code, please turn to Appendix B.
When you begin working with and creating your own MFC code, there are two

mistakes commonly made. These two errors are notoriously hard to track down, but
the Visual C++ debugger can help you. The two errors are described in the following
sections.

B.3.1 Addressing Errors

Addressing errors are generally caused when a pointer writes to memory that it
should not be writing to. This occurs when the pointer has not been initialized or
when it has been loaded with a corrupt address. It is easy to simulate an addressing
error in Listing B.2 and then see how the debugger helps you to find the problem.

To simulate an addressing error, find the following line in the constructor for
the

CHelloWindow

 class:

cs = new CStatic();

Comment the line out, rebuild the project, and then execute it by selecting the

Execute

 option in the

Project

 menu. You will see a dialog notifying you of a problem,
but the dialog gives you no clue as to the problem's cause.

Now try to execute the program again under the debugger. Choose the

Go

 op-
tion. The program will eventually halt with an application error on a specific line
inside one of MFC's source files. To find out where you were in your application's
code at the time of the error, choose the

Call Stack

 option in the

Debug

 menu. Figure
B.7 is representative of what you will see.

Figure B.7

The Call Stack

The highlighted line in Figure B.7 shows the constructor for the

CHelloWin-
dow

 class. You can see that the constructor was called by the

InitInstance

 function.
You can also see that the constructor called the

Create

 function for the

CStatic

 class.
By double-clicking on the line for the constructor in the call stack dialog, Visual

C++ will take you to the specific line in your source code that called

CStatic::Create

.

B.3
C

o
m

p
iling

 M
FC

 Pro
g

ra
m

s

This book is continuously updated. See http://www.iftech.com/mfc

751

You therefore know that something is wrong with this line, either with the parameters
passed to the

CStatic::Create

 function or with

cs

. You can check

cs

 by highlighting
it and then choosing the

Quick Watch

 option in the

Debug

 menu. Figure B.8 shows
the dialog you will see.

Figure B.8

The Quick Watch dialog

The error messages seen in Figure B.9 indicate that there is a problem with this
variable. You should therefore check back through the code to see where the variable
gets initialized (the Browse tool, described in Section B.4, can help you find all uses
of

cs

). In this code the

cs

 variable is used before initialization, and that is the source
of the problem.

B.3.2 Omissions

Let's say you accidentally were to leave out the

InitInstance

 function in Listing
B.2. This function is essential to an application's successful execution. Try removing
it now (both the function and its definition in the

CHelloApp

 class), and then rebuild
and execute the application. Absolutely nothing will happen, and Visual C++ gives
you no clue as to why.

Now rerun the application under the debugger by choosing the

Go

 option.
Again nothing will happen. However, the debugger will give you a clue in the form of
a trace statement that is part of MFC's source code. You will see the message shown
in Figure B.9 in the Output window. This message indicates that

m_pMainWnd

 was
never initialized.

If you look up

m_pMainWnd

 in the MFC help file, the help information will
point you to the

InitInstance

 function, and its explanation should jog your memory
or at least cause you to look up references to it in the example code in this book.

752

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.9

The Output window when the

InitInstance

 fuction is missing

If you return the program to its original state (Listing B.2) and rerun it under
the debugger, the program will run fine but complain of memory leaks when it exits.
Note that you do note see this message when you executed the program—you must
use the

Go

 option. See Chapter 2 for an explanation. For more information on the
debugging features built into MFC, see Chapter 13.

B.4 The Browser

The browser acts like an animated cross-reference listing for your application.
Visual C++ forms a special file for the browser after each build (a .BSC file), and this
file contains the information presented by the browser. The browse file takes a notice-
able amount of time to create, especially with MFC applications, and you therefore
have the ability to enable and disable the file's creation. By default the file is rebuilt
every time you compile an application. However, if you select the

Settings

 option in
the

Build

 menu and then select the

Browser

 section of the dialog, the

Build Browse
Info File

 check box turns the browser file creation on and off. You must also select
the

Browse Info

 check box in the

C/C++

 tab of the same dialog.
Using the browser you can immediately find any of the following pieces of

information:

1. You can find where any variable, type, function, class, or macro in your applica-
tion is declared, and every place where it is used (

definitions and references

).
2. You can list all the functions, classes, variables, macros, etc., that you have

declared (the

file outline).

3. You can find all the functions that a given function calls (a

call graph

).

4. You can find all the functions that call a given function (a

caller graph

).

5. You can find what classes a specific class derives its behavior from (a

base class
graph

)

6. You can find out which classes are derived from a specified class (a

derived class
graph

).

In a large program, especially one written by another programmer, and most es-
pecially when you are looking at the program for the first time, these different views
can be a tremendous time-saver. You can quickly answer questions that you have
about the different classes, functions and variables in a program. The browser is also

B.4
The

 Bro
w

se
r

This book is continuously updated. See http://www.iftech.com/mfc

753

extremely useful to anyone as they begin learning MFC, because it helps you to find
out information about the MFC class hierarchy very quickly.

You can learn a great deal about the browser by trying a few exercises using List-
ing B.2 as a sample program for experimentation. The following sections contain
several different demonstrations. Try these and then make up some exercises of your
own. You will quickly become adept with this tool because it is so easy to use. For ad-
ditional information, look up information on the browser in books on-line.

To open the browser for the following examples, choose the

Browse

 option in
the

Tools

 menu. The general way to use the browser is to highlight a name in your
program and the choose the

Browse

 option. You will see a dialog like the one shown
in Figure B.10. This dialog lets you select the browser mode that you are interested in
using. Once you select the mode you will see the browser itself, and it will display the
requested information in a modeless dialog.

B.4.1 Finding Declarations and References

Listing B.2 contains a variable named

cs

. Let's say you want to find the declara-
tion for

cs

 along with all references to it. If you highlight

cs

 anywhere in the program
and select the

Browse

 option in the

Tools

 menu, you can select the

Definitions and
References

 option for the Browse dialog. You will see a display similar to the one
shown in Figure B.11. The list on the right shows the location of the variable's defi-
nition, as well as all of the references to it. If you double-click on the line numbers
shown in the right hand list, Visual C++ will take you to that specific line in the edit
window so you can see the variable in context.

In a large program, it is possible for a name to be used in several different classes
or files. When this happens, it is not possible for the browser to tell which reference
you are interested in viewing. It will, therefore, present a list showing you the different
possibilities on the left-hand side of the dialog. In Figure B.11, this left-hand list con-
tains only one item because there is only one use of the name

cs

.
For definitions and references to variables, types, classes, etc., the browser offers

a second way to quickly move through a file using the

Browse

 tool bar. If this tool bar

Figure B.10

The Browse dialog lets you choose the browser’s mode

754

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

is not visible, select the

Toolbars

 option in the

Tools

 menu and click on

Browse

. This
is a dockable tool bar. Let the cursor rest on each button in the tool bar to identify its
function—they are all self-explanatory. Many of them echo the five browse options
that you find at the bottom of the

Search

 menu.
For example, find a reference to the variable

cs

 in the editor window and high-
light the variable

cs

. Now choose the

Go To Definition

 option in the

Browse

 tool
bar or the

Search

 menu. You will be taken to the line that defines the variable

cs

. Now
select the

Go To Reference

 option in the

Browse

 tool bar and you will be taken to
the line containing the first reference to the variable in the file. Use the

Next

 and

Pre-
vious

 options in the

Browse

 tool bar to move to other references. This technique is
limited to a single file, while the browse window shown in Figure B.11 spans files, so
each technique is appropriate in different circumstances.

Try out the same techniques on the class name

CHelloWindow

. That is, high-
light the name

CHelloWindow

 in the edit window and select the

Browse

 option.
Note that the Browser is case sensitive.

B.4.2 Finding all Names in a File

You can find all of the functions, classes, variables types and macros declared in
a file using the browser's File Outline feature. Figure B.12 shows a typical view for
Listing B.2.

Figure B.11

Finding the definitions and references of

cs

Figure B.12

The File Outline display for Listing B.2

B.4
The

 Bro
w

se
r

This book is continuously updated. See http://www.iftech.com/mfc

755

Along the top of Figure B.12 you can see that you can select the specific types of
information shown in the window. The left-hand list shows all the filtered names.
Then you can click on the declarations or references in the right-hand list.

B.4.3 Finding All the Functions Called by a Function

 You can easily find all the functions called by a given function by creating a

call
graph

 for the function in question. Figure B.13 shows the call graph for the

InitIn-
stance

 function in Listing B.2. If you look in Listing B.2 you will find that the

InitInstance

 function calls four functions and all four are represented in the call
graph. Clicking on any function in the graph displays the function's definitions and
references in the list on the right.

B.4.4 Finding All Functions that Call a Function

A

caller graph

 lets you see all the functions that call a specific function. This can
help you to track down side effects. For example, if you modify a function and the
program suddenly breaks in a mysterious way, you can use the caller graph to quickly
find every call to the function and then pinpoint the problem.

The caller graph is no different from the definitions and references list created
for a variable in Section B.4.1. In the list on the right it shows the definition of and
references to the function. Try this with the

InitInstance

 function and see Section
B.4.1 for more information.

