

ActiveX Scripting in MFC

By Steve Wampler

Like Microsoft Internet Explorer, your applications can support VBScript (Visual

Basic Scripting Edition) and JScript (JavaScript) with very little effort on your

part. Microsoft has done most of the work by providing VBScript and JScript engines

and by defining the ActiveX scripting COM interfaces that enable you to use the

engines within your applications.

We'll take Microsoft's work one step further with an MFC-like C++ class called

CScriptEngine that implements the ActiveX scripting interfaces in the context of

a sample MFC application.

You should be familiar with MFC and automation. If not, read up on both in the Visual

C++ online documentation.

Note that for ActiveX scripting to work in your MFC applications, your Visual C++

environment must be version 4.2b. The 4.2b upgrade patch is available from Microsoft

at http://www.microsoft.com/visualc under "Downloads and Patches." You must also

have the VBScript and JScript DLLs that come with Internet Explorer. You can download

the DLLs from Microsoft at http://www.microsoft.com/msdownload/scripting.htm.

Why ActiveX scripting?

-

"Automation enables automation clients such as Visual Basic to use your applications.

But why would you want your application to support ActiveX scripting as well? The

answer depends on your application."

-

Automation enables automation clients such as Visual Basic to use your applications.

But why would you want your application to support ActiveX scripting as well? The

answer depends on your application.

For example, if your application is an ActiveX control container your users will

likely want to write scripts that access the controls' automation events, properties,

and methods. Your users may also want their scripts stored within the application's

documents. And finally, they likely want a choice in scripting languages. By adding

support for ActiveX scripting, your applications can do all of these things. Let's

examine a sample application called ScriptTest to see how.

The ScriptTest application from the user's perspective

ScriptTest is a Hello, World!–type application. It's a simple Single Document

Interface (SDI) application generated using the MFC AppWizard. Here's what

ScriptTest looks like in action:

To edit and run a ScriptTest script, you invoke the Enter Script dialog by selecting

Run from the Script menu. Here's what the Enter Script dialog looks like:

In the Script Type box, you choose VBScript or JScript. You enter the script's text

in the Script edit control.

To give it a try, download the ScriptTest application from the VCDJ web-site and

run it. From the menu bar, select Script and Run, and enter the following VBScript:

Sub SayGoodbye

 Document.Text = "Goodbye, World!"

End Sub

SayGoodbye

Press OK to run the script.

This VBScript declares a SayGoodbye subroutine that simply sets the document's Text

property (described shortly) to "Goodbye, World!" The script then calls the

SayGoodbye subroutine. After running the script, ScriptTest displays "Goodbye,

World!"

ScriptTest from a programmer's perspective

We enabled ActiveX scripting in ScriptTest in two steps: first, we add an automation

method, and a property in ScriptTest's document class, CScriptTestDoc, gave a script

something to do; second, two C++ classes enabled ScriptTest to create and use an

ActiveX scripting engine.

Step 1: automating the ScriptTest application. Before adding support for ActiveX

scripting, we use the Visual C++ ClassWizard to add an automation property called

Text and a method called MsgBox() to ScriptTest's CScriptTestDoc class. The Text

property is held in a CString variable within ScriptTest's document class. Its value

is what you see written in ScriptTest's window.

In VBScript, you can get and set the document's Text property like so:

' get the Text property

strText = Document.Text

' set the Text property

Document.Text = "Goodbye, World!"

The MsgBox() method takes one string parameter containing the message text. For

example, the VBScript statement Document.MsgBox("Goodbye, World!") causes the

ScriptTest to display the following message:

Step 2: creating and using a scripting engine. To create and use an ActiveX scripting

engine, ScriptTest includes the classes CScriptEngine and CScriptTestScriptEngine.

-

"The CScriptEngine class is an MFC-like wrapper around an ActiveX scripting engine.

It's general enough that you should be able to reuse it in other MFC applications."

The CScriptEngine class is an MFC-like wrapper around an ActiveX scripting engine.

It's general enough that you should be able to reuse it in other MFC applications.