B.4.5 Finding the Base-Class Graph

The

Base-Class Graph

 shows what classes act as base classes for a specified class.
This graph can be very useful in large programs or when you are learning about MFC
or another programmer's class hierarchy. Figure B.14 shows the base class graph for
the

CHelloWindow

 class.
As you can see in Figure B.14, the graph shows each of the classes that

CHel-
loWindow

 is derived from. In the upper right-hand list it shows the class's member
functions and variables. In the lower right-hand list it shows the lines where the class
is defined and used.

Figure B.13

The call graph for the

InitInstance

 function

756

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

B.4.6 The Derived-Class Graph

A

derived-class graph

 shows all the classes derived from a given class. You can use
this graph to track use of a given class and also to point out parts of your program that
may be affected by a change you make to a given class. Figure B.15 shows the derived
class graph for the class

CFrameWnd

. Because

CHelloWindow

 is derived from

CFrameWnd

, it appears in the graph. If other classes were derived from

CHelloWin-
dow

, they would appear in the graph as well.
Like the base-class graph shown in Section B.4.5, the derived-class graph shows

you the selected class's member functions and variables in the upper right-hand list. It
also shows you the lines where the class is defined and used in the lower right hand list.

B.5 Resources and resource files

As described in Chapter 6, resource files hold program elements such as menus,
dialogs, strings and so on. These elements are created with graphical resource editors.
This section describes normal techniques for working with the different resources de-
scribed throughout the rest of the book.

B.5.1 Resources in General

Whenever you work with resources in an application, you start by creating a

re-
source script

. If you are using the AppWizard then the resource script is created
automatically. If you are working on small programs of the style described in Chapter
6 then you create the resource script separately and add it into the project. Once you
have created the script you can add individual resources to it. You do this by choosing
the

Resource

 option in the

Insert

 menu.

Figure B.14

The base class graph for

CHelloWindow

B.5
Re

so
urc

e
s a

nd
 re

so
urc

e
 file

s

This book is continuously updated. See http://www.iftech.com/mfc

757

B.5.2 Creating a Resource Script

To create a new resource script, choose the

New

 option in the

File

 menu. You
will see a dialog like the one shown earlier in Figure B.1. Select the

Resource Script

option to create a new, empty script. You can then choose the

Save

 option in the

File

menu to save the script file to disk. You can name it anything you like, and it will be
assigned the .RC file extension. Once you have saved the file, you can add it to the
project. Choose the

Files into Project

 option in the

Insert

 menu and add the new
script file to the project.

B.5.3 Icon Resources

To create a new icon resource, choose the

Resource

 option in the

Insert

 menu.
You will see a dialog like the one shown in Figure B.16 that lets you choose the re-
source type. Choose Icon. You will see the new icon in an icon editor, as shown in
Figure B.17. The palettes to the right as seen in Figure B.17 should be visible. If they
are not visible choose the

Toolbars

 option in the

View

 menu and enable them. Draw
into the icon as you would with any bitmap editor.

Figure B.15

The derived class graph shows for

CFrameWnd

758

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.16

Choosing the type of resource to create

Figure B.17

Creating a new icon

In Figure B.17 you can see a

Device

 combo box at the top of the figure. This
combo box allows you to create several different sizes of icon for the same icon ID.
That way the icon can fit into several different working situations. You should always
be in the habit of creating all available sizes for every icon that you create.

To change the icon’s ID, choose the

Properties

 option in the

Edit

 menu.

B.5
Re

so
urc

e
s a

nd
 re

so
urc

e
 file

s

This book is continuously updated. See http://www.iftech.com/mfc

759

B.5.4 Resource Palettes

The palettes to the right in Figure B.17 should be visible. If they are not choose
the

Toolbars

 option in the

View

 menu and enable them. Several of the resource edi-
tors have palettes like this, including the bitmap and the dialog editors.

B.5.5 Menu Resources

To create a new menu resource, choose the

Resource

 option in the

Insert

 menu
and select the Menu resource from the list. You can click on the empty, dotted rect-
angle that you see and type the new menu string into it. You can do this either on the
menu bar or in a menu itself to create new individual menu options. When you begin
typing, a properties window will appear. When you have finished typing the string,
press the return key and the properties dialog will close automatically.

If you create a menu option, close its property dialog, and then double click on
the menu option again you will see that Visual C++ has created an appropriate ID for
the menu option automatically, as shown in Figure B.18. Generally you will leave
these automatically generated IDs alone because they are appropriate, but you can cus-
tomize them if you wish.

Figure B.18

A menu bar under construction, and the properties dialog for the Open option. Note
the automatically created ID for this option.

B.5.6 Dialog Resources

To create a new dialog resource, choose the

Resource

 option in the

Insert

 menu
and select the Dialog resource from the list. You will see an arrangement like the one
shown in Figure B.19. Here you see a new dialog with an OK and Cancel button, as
well as the Controls palette. If the palette is not visible choose the

Toolbars

 option in
the

View

 menu and enable it.

760

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.19

A new dialog and the controls palette

If you let the cursor rest on each of the buttons in the Controls palette, the but-
tons will display a small tag that tells you what control the button represents. For
example, the button at the end of the first row creates static controls, while the button
at the left of the second row creates edit controls. Click on the type of control that you
wish to create in the Controls palette and drag out an area in the dialog. A new control
of the selected type will be created in the rectangle you specified. You can then double-
click on the new control to view its properties. The property dialog can also be dis-
played by choosing the

Properties

 option in the

Edit

 menu.
Note that, when you have a dialog resource open in the dialog editor, a

Layout

menu will appear. There will also be a Layout toolbar at the bottom of the window.
This menu helps you arrange controls. The

Tab Order

 option in this menu lets you
set the tab order of the controls in the dialog.

B.5.7 String Tables

To create a new string table resource, choose the

Resource

 option in the

Insert

menu and select the String Table resource from the list. You will see an arrangement
like the one shown in Figure B.20. You can double click on the empty dotted rectangle
to pull up the property dialog. Then type the new string and change the ID of the
string resource. You can reference the string from within your code using the ID as
described in Chapter 6.

B.6
A

p
p

W
iza

rd
 File

s

This book is continuously updated. See http://www.iftech.com/mfc

761

Figure B.20

B.6 AppWizard Files

As described in Part 3 of the book, you can use the AppWizard to create new
projects. You will only use the AppWizard once at the beginning of any new project
to create the project’s

framework

. You will then use the ClassWizard to manipulate the
framework.

B.6.1 Creating AppWizard Projects

As described in Part 3 of the book, you can use the AppWizard to create new
projects. You will only use the AppWizard once at the beginning of any new project
to create the project’s

framework

. You will then use the ClassWizard to manipulate the
framework.

To start the AppWizard, choose the

New

 option in the

File

 menu. You will see
a New dialog like the one shown in Figure B.21. Select

Project Workspace

 from the
list and click OK. You will then see a dialog like the one shown in Figure B.22. Select
the

MFC AppWizard (exe)

option and name the project.

Figure B.21

762

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.22

The AppWizard presents six different options screens to you so that you can
tune each framework to your specific needs. These screens are shown in Figures B.23
through B.28. The captions on each figure explain the general purpose of each screen.
The help button on the screens will provide detailed information and is extremely ed-
ucational when you first start using the AppWizard.

Figure B.23

The first screen lets you select between SDI, MDI and Dialog applications. Dialog
applications are stripped down mini-applications that have a very simple form view
type of interface.

B.6
A

p
p

W
iza

rd
 File

s

This book is continuously updated. See http://www.iftech.com/mfc

763

Figure B.24

The second screen lets you select your level of database support. Chapter 33
discusses database applications.

Figure B.25

The third screen selects OLE options. See Section B.6.6.

764

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.26

The fourth screen selects application options. Such as toolbars and printing. The

Advanced

 button brings up a subsidiary dialog discussed in sections B.6.3 and B.6.5.

Figure B.27

The fifth screen lets you change the level of comments and linking. Generally you
leave this screen as-is.

B.6
A

p
p

W
iza

rd
 File

s

This book is continuously updated. See http://www.iftech.com/mfc

765

Figure B.28

This screen lets you choose the file names for the classes, and also lets you change
the base class of the view as described in section B.6.4.

To create the simplest possible framework, choose the SDI option in the first
screen, clear the different options that are selected in screen 4, and then click the

Fin-
ish

 button. You can then click the OK button on the confirmation screen and the
AppWizard will create the files for your framework.

The AppWizard will proceed to create 20 different files. Seventeen of those files
will be in the directory named SAMP, while two others will be found in a new subdi-
rectory of SAMP named RES. Take a moment to look at the new directories and also
open up and look inside several of the files. The AppWizard creates the following di-
rectory tree:

samp
mainfrm.cpp
mainfrm.h
readme.txt
resource.h
samp.clw
samp.cpp
samp.h
samp.mak
samp.ncb
samp.rc
samp.reg
sampdoc.cpp
sampdoc.h
sampview.cpp

766

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

sampview.h

stdafx.cpp

stdafx.h

res

samp.ico

samp.rc2

toolbar.bmp

You are free, and expected, to modify all these files as you create your applica-
tion, with the exception of a few ancillary files like SAMP.NCB, SAMP.REG and
SAMP.CLW (This file holds the ClassWizard database. If you accidentally erase it, the
ClassWizard can regenerate it automatically.) Chapter 14 explains what all these dif-
ferent files do.

At this point you should build the project that the AppWizard has created for
you. Simply choose the

Build

 option in the

Build

 menu. Visual C++ will form an ex-
ecutable and you should run it. What you will find is that you have a remarkably
complete starter application. The menu bar works and contains all the normal menu
options you would expect to find. The Open, New, and Exit options will all do the
expected things. The application has an About box. The AppWizard's files create a
very good starting point for a new application.

B.6.2 Project views

Once the AppWizard creates your project framework, you will see a project
workspace window like the one shown in Figure B.29. This window gives you four
different views:

• The ClassView - Shows you all of the different classes in your application, as
well as members, variables, etc.

• The ResourceView - Shows you all of the resources (menus, dialogs, icons,
etc.) in your application.

• The FileView - Shows you all of the different files that hold the code for your
application.

• The InfoView - Shows you all of the on-line books that are available.
Simply click on the different tabs to change your view.

B.6.3 Adding File Extensions

To add a file extension, click the

Advanced

 button in the fourth AppWizard
customization screen (Figure B.26). You will see a dialog like the one shown in Figure
B.30. Add the file extension in the

File Extension

 field.

B.6.4 Changing the Base Class

In the AppWizard’s sixth customization screen (Figure B.28) you can change the
base class of the view class. Choose the view class in the list. Then change the base class
as shown in Figure B.31.

B.6
A

p
p

W
iza

rd
 File

s

This book is continuously updated. See http://www.iftech.com/mfc

767

Figure B.29

The Project Workspace window. If your tabs do not have the names shown in the
figure, drag the window wider.

B.6.5 Adding Splitter Windows

To add a splitter window, click the advanced button in the fourth AppWizard
customization screen (Figure B.26). You will see a dialog like the one shown in Figure
B.30. Click the

Window Styles

 tab to reveal a dialog like the one shown in Figure
B.32. Click the

Use Split Window

 check box.

B.6.6 OLE Applications

The third AppWizard customization screen (Figure B.25) lets you customize the
OLE features of your application. This screen is exercised in Chapter 34, which dem-
onstrates how to create a Container, a Full Server, and an Automation-aware
application. Note that this screen has radio buttons for Containers and Full Servers,
and a check box for automation. Also note the check box for OLE controls, which you
will want to use if you want to use OLE controls in the application. Select these dif-
ferent options as appropriate to the applications that you create.

768

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.30

Adding a file extension

Figure B.31

Changing the base class of the view class

B.7
U

sing
 the

 C
la

ssW
iza

rd

This book is continuously updated. See http://www.iftech.com/mfc

769

Figure B.32

Selecting the splitter window option

B.7 Using the ClassWizard

The ClassWizard manipulates frameworks generated by the AppWizard. You
open the ClassWizard by selecting the

ClassWizard

 option in the

View

 menu. See
Part 3 of the book for details on the ClassWizard. The following sections demonstrate
many of the different features of the ClassWizard.

B.7.1 Creating New Message Map Entries for Events

The ClassWizard allows you to add message map entries for any system event.
The different system events are documented in the

CWnd

 class. Every member func-
tion in this class that begins with

On...

 is associated with a WM_ message. See
Chapter 4 for details.

The ClassWizard makes it easy to add message map entries for system events.
For example, if you want to add a message map entry for the WM_MOUSEMOVE
event (see the

OnMouseMove

 function documentation for details), open the Class-
Wizard and set it up as shown in Figure B.33. Select the

Message Maps

 tab and then
select the class whose message map you want to add the function to. In Figure B.33
the view class has been chosen. Make sure the view class name is selected in the

Object
IDs

 list. Then find WM_MOUSEMOVE in the

Messages

 list. Click the

Add Func-
tion

 button to add the function. You can then press the

Edit Code

 button to be taken
immediately to the new function in the view class.

770

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.33

Adding a system event handler with the ClassWizard

Figure B.34

Overriding a virtual function with the ClassWizard

B.7
U

sing
 the

 C
la

ssW
iza

rd

This book is continuously updated. See http://www.iftech.com/mfc

771

B.7.2 Overriding Virtual Functions

Most MFC classes (for example CDocument, CView and so on) contain virtual
functions that are described in the MFC documentation. The ClassWizard gives you
an easy way to override these functions. Figure B.34 shows an example. Here the pro-
grammer wishes to override the

OnUpdate

 function in the view class. Choose the

Message Maps

 tab, choose the correct class, and then find the virtual function that
you wish to override. Click the

Add Function

 button and the click the

Edit Code

button.

B.7.3 Creating Menu Handlers

Each menu option in the menu bar has an ID. For example, ID_EDIT_COPY
is the ID for the

Copy

 option in the

Edit

 menu. When you create a new menu option,
the menu editor will automatically name the ID for the option, and you can change
the name if you like.

To add a handler function to handle the given menu option, use the ClassWiz-
ard as shown in Figure B.35. Select the class whose message map you want to handle
the menu option, and then select the menu ID in the

Object IDs

 list. Choose the

Command

 value in the

Messages

 list. Click the

Add Function

 button. You will see
a dialog asking you to confirm the function name. Then click the

Edit Code

 button
to edit the code.

B.7.4 Creating New Dialog Classes

When you create a dialog resource, you must also create a dialog class to go with
it. The class acts as a liaison between the application and the dialog resource and is
especially important for holding DDX variables. To create a new dialog class, create
the dialog resource. Rename the ID for the dialog resource from the default name of
IDD_DIALOG1 to something appropriate (e.g. - IDD_ADDRESSDIALOG). Now,

with the dialog editor for the new dialog visible as the top-most window

, open the Class-
Wizard. You will see a dialog like the one shown in Figure B.36. The ClassWizard will
recognize, since it is a new dialog, that you would probably like to create a dialog class
to go with it. Click OK, and you will see the standard

Add Class

 dialog as shown in
Figure B.37, but it will have been preset for use with your dialog. Simply type in the
new class name in the name field and you are set.

772

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.35

Adding a menu handler function with the ClassWizard

Figure B.36

Creating a new dialog class with the ClassWizard

B.7
U

sing
 the

 C
la

ssW
iza

rd

This book is continuously updated. See http://www.iftech.com/mfc

773

Figure B.37

Adding the new dialog class

B.7.5 Adding DDX Value Variables

The ClassWizard makes it extremely easy to add DDX value variables to a dialog
class. See Chapters 15, 18 and 22 for an introduction to DDX variables. A value vari-
able gives you an easy way to get and set the value of edit (and other) controls in a
dialog.

As an example, imagine that you have an edit control on a dialog. You have given
the control an ID of IDC_NAME. To create a DDX variable for the control, open
the ClassWizard. Select the

Member Variables

 tab. Select the appropriate dialog
class. Select the IDC_NAME control. You will see a display like that shown in Figure
B.38. Click the

Add Variable

 button and you will see a dialog like the one shown in
Figure B.39. Give the variable a name and select the appropriate type. Leave the cat-
egory set to Value.

B.7.6 Adding New Classes

The ClassWizard gives you an easy way to add any class that inherits from an
existing MFC class to your application. Simply click the

Add Class

 button. Name the
class and select the appropriate base class and the ClassWizard will do the rest.

Be
aware that you must include the header file for the new class in any files that use the class.

774

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.38

Selecting the control

Figure B.39

Adding the DDX variable

B.8
O

LE C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

775

B.7.7 Adding DDX Control Variables and Handlers

A DDX control variable lets you get a pointer to a control so that you can call
member functions on the control. See Chapters 18 and 22 for details. Typically you
will want to do this for a List control in a dialog or form view.

To add a DDX control variable, open the ClassWizard. Select the Member Vari-
ables tab for the appropriate dialog class. Choose the control ID from the list and click
the

Add Variable

 button. You will see a dialog like the one shown in Figure B.40.
Name the variable and choose the Control category. The variable type indicates the
class from which you can call member variables.

Figure B.40

Adding a control variable

B.8 OLE Controls

The OCX ControlWizard creates OCX control classes, which are then manip-
ulated with the ClassWizard. See Section 34.8 for details on OCX controls.

B.8.1 Creating a New OCX Control with the ControlWizard

Whenever you start the process of creating a new OCX control, you will use the
ControlWizard to create the base framework. The process is identical to using the Ap-
pWizard to create a base application framework. In the

File

 menu choose the

New

option and in the dialog choose

Project Workspace

. You will see a dialog like the one
shown in Figure B.41. Name the new control as shown and choose a directory for it.

The ControlWizard will appear. It has two customization screens. The first one
you will generally leave alone, and is shown in Figure B.42. On the second screen,
shown in Figure B.43, you will generally want to check the

Available in “Insert Ob-
ject” dialog

 check box or you will be unable to test the control.

776

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.41

Creating a new OCX control with the ControlWizard

Figure B.42

The first ControlWizard screen

B.8
O

LE C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

777

Figure B.43

The second ControlWizard screen

 Press the

Finish

 button and let the ControlWizard generate its files. Look at the
code files that the ControlWizard created. Of them, the only one you will generally
modify is ADJCTL.CPP (or whatever). This file contains a class derived from

COle-
Control

, which embodies almost all of the modifiable behavior for an OLE control.
It contains quite a few different areas that the ClassWizard can manipulate.

Compile the code for the new control by choosing the

Build

 option in the

Build

menu. To test the control, you must do two things. First, you have to register the con-
trol in the registry using the

Register Control

 option in the

Tools

 menu. You need
to do this only once for each control that you create. To actually execute the control
to test it, you can use the test container for OCX controls that comes with Visual C++.
Select the

Test Container

 option in the

Tools

 menu. Choose the

Insert OLE Con-
trol

 option in the

Edit

 menu. Select “Adj Control” (or whatever) from the list to insert
the new control. If you do not find an entry for the “Adj Control” in the dialog, you
either forgot to register the control or you failed to select the

Available in Insert Di-
alog

 option as shown in Figure B.43.

B.8.2 Registering a new OCX Control

You have to register the control in the registry using the

Register Control

 op-
tion in the

Tools

 menu before you can use it. If this option is not available in the
menu, it means that portions of the OCX functionality were not installed with Visual
C++. Reinstall these parts.

778

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

B.8.3 Using the OCX Test Container

Select the

Test Container

 option in the

Tools

 menu. Choose the

Insert OLE
Control

 option in the

Edit

 menu. Select “Adj Control” (or whatever) from the list to
insert the new control. If this option is not available in the menu, it means that por-
tions of the OCX functionality were not installed with Visual C++. Reinstall these
parts.

B.8.4 Testing OLE Controls in Dialogs

It is extremely easy to use standard OCX controls shipped by Microsoft or new
OCX controls that you create in dialog boxes or in form views. Take the following
steps:

• Create a new dialog resource in an application that will use the OCX control.
• Choose the

ComponentÖ

 option from the

Insert

 menu. You will see a dia-
log like the one shown in Figure B.44. Select the Adj control and click

Insert

.
• You will see a Confirm Classes dialog. Click OK.
• Click Close
• Visual C++ will add a new control to the bottom of the dialog Controls pal-

ette.
• Add the OCX control to the dialog as you would any other control
• Double-click on the control to change its properties

Figure B.44

Adding an OCX control

B.8
O

LE C
o

ntro
ls

This book is continuously updated. See http://www.iftech.com/mfc

779

B.8.5 Activating Stock Properties

When the ControlWizard creates the base files, it wires into them the stock
properties for the control. You can activate these properties using the ClassWizard.
Open the ClassWizard and select the

OLE Automation

 tab. Make sure the class name
is

CAdjCtrl

 (or whatever). Click the

Add Property

 button and select the property
from the

External Name

 combo box list as shown in Figure B.45.

Figure B.45

Adding a stock property

B.8.6 Adding Custom Properties

Open the ClassWizard and select the

OLE Automation tab

. Click the

Add
Property

 button. Add a property, as shown in Figure B.46. The ClassWizard gives
the property two names. The external name is used by a programmer to adjust the
property. The variable name is used inside the control's code to access the property in
C++.

B.8.7 Adding Methods

The two stock methods named

DoClick

 and

Refresh

 already exist in the code
generated by the ControlWizard. To activate them, open the ClassWizard. Select the

OLE Automation

 tab and click the

Add Method

 button. Pull down the

External
Name

 combo box and select

DoClick

. The dialog will specify the setup for the

DoClick

 stock method. Press OK and do the same thing for

Refresh

. No further
changes are required.

780

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

To add a custom method, do the same thing but type a new name in the

Exter-
nal Name

 field as shown in Figure B.47. You can give the method a return type and
parameters just as you would any function.

Figure B.46

Adding a custom property

Figure B.47

Adding a custom method

B.9
C

o
nc

lusio
n

This book is continuously updated. See http://www.iftech.com/mfc

781

B.8.8 Adding Events

To add an event, open the ClassWizard. Choose the

 OLE Events

 tab and click
the

Add Event

 button. Add a new event as shown in Figure B.48. That is, give the
event a name and click on the first location in the parameter list to add parameters.

Figure B.48

Adding an event

B.8.9 Adding Member Variables for Property Sheets

Create the controls in your property sheet. With the dialog template for the
property sheet open as the topmost window in Visual C++, open the ClassWizard.
Choose the

Member Variables

 tab, as shown in Figure B.49. Now double-click on a
control ID. Figure B.50 shows the setup for the IDC_RANGE variable discussed in
Section 38.8.12. The

Optional OLE Property Name

 field lets you type in a property
name for the control.

B.9 Conclusion

The Visual C++ environment provides you with a huge variety of tools. Those
tools further include resource editors, which are described in detail in Chapter 6, along
with the different wizards described in Parts 3 and 5.

For further information on all these tools, see the “Visual C++ User’s Guide” in
books on-line.

782

This book is continuously updated. See http://www.iftech.com/mfc

B
U

si
ng

 th
e

 V
is

ua
l C

++
 C

o
m

p
ile

r a
nd

 T
o

o
ls

Figure B.49

Figure B.50

783

CCONTACTING THE AUTHORS

If you have any questions, comments, or suggestions for improving this book, we
would like to hear from you. Your comments will help us improve later editions, and
we will post your corrections so other readers can take advantage of them.

To send suggestions, comments, questions or corrections via electronic mail, ad-
dress e-mail to:

mfc@iftech.com

To view available update and correction pages, as well as supplements, visit the
web site for this book at:

http://www.iftech.com/mfc

This book is designed to be "version free." The goal is to create a book that can
be updated on the web each time Visual C++ changes versions so that we can save you
the cost of buying a new book every six months. To accomplish this goal, we have iso-
lated all version-specific features in Appendix B. When a new version appears on the
market, we will update this appendix on the web immediately, and you can access our
updates, changes and supplements free of charge. See http://www.iftech.com/mfc for
details.

C.1 About Interface Technologies

Interface Technologies, Inc., has distinguished itself as a premier supplier of
software development and programmer training services in a variety of computing en-
vironments. These services are supplied with the specific goal of helping the client
increase programmer productivity by improving software design, documentation, and
development processes.

Technical classes offered by Interface Technologies give programmers the skills
they need to rapidly master new, advanced programming environments. These skills
are necessary in any company that wants to create leading-edge applications. Our
classes feature extensive hands-on exercises, expert instruction, and an intensive pace
that builds confidence and self-assurance. Programmers leave the class ready to begin
creating their own applications immediately. All ITI classes are delivered at the client’s

784

This book is continuously updated. See http://www.iftech.com/mfc

C
C

o
nt

a
c

tin
g

 th
e

 A
ut

ho
rs

site, an approach that saves both time and money for the client and ensures that pro-
grammers are available to handle any emergencies that may arise during the course of
training.

As authors of Prentice Hall’s five-book series on Windows NT, Digital Press’s
“Motif Programming: The Essentials and More,” and numerous other books and ar-
ticles, ITI’s areas of specialty include object-oriented design and C++ programming,
Windows 95 and Windows NT application development, and GUI design and im-
plementation using MFC and Motif. ITI also offers consulting services such as project
management and auditing, human factors and design analysis, software testing and
verification, and network design and administration. Our clients include a number of
large firms in the financial district of New York City, several large telecommunications
companies, and numerous smaller firms, all dedicated to the creation of modern, reli-
able systems using either in-house programming staff or outside resources.

If you would like more information on ITI’s services or classes, please call 1-800-
224-4965 today. Or visit our web site at http://www.iftech.com.

785

DUSING OPENGL WITH MFC

By Alan Oursland, Interface Technologies, Inc.

With the release of Windows NT 3.5, OpenGL became a part of the Windows
operating system. Now with Windows 95 support for OpenGL and low price graphics
accelerators becoming readily available even on low end machines, the prospects of us-
ing OpenGL on any Windows machine is becoming more attractive every day. If you
are interested in creating quality 2-D or 3-D graphics in Windows, or if you already
know another variant of GL, this tutorial will show you how to use OpenGL and some
of its basic commands.

GL is a programming interface designed by Silicon Graphics. OpenGL is a ge-
neric version of the interface made available to a wide variety of outside vendors in the
interest of standardization of the language. OpenGL allows you to create high quality
3-D images without dealing with the heavy math usually associated with computer
graphics. OpenGL handles graphics primitives, 2-D and 3-D transformations, light-
ing, shading, Z-buffering, hidden surface removal, and a host of other features. I’ll use
some of these topics in the sample programs following; others I’ll leave to you to ex-
plore yourself.

D.1 Writing an OpenGL Program

 The first program demonstrated here will show you the minimum require-
ments for setting up a Windows program to display OpenGL graphics. As GDI needs
a Device Context (DC) to draw images, OpenGL requires a Rendering Context (RC).
Unlike GDI, in which each GDI command requires that a DC is passed into it,
OpenGL uses the concept of a current RC. Once a rendering context has been made
current in a thread, all OpenGL calls in that thread will use the same current rendering
context. While multiple rendering contexts may be used to draw in a single window,
only one rendering context may be current at any time in a single thread.

To start, create a new SDI application framework. First we must include all nec-
essary OpenGL libraries in this project. In the project build settings, add the following
libraries to the linker Object/Library Modules setting:

786

This book is continuously updated. See http://www.iftech.com/mfc

D
U

si
ng

 O
p

e
nG

L
w

ith
 M

FC

opengl32.lib glu32.lib glaux.lib

Now add the OpenGL include files to the end of STDAFX.H:

#include <gl\gl.h>
#include <gl\glu.h>

 OpenGL requires that the window performing the GL operations have styles
WS_CLIPCHILDREN and WS_CLIPSIBLINGS. These options must be set in the
view’s PreCreateWindow:

BOOL COpenGLView::PreCreateWindow(CREATESTRUCT& cs)
{

 cs.style |= (WS_CLIPCHILDREN | WS_CLIPSIBLINGS);

 return CView::PreCreateWindow(cs);
}

 There are three steps to creating and making current a rendering context:

1. Set the window’s pixel format.
2. Create the rendering context.
3. Make the rendering context current.

 The first step to creating a rendering context is to define the window’s pixel for-
mat. The pixel format describes how the graphics that the window displays are
represented in memory. Parameters controlled by the pixel format include color
depth, buffering method, and supported drawing interfaces. We will look at some of
these below. Use the ClassWizard to add a handler for the view’s WM_CREATE and
WM_DESTROY messages and add the following member variables and functions to
the class definitions:

protected:
 int m_GLPixelIndex;
 HGLRC m_hGLContext;

 BOOL SetWindowPixelFormat(HDC hDC);
 BOOL CreateViewGLContext(HDC hDC);

Initialize the member variables in the constructor:

COpenGLView::COpenGLView()
{

 m_hGLContext = NULL;
 m_GLPixelIndex = 0;

}

When the view is created we want to set its pixel format. Add a call to our SetWin-
dowPixelFormat after calling the base class OnCreate:

int COpenGLView::OnCreate(LPCREATESTRUCT lpCreateStruct)

D
.1

W
riting

 a
n O

p
e

nG
L Pro

g
ra

m

This book is continuously updated. See http://www.iftech.com/mfc

787

{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 HDC hDC = ::GetDC(GetSafeHwnd());
 if (SetWindowPixelFormat(hDC) == FALSE)
 return 0;

 return 0;
}

BOOL COpenGLView::SetWindowPixelFormat(HDC hDC)
{
 PIXELFORMATDESCRIPTOR pixelDesc;
 memset(&pixelDesc, 0, sizeof(pixelDesc);

 pixelDesc.nSize = sizeof(PIXELFORMATDESCRIPTOR);
 pixelDesc.nVersion = 1;

 pixelDesc.dwFlags = PFD_DRAW_TO_WINDOW | PFD_DRAW_TO_BITMAP |
 PFD_SUPPORT_OPENGL | PFD_SUPPORT_GDI | PFD_STEREO_DONTCARE;

 pixelDesc.iPixelType = PFD_TYPE_RGBA;
 pixelDesc.cColorBits = 32;
 pixelDesc.cRedBits = 8;
 pixelDesc.cRedShift = 16;
 pixelDesc.cGreenBits = 8;
 pixelDesc.cGreenShift = 8;
 pixelDesc.cBlueBits = 8;
 pixelDesc.cBlueShift = 0;
 pixelDesc.cAlphaBits = 0;
 pixelDesc.cAlphaShift = 0;
 pixelDesc.cAccumBits = 64;
 pixelDesc.cAccumRedBits = 16;
 pixelDesc.cAccumGreenBits = 16;
 pixelDesc.cAccumBlueBits = 16;
 pixelDesc.cAccumAlphaBits = 0;
 pixelDesc.cDepthBits = 32;
 pixelDesc.cStencilBits = 8;
 pixelDesc.cAuxBuffers = 0;
 pixelDesc.iLayerType = PFD_MAIN_PLANE;
 pixelDesc.bReserved = 0;
 pixelDesc.dwLayerMask = 0;
 pixelDesc.dwVisibleMask = 0;
 pixelDesc.dwDamageMask = 0;

 m_GLPixelIndex = ChoosePixelFormat(hDC, &pixelDesc);
 if (m_GLPixelIndex == 0) // Let's choose a default index.
 {
 m_GLPixelIndex = 1;
 if (DescribePixelFormat(hDC, m_GLPixelIndex,
 sizeof(PIXELFORMATDESCRIPTOR), &pixelDesc) == 0)
 {
 return FALSE;
 }
 }

788

This book is continuously updated. See http://www.iftech.com/mfc

D
U

si
ng

 O
p

e
nG

L
w

ith
 M

FC

 if (SetPixelFormat(hDC, m_GLPixelIndex, &pixelDesc) == FALSE)
 {
 return FALSE;
 }

 return TRUE;
}

If you run the program now it will look like a generic MFC shell. Try playing
with the pixel format descriptor. You may want to try passing other indices into De-
scribePixelFormat to see what pixel formats are available. I’ll spend some time now
explaining what the code does and precautions you should take in the future.

A PIXELFORMATDESCRIPTOR contains all of the information defining a
pixel format. I’ll explain some of the important points here, but for a complete de-
scription look in the online help.

• dwFlags - Defines the devices and interfaces with which the pixel format is
compatible. Not all of these flags are implemented in the generic release of
OpenGL. Refer to the documentation for more information. dwFlags can ac-
cept the following flags:

Table D.1

Values for dwFlags

• iPixelType - Defines the method used to display colors. PFD_TYPE_RGBA
means each set of bits represents a Red, Green, and Blue value, while
PFD_TYPE_COLORINDEX means that each set of bits is an index into a
color lookup table. All of the examples in this program will use
PFD_TYPE_RGBA.

PFD_DRAW_TO_WINDOW Enables drawing to a window or device surface.

PFD_DRAW_TO_BITMAP Enables drawing to a bitmap in memory.

PFD_SUPPORT_GDI Enables GDI calls. Note: This option is not valid if
PFD_DOUBLEBUFFER is specified.

PFD_SUPPORT_OPENGL Enables OpenGL calls.

PFD_GENERIC_FORMAT Specifies if this pixel format is supported by the Windows
GDI library or by a vendor hardware device driver.

PFD_NEED_PALETTE Tells if the buffer requires a palette. This tutorial assumes
color will be done with 24 or 32 bits and will not cover
palettes.

PFD_NEED_SYSTEM_PALETTE This flag indicates if the buffer requires the reserved system
palette as part of its palette. As stated above, this tutorial will
cover palettes.

PFD_DOUBLEBUFFER Indicates that double-buffering is used. Note that GDI
cannot be used with windows that are double buffered.

PFD_STEREO Indicates that left and right buffers are maintained for stereo
images.

D
.1

W
riting

 a
n O

p
e

nG
L Pro

g
ra

m

This book is continuously updated. See http://www.iftech.com/mfc

789

• cColorBits - Defines the number of bits used to define a color. For RGBA it
is the number of bits used to represent the red, green, and blue components
of the color (but not the alpha). For indexed colors, it is the number of colors
in the table.

• cRedBits, cGreenBits, cBlueBits, cAlphaBits - The number of bits used to
represent the respective components.

• cRedShift, cGreenShift, cBlueShift, cAlphaShift - The number of bits each
component is offset from the beginning of the color.

 In SetWindowPixelFormat we initialize our structure, then call ChoosePixel-
Format to find the system pixel format that is closest to the one we want.
ChoosePixelFormat takes a DC and a PIXELFORMATDESCRIPTOR, and returns
an index used to reference that pixel format or 0 if the function fails. If the function
fails, we just set the index to 1 and get the pixel format description using DescribePix-
elFormat. There are a limited number of pixel formats, and the system defines what
their properties are. If you ask for pixel format properties that are not supported,
ChoosePixelFormat will return an integer to the format that is closest to the one you
requested. Once we have a valid pixel format index and the corresponding description
we can call SetPixelFormat. A window’s pixel format may be set only once.

 After the pixel format is set we have to create the rendering context and make
it current. This is done by calling our CreateViewGLContext function in OnCreate:

int COpenGLView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 HDC hDC = ::GetDC(GetSafeHwnd());
 if (SetWindowPixelFormat(hDC) == FALSE)
 return 0;

 if (CreateViewGLContext(hDC) == FALSE)
 return 0;

 return 0;
}

BOOL COpenGLView::CreateViewGLContext(HDC hDC)
{
 m_hGLContext = wglCreateContext(hDC);
 if (m_hGLContext == NULL)
 {
 return FALSE;
 }

 if (wglMakeCurrent(hDC, m_hGLContext) == FALSE)
 {
 return FALSE;
 }

790

This book is continuously updated. See http://www.iftech.com/mfc

D
U

si
ng

 O
p

e
nG

L
w

ith
 M

FC

 return TRUE;
}

When the view is destroyed we need to clean up:

void COpenGLView::OnDestroy()
{

 if(wglGetCurrentContext()!=NULL)
 {
 // make the rendering context not current
 wglMakeCurrent(NULL, NULL) ;
 }

 if (m_hGLContext != NULL)
 {
 wglDeleteContext(m_hGLContext);
 m_hGLContext = NULL;
 }

 CView::OnDestroy();
}

Now if you run the program it will still look like a generic MFC program, but
it is now enabled for OpenGL drawing. You may have noticed that we created one
rendering context at the beginning of the program and used it the entire time. This
goes against most GDI programs where DCs are created only when drawing is re-
quired and freed immediately afterwards. This is a valid option with RCs as well,
however creating an RC can be quite processor intensive. Because we are trying to
achieve high performance graphics, the code only creates the RC once and uses it the
entire time.

CreateViewGLContext creates and makes current a rendering context. wglCre-
ateContext returns a handle to an RC. The pixel format for the device associated with
the DC you pass into this function must be set before you call CreateViewGLContext.
wglMakeCurrent sets the RC as the current context. The DC passed into this function
does not need to be the same DC you used to create the context, but it must have the
same device and pixel format. If another rendering context is current when you call
wglMakeCurrent, the function simply flushes the old RC and replaces it with the new
one. To make no rendering context current you may call:

wglMakeCurrent(NULL, NULL);

Because OnDestroy releases the window’s RC, we need to delete the rendering
context there. But before we delete the RC, we need to make sure it is not current. We
use wglGetCurrentContext to see if there is a current rendering context. If there is, we
remove it by calling wglMakeCurrent. Next we call wglDeleteContext to delete out
the RC. It is now safe to allow the view class to release the DC. Note that since the
RC was current to our thread we could have just called wglDeleteContext without first
making it not current. Don’t get into the habit of doing this. If you ever start using
multi-threaded applications that convenience is going to bite you.

D
.2

Sim
p

le
 2-D

 G
ra

p
hic

s

This book is continuously updated. See http://www.iftech.com/mfc

791

D.2 Simple 2-D Graphics

The sample program presented in this section will show you how to create the
viewport, set up matrix modes, and draw some simple 2-D images. Use the ClassWiz-
ard to add handlers for the view’s WM_SIZE and WM_PAINT messages.

void COpenGLView::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 glLoadIdentity();
 glClear(GL_COLOR_BUFFER_BIT);

 glBegin(GL_POLYGON);
 glColor3f(1.0f, 0.0f, 0.0f);
 glVertex2f(100.0f, 50.0f);
 glColor3f(0.0f, 1.0f, 0.0f);
 glVertex2f(450.0f, 400.0f);
 glColor3f(0.0f, 0.0f, 1.0f);
 glVertex2f(450.0f, 50.0f);
 glEnd();

 glFlush();

}

void COpenGLView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);

 GLsizei width = cx;
 GLsizei height = cy;
 GLdouble aspect = (cy == 0) ? (GLdouble)width :
 (GLdouble)width/(GLdouble)height;

 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluOrtho2D(0.0, 500.0*aspect, 0.0, 500.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

}

If you run the program now you should see a black window with a large multi-
colored triangle in it. Try resizing the window and watch the triangle resize along with
it. OnPaint is where we draw the triangle. First we clear the current matrix using gl-
LoadIdentity. This isn’t really necessary since we are doing any transformations, but
it is there just in case you decide to add one. Next we clear the color buffer with
glClear (which in this case happens to be the screen, but could be a print buffer or bit-
map depending on the type of device context you used to create rendering context).
glBegin changes the state of the rendering context. From an object oriented perspec-
tive, it creates an internal object of type GL_POLYGON, which is defined by all
commands issued until glEnd is called. Our triangle is defined with three vertices.

792

This book is continuously updated. See http://www.iftech.com/mfc

D
U

si
ng

 O
p

e
nG

L
w

ith
 M

FC

glColor3f sets the current color. The first call sets the color to Red by specifying the
Red component to 1 and the Green and Blue components to 0. We then define a ver-
tex at point (100,50) in our world coordinates by calling glVertex2f. We now have a
red vertex at point (100,50). We repeat this process, setting the color to Green and
Blue respectively, for the next two vertices. The call to glEnd ends the definition of
this polygon. At this point there should still be nothing on the screen. OpenGL will
save the list of commands in a buffer until you call glFlush. glFlush causes these com-
mands to be executed. OpenGL automatically interpolates the colors between each of
the points to give you the multi-hued triangle you see on the screen. Play with some
of the different shapes you can create with glBegin. In the next section, we will move
our drawing routines into the document class. I will also show you how to use the basic
transforms and the importance of pushing and popping matrices onto and off of the
matrix stack.

OnSize defines the viewport and the viewing coordinates. We change the view-
port in OnSize so it changes when you resize the window. The viewport is the area of
the window that the OpenGL commands can draw into. It is set by calling glView-
port. This sets the lower left hand corner of the viewport to the lower left hand corner
of the window and sets the height and width to that of the window. The parameters
passed into the function are in screen coordinates. If you changed the glViewport
command to the following:

glViewport(width/4, height/4, width/2, height/2);

Then made the window taller than it is wide, because the viewport is smaller
than the screen, part of the triangle will be clipped. The next OpenGL call is glMa-
trixMode. OpenGL maintains three internal matrices to control various
transformations, Projection, ModelView, and Texture. The Projection matrix handles
transformations from the eye coordinates to clip coordinates. The ModelView matrix
converts object coordinates to eye coordinates. The Texture matrix converts textures
from the coordinates they are defined in to the coordinates need to map them onto a
surface. glMatrixMode sets which of these matrices will be affected by matrix opera-
tions. Don't worry if you don't understand these right now, I'll explain them as
needed. glLoadIdentity initializes the projection matrix. gluOrtho2D sets the project
matrix to display a two dimension orthogonal image. The numbers passed into this
function define the space within which you may draw. This space is known as the
world coordinates. We now initialize the ModelView matrix and leave OpenGL in
this matrix mode. Matrix operations (which include transformations) carried out
while in the ModelView mode will affect the location and shape of any object drawn.
For example if we called:

glRotated(30, 0, 0, 1);

Just before our glBegin call in OnPaint, our triangle would be rotated 30 degrees
around the lower left corner of the screen. We will look at this more a little later. (For

D
.3

Tra
nsfo

rm
a

tio
ns a

nd
 the

 M
a

trix Sta
c

k

This book is continuously updated. See http://www.iftech.com/mfc

793

those of you who have used IRIS GL, we have just set up the equivalent of calling
mmode(MSINGLE). There is an entire section in the online documentation detailing
the differences between IRIS GL and OpenGL for those who are interested.)

Let me take a moment at this point to discuss the naming conventions OpenGL
uses. All OpenGL commands use the prefix “gl”. There are also a number of “glu”
commands which are considered “GL Utilities”. These “glu” commands are simply
combinations of “gl” commands that perform commonly useful tasks—like setting up
2-D orthographic matrices. Most “gl” commands have a number of variants that each
take different data types. The glVertex2f command, for instance, defines a vertex using
two floats. There are other variants ranging from four doubles to an array of two
shorts. Read the list of glVertex calls in the online documentation and you will feel
like you are counting off an eternal list. glVertex2d, glVertex2f, glVertex3i,
glVertex3s, glVertex2sv, glVertex3dv...

D.3 Transformations and the Matrix Stack

 In this section we will add a “robot arm” that you can control with your mouse.
This “arm” will actually be two rectangles where one rectangle rotates about a point
on the other rectangle. To begin, add the following member variables and functions
to the application’s document class:

protected:
 enum GLDisplayListNames { ArmPart=1 };
 double m_transX; // x offset of arm from the WCS origin
 double m_transY; // y offset of arm from the WCS origin
 double m_angle1; // angle of 1st arm part with respect to WC axis
 double m_angle2; // angle of 2nd arm part with respect to 1st part

 void COpenGLDoc::RenderScene(void)

Initialize the member variables in the document’s constructor:

COpenGLDoc::COpenGLDoc()
{

 m_transY=100;
 m_transX=100;
 m_angle2=15;
 m_angle1=15;

}

Here we will change the painting model so the document actually renders the
scene. With this model, the document defines the scene and the view defines how the
scene is displayed. For example, if you had two views and you wanted each to be dif-
ferent, you could set view specific transformations in OnPaint before calling
RenderScene. Then both views would be rendered with the same scene but they would
be displayed differently.

void COpenGLView::OnPaint()
{

794

This book is continuously updated. See http://www.iftech.com/mfc

D
U

si
ng

 O
p

e
nG

L
w

ith
 M

FC

 CPaintDC dc(this); // device context for painting

 // Set view specific transformations here

 COpenGLDoc* pDoc = GetDocument();
 pDoc->RenderScene();

}

We will be using what is known as a display list to draw the parts of our arm. A
display list is simply a list of OpenGL commands that have been stored and named
for future processing. Display lists are often preprocessed, giving them a speed advan-
tage over the same commands called without using a display list. Once a display list is
created, its commands may be executed by calling glCallList with the integer name of
the list. We will create the display list each time a document is created. You would also
do this if you wanted to read the scene data from a file.

BOOL COpenGLDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 glNewList(ArmPart);
 glBegin(GL_POLYGON);
 glVertex2f(-10.0f, 10.0f);
 glVertex2f(-10.0f, -10.0f);
 glVertex2f(100.0f, -10.0f);
 glVertex2f(100.0f, 10.0f);
 glEnd();
 glEndList();

 return TRUE;
}

Rendering the scene just consists of executing the display list:

void COpenGLDoc::RenderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glColor3f(1.0f, 0.0f, 0.0f);
 glCallList(ArmPart);

 glFlush();
}

If you were to run the program now, all you would see is a small red rectangle in
the lower left hand corner of the screen. Now add the following lines:

void COpenGLDoc::RenderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glRotated(m_angle1, 0, 0, 1);

D
.3

Tra
nsfo

rm
a

tio
ns a

nd
 the

 M
a

trix Sta
c

k

This book is continuously updated. See http://www.iftech.com/mfc

795

 glTranslated(m_transX, m_transY, 0);

 glColor3f(1.0f, 0.0f, 0.0f);
 glCallList(ArmPart);

 glFlush();
}

These two commands affect the ModelView matrix, causing our rectangle to ro-
tate the number of degrees stored in m_angle1 and translate by the distance defined
by (m_transX, m_transY). Run the program now to see the results. Notice that every
time the program gets a WM_PAINT event the rectangle moves a little bit more. The
effect occurs because we keep changing the ModelView matrix each time we call gl-
Rotate and glTranslate. Note that resizing the window resets the rectangle to its
original position because OnSize clears the matrix to an identity matrix. To keep from
having this effect, after rotating and translating the matrix, we need to leave the matrix
in the same state in which we found it. To do this we will use the matrix stack.

void COpenGLDoc::RenderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glPushMatrix();

 glRotated(m_angle1, 0, 0, 1);
 glTranslated(m_transX, m_transY, 0);
 glColor3f(1.0f, 0.0f, 0.0f);
 glCallList(ArmPart);

 glPopMatrix();

 glFlush();
}

glPushMatrix takes a copy of the current matrix and places it on a stack. When
we call glPopMatrix, the last matrix pushed is restored as the current matrix. Our gl-
PushMatrix call preserves the initial identity matrix, and glPopMatrix restores it after
we dirtied up the matrix. We can use this technique to position objects with respect
to other objects. Once again, edit RenderScene to match the code below.

void COpenGLDoc::RenderScene(void)
{
 glClear(GL_COLOR_BUFFER_BIT);

 glPushMatrix();
 glRotated(m_angle1, 0, 0, 1);
 glTranslated(m_transX, m_transY, 0);

 glPushMatrix();
 glRotated(m_angle2, 0, 0, 1);
 glTranslated(90, 0, 0);
 glColor3f(0.0f, 1.0f, 0.0f);
 glCallList(ArmPart);
 glPopMatrix();

 glColor3f(1.0f, 0.0f, 0.0f);
 glCallList(ArmPart);

796

This book is continuously updated. See http://www.iftech.com/mfc

D
U

si
ng

 O
p

e
nG

L
w

ith
 M

FC

 glPopMatrix();

 glFlush();
}

When you run this you will see a red rectangle overlapping a green rectangle.
The translate commands actually move the object’s vertex in the world coordinates.
When the object is rotated, it still rotates around its own vertex, thus allowing the
green rectangle to rotate around the end of the red one.

D.4 Mouse Action

Now we will add mouse handling so we can translate and rotate the arm using
the mouse. Add the following member variables to the view class definition, and add
message handlers for the WM_LBUTTONDOWN, WM_RBUTTONDOWN,
and WM_MOUSEMOVE messages.

protected:
 CPoint m_ptLDown;
 CPoint m_ptRDown;

All we need to do in OnLButtonDown and OnRButtonDown is save the point where
the mouse was clicked:

void COpenGLView::OnLButtonDown(UINT nFlags, CPoint point)
{

 m_ptLDown = point;

 CView::OnLButtonDown(nFlags, point);
}

void COpenGLView::OnRButtonDown(UINT nFlags, CPoint point)
{

 m_ptRDown = point;

 CView::OnRButtonDown(nFlags, point);
}

OnMouseMove changes the scene as the mouse moves when a button is pressed:

void COpenGLView::OnMouseMove(UINT nFlags, CPoint point)
{

 if (nFlags & MK_RBUTTON)
 {
 CSize rotate = m_ptRDown - point;
 m_ptRDown = point;

 COpenGLDoc* pDoc = GetDocument();
 pDoc->m_angle1 += rotate.cx/3;
 pDoc->m_angle2 += rotate.cy/3;

 InvalidateRect(NULL);
 }

 if (nFlags & MK_LBUTTON)

D
.5

D
o

ub
le

 Buffe
ring

This book is continuously updated. See http://www.iftech.com/mfc

797

 {
 CSize translate = m_ptLDown - point;
 m_ptLDown = point;

 COpenGLDoc* pDoc = GetDocument();
 pDoc->m_transX -= translate.cx/3;
 pDoc->m_transY += translate.cy/3;

 InvalidateRect(NULL);
 }

 CView::OnMouseMove(nFlags, point);
}

Now if you run the program you can drag with the left mouse button to move
(translate) the arm, and drag with the right button to rotate the parts of the arm. On-
MouseMove uses the current mouse point to change the values of the document then
invalidates the window so the scene will be repainted. The only problem now is an
annoying flicker from the full screen refreshes. We can fix this problem using double
buffering.

D.5 Double Buffering

Double buffering is a very simple concept used in most high performance graph-
ics programs. Instead of drawing to one buffer that maps directly to the screen, two
buffers are used. One buffer is always displayed (known as the front buffer), while the
other buffer is hidden (known as the back buffer). We do all of our drawing to the
back buffer and, when we are done, swap it with the front buffer. Because all of the
updates happen at once we don’t get any flicker. The only drawback to double buff-
ering is that it is incompatible with GDI. GDI was not designed with double buffering
in mind. Because of this, GDI commands will not work in an OpenGL window with
double buffering enabled.

The first step to eliminating the flicker is to change all of the InvalidateRect calls
to:

InvalidateRect(NULL, FALSE);

This keeps the background from being erased before painting the window. This will
solve most of our flicker problem (the rest of the flicker was mainly to make a point).
To enable double buffering for the pixel format, change the pixelDesc.dwFlags defini-
tion in our SetWindowPixelFormat to the following:

pixelDesc.dwFlags = PFD_DRAW_TO_WINDOW | PFD_SUPPORT_OPENGL |
 PFD_DOUBLEBUFFER | PFD_STEREO_DONTCARE;

There are no checks when we set the pixel format to make sure that the one re-
turned from ChoosePixelFormat has double buffering.

798

This book is continuously updated. See http://www.iftech.com/mfc

D
U

si
ng

 O
p

e
nG

L
w

ith
 M

FC

To use the double buffering we need to tell OpenGL to draw only onto the back
buffer. Up until now we have been drawing on the front buffer. Add the following line
to the end of the view’s OnSize:

glDrawBuffer(GL_BACK);

Now each time we draw the scene we need to swap the buffer, so add this to the end
of OnPaint:

SwapBuffers(dc.m_ps.hdc);

Now if you run the program you should see absolutely no flicker. However, the
program will run noticeably slower. If you still see any flicker then ChoosePixelFormat
is not returning a pixel format with double buffering. Remember that ChoosePixel-
Format returns an identifier for the pixel format that it believes is closest to the one
you want. Try forcing different indices when you call SetPixelFormat until you find a
format that supports double buffering.

In the final sample program, we will construct a three dimensional cube. There
may be some 3-D graphics concepts in this section that those uninitiated to graphics
will not understand. Explaining these concepts is beyond the scope of this tutorial. For
those people, I recommend reading one of the books listed at the end of this tutorial.

D.6 A Three Dimensional Cube

First we need to change our viewing coordinate system. gluOrtho2D, the func-
tion we have been calling to set up our projection matrix, actually creates a 3
dimensional view with the near clipping plane at z=-1 and the far clipping plane at 1.
You’ve actually been doing 3-D programming all along. All of the “2-D” commands
we have been calling have actually been 3-D calls where the z coordinate was zero. To
view our cube, we would like to use perspective projection. To set up a perspective
projection we need to change OnSize to the following:

void COpenGLView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);

 GLsizei width = cx;
 GLsizei height = cy;
 GLdouble aspect = (cy == 0) ? (GLdouble)width :
 (GLdouble)width/(GLdouble)height;

 glViewport(0, 0, width, height);
 glMatrixMode(GL_PROJECTION);
 glLoadIdentity();
 gluPerspective(45, aspect, 1, 10.0);
 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();
 glDrawBuffer(GL_BACK);

}

D
.6

A
 Thre

e
 D

im
e

nsio
na

l C
ub

e

This book is continuously updated. See http://www.iftech.com/mfc

799

Orthogonal projection maps everything in three dimensional space onto a two
dimensional surface at right angles. The result is everything looks the same size regard-
less of its distance from the eye point. Perspective project simulates light passing
through a point (as if you were using a pinhole camera). The result is a more natural
picture where distant object appear smaller. The gluPerspective call above sets the eye
point at the origin, gives us a 45 angle field of view, a front clipping plane at 1, and a
back clipping plane at 10. Now lets draw our cube. Edit RenderScene to look like this:

void COpenGLDoc::RenderScene(void)
{

 glClear(GL_COLOR_BUFFER_BIT);

 glPushMatrix();
 glTranslated(0.0, 0.0, -8.0);
 glRotated(m_xRotate, 1.0, 0.0, 0.0);
 glRotated(m_yRotate, 0.0, 1.0, 0.0);

 glBegin(GL_POLYGON);
 glNormal3d(1.0, 0.0, 0.0);
 glVertex3d(1.0, 1.0, 1.0);
 glVertex3d(1.0, -1.0, 1.0);
 glVertex3d(1.0, -1.0, -1.0);
 glVertex3d(1.0, 1.0, -1.0);
 glEnd();

 glBegin(GL_POLYGON);
 glNormal3d(-1.0, 0.0, 0.0);
 glVertex3d(-1.0, -1.0, 1.0);
 glVertex3d(-1.0, 1.0, 1.0);
 glVertex3d(-1.0, 1.0, -1.0);
 glVertex3d(-1.0, -1.0, -1.0);
 glEnd();

 glBegin(GL_POLYGON);
 glNormal3d(0.0, 1.0, 0.0);
 glVertex3d(1.0, 1.0, 1.0);
 glVertex3d(-1.0, 1.0, 1.0);
 glVertex3d(-1.0, 1.0, -1.0);
 glVertex3d(1.0, 1.0, -1.0);
 glEnd();

 glBegin(GL_POLYGON);
 glNormal3d(0.0, -1.0, 0.0);
 glVertex3d(-1.0, -1.0, 1.0);
 glVertex3d(1.0, -1.0, 1.0);
 glVertex3d(1.0, -1.0, -1.0);
 glVertex3d(-1.0, -1.0, -1.0);
 glEnd();

 glBegin(GL_POLYGON);
 glNormal3d(0.0, 0.0, 1.0);
 glVertex3d(1.0, 1.0, 1.0);
 glVertex3d(-1.0, 1.0, 1.0);
 glVertex3d(-1.0, -1.0, 1.0);

800

This book is continuously updated. See http://www.iftech.com/mfc

D
U

si
ng

 O
p

e
nG

L
w

ith
 M

FC

 glVertex3d(1.0, -1.0, 1.0);
 glEnd();

 glBegin(GL_POLYGON);
 glNormal3d(0.0, 0.0, -1.0);
 glVertex3d(-1.0, 1.0, -1.0);
 glVertex3d(1.0, 1.0, -1.0);
 glVertex3d(1.0, -1.0, -1.0);
 glVertex3d(-1.0, -1.0, -1.0);
 glEnd();
 glPopMatrix();

}

Add member variables to the document class for m_xRotate and m_yRotate
(look at the function definitions to determine the correct type). Add member variables
and event handlers to the view class to modify the document variables when you drag
with the left mouse button just like we did in the last example (hint: Handle the
WM_LBUTTONDOWN, WM_LBUTTONUP, and WM_MOUSEMOVE
events. Look at the sample source code if you need help). Compile and run the pro-
gram. You should see a white cube that you can rotate. You will not be able to see any
discernible feature yet since the cube has no surface definition and there is no light
source. We will add these features next. Add the following lines to the beginning of
RenderScene:

 GLfloat RedSurface[] = { 1.0f, 0.0f, 0.0f, 1.0f};
 GLfloat GreenSurface[] = { 0.0f, 1.0f, 0.0f, 1.0f};
 GLfloat BlueSurface[] = { 0.0f, 0.0f, 1.0f, 1.0f};

These defines surface property values. Once again, the numbers represent the
red, green, blue and alpha components of the surfaces. The surface properties are set
with the command glMaterial. Add glMaterial calls to the following locations:

 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, RedSurface);
 glBegin(GL_POLYGON);
 ...
 glEnd();

 glBegin(GL_POLYGON);
 ...
 glEnd();

 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, GreenSurface);
 glBegin(GL_POLYGON);
 ...
 glEnd();

 glBegin(GL_POLYGON);
 ...
 glEnd();

 glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, BlueSurface);
 glBegin(GL_POLYGON);

D
.7

Z-Buffe
ring

This book is continuously updated. See http://www.iftech.com/mfc

801

 ...
 glEnd();

 glBegin(GL_POLYGON);
 ...
 glEnd();

These new calls make two of the cube faces red, two faces green, and two faces
blue. The commands set the ambient color for front and back of each face. However,
the cube will still appear featureless until the lighting model is enabled. To do this add
the following command to the end of OnSize:

 glEnable(GL_LIGHTING);

Now if you run the program you should see one of the blue faces of the cube.
Rotate the cube with your mouse. You will notice the cube looks very strange. Faces
seem to appear and disappear at random. This is because we are simply drawing the
faces of the cube with no regard as to which is in front. When we draw a face that is
in back, it draws over any faces in front of it that have been drawn. The solution to
this problem is z-buffering.

D.7 Z-Buffering

 The z-buffer holds a value for every pixel on the screen. This value represents
how close that pixel is to the eye point. Whenever OpenGL attempts to draw to a pix-
el, it checks the z-buffer to see if the new color is closer to the eye point than the old
color. If it is, the pixel is set to the new color. If not, then the pixel retains the old color.
As you can guess, z-buffering can take up a large amount of memory and CPU time.
The cDepthBits parameter in the PIXELFORMATDESCRIPTOR we used in Set-
WindowPixelFormat defines the number of bits in each z-buffer value. Enable z-
buffering by adding the following command at the end of OnSize:

 glEnable(GL_DEPTH_TEST);

We also need to clear the z-buffer when we begin a new drawing. Change the glClear
command in RenderScene to the following:

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Now if you run the program you should have a colorful cube that rotates in space
and draws correctly, but it is very faint. Let’s add a light to the scene so that we can
see the cube better. Add the following declaration to the beginning of RenderScene:

 GLfloat LightAmbient[] = { 0.1f, 0.1f, 0.1f, 0.1f };
 GLfloat LightDiffuse[] = { 0.7f, 0.7f, 0.7f, 0.7f };
 GLfloat LightSpecular[] = { 0.0f, 0.0f, 0.0f, 0.1f };
 GLfloat LightPosition[] = { 5.0f, 5.0f, 5.0f, 0.0f };

These will serve as the property values for our light. Now add the following commands
just after glClear in RenderScene:

802

This book is continuously updated. See http://www.iftech.com/mfc

D
U

si
ng

 O
p

e
nG

L
w

ith
 M

FC

 glLightfv(GL_LIGHT0, GL_AMBIENT, LightAmbient);
 glLightfv(GL_LIGHT0, GL_DIFFUSE, LightDiffuse);
 glLightfv(GL_LIGHT0, GL_SPECULAR, LightSpecular);
 glLightfv(GL_LIGHT0, GL_POSITION, LightPosition);
 glEnable(GL_LIGHT0);

glLight defines properties for light sources. OpenGL’s light sources are all creat-
ed within the implementation of OpenGL. Each light source has an identifier
GL_LIGHTi where i is zero to GL_MAX_LIGHTS. The above commands set the
ambient, diffuse, and specular properties , as well as the position, of light zero. glEn-
able turns on the light.

The program is currently wasting time by drawing the interior faces of the cube
with our colored surfaces. To fix this, change the GL_FRONT_AND_BACK param-
eter in all of the glMaterialfv calls to GL_FRONT. We also want to set the diffuse
reflectivity of the cube faces now that we have a light source. To do this, change the
GL_AMBIENT parameter in the glMaterialfv calls to
GL_AMBIENT_AND_DIFFUSE. Now if you run the program you should have a
program that displays a lighted, multi-colored cube in three dimensions that uses z-
buffering and double buffering.

D.8 Conclusion

You should now know how to set up an OpenGL program using MFC, and
should also understand some of the basic graphics commands. If you wish to explore
OpenGL further you should look through the sample programs or read through the
documentation in Books Online. You may also find the following OpenGL books
useful. These books are also referred to as the “Red Book” and the “Blue Book” (as per
their respective colors).

1. OpenGL Programming Guide, The Official Guide to Learning OpenGL,
Release 1 . OpenGL Architecture Review Board, 1992, Addison Wesley, ISBN
0-201-63274-8.

2. OpenGL Reference Manual, The Official Reference Document for OpenGL,
Release 1 . OpenGL Architecture Review Board, 1992, Addison Wesley, ISBN
0-201-63276-4.

If you would like to learn more about graphics in general, the following books would
be helpful.

1. Foley, J. D. and Dam, A. V. and Feiner, S. K. and Hughes., J. F. Computer
Graphics, Principles and Practice. Addison-Wesley Publishing Company: Read-
ing, Massachusetts, 1990

2. Hill, F. S. Computer Graphics. MacMillian Publishing Company: New York,
1990.
It really is necessary to understand the basics of the material in either of these

books if you want to do any serious 3-D graphics.