The CScriptTestScriptEngine class is derived from CScriptEngine. It overrides one

virtual function called OnGetItemInfo() that the scripting engine calls when it

needs information about ScriptTest's automation

The CScriptEngine class. CScriptEngine plays two roles: From your application's

perspective, it provides a set of methods for creating, initializing, and running

a scripting engine. From the engine's perspective, it defines (but does not implement)

the virtual OnGetItemInfo() method called by the script engine to obtain information

about your application's automation objects. We'll look at the OnGetItemInfo()

method shortly when we cover the CScriptTestScriptEngine class.

The best way to describe CScriptEngine is in the context of ScriptTest's

CScriptDialog::OnOK() method. CScriptDialog is the class that implements

ScriptTest's Enter Script dialog, and CScriptDialog::OnOK() is the method MFC calls

when you press the dialog's OK button. CScriptDialog::OnOK() is responsible for

creating a CScriptEngine object and using that object to run a script.

The CScriptDialog::OnOK() method appears below with comments and with all of the

error-handling code removed.

void CScriptDialog::OnOK()

{

The first few lines of OnOK() simply call a few helper functions defined in the

CScriptDialog class. The helpers obtain the script's text and type from the dialog's

controls.

// get the script text

 CString strScript = GetScript();

 // get the script engine's class identifier (CLSID)

 const CLSID* pCLSID = GetScriptEngineCLSID();

 ASSERT(pCLSID != NULL);

Next, OnOK() creates a new CScriptTestScriptEngine that for our purposes is treated

as a CScriptEngine.

// create the script engine proxy on heap (already AddRef'd upon return)

 CScriptEngine* pScriptEngine = new CScriptTestScriptEngine(m_pDoc);

 ASSERT(pScriptEngine != NULL);

Like many MFC objects such as a CWnd, a CScriptEngine is really a proxy for another

object, in this case an ActiveX scripting engine. With a CScriptEngine object in

place, it's time to create the real engine using the CScriptEngine::Create() method.

Create() is implemented in the CScriptEngine class and takes the class identifier

(CLSID) of the type of engine you'd like to create.

// create the actual scripting engine

 pScriptEngine->Create(*pCLSID);

Now we're ready to feed the engine the script using the

CScriptEngine::ParseScriptText() method. If you look in the ScriptEngine.h file,

you'll see ParseScriptText() takes a lot of parameters. All the parameters but the

first— the script's text— have default values, so the first parameter is the only

one provided.

// give the engine the script

 USES_CONVERSION; // needed by the T2COLE macro

 pScriptEngine->ParseScriptText(T2COLE(strScript));

The only other thing to note here is the use of MFC's USES_CONVERSION and T2COLE

macros. T2COLE converts a single-byte string into an OLE (double-byte) string.

USES_CONVERSION defines a local variable used by T2COLE. For more information on

using MFC conversion macros, see technical note #59 in the Visual C++ online

documentation.

Next, the OnOK() method calls the CScriptEngine::AddNamedItem() method to tell the

engine the name of ScriptTest's "Document" object.

// add the document as a named item

 pScriptEngine->AddNamedItem(L"Document");

You can call AddNamedItem() for other items as well, and you can name them anything

you want. Typically, though, you only explicitly name your application's "top level"

objects. Objects embedded within your application's top-level objects, such as

ActiveX controls, are usually accessed through the top-level objects' automation

properties and methods. For each item you add using AddNamedItem(), you should expect

one or more calls to the virtual CScriptEngine::OnGetItemInfo() method.

Now we're ready to run the script by calling the Run() method.

// run the script

 pScriptEngine->Run();

The Run() method immediately executes the script and returns. If the engine

encounters an error in the script, it calls the CScriptEngine::OnScriptError()

method which, by default, displays a message box:

Note that if your script has any event-handling methods, they aren't called until

an event occurs. Say your application has an object named MyButton that generates

a Click event each time the user clicks a particular button. Using Visual Basic's

event-handler naming convention, the VBScript code to handle MyButton's Click event

would look something like this:

Sub MyButton_Click

 ...

End Sub

As long as the VBScript engine is running, it calls the MyButton_Click event whenever

the user clicks on the button.

Because ScriptTest's automation objects don't generate any events, it's safe to

terminate the script engine before exiting the CScriptDialog::OnOK() method. You

may want to let the script engine continue to run, though. We'll look at how to do

that at the end of this article.

You terminate the script engine using the CScriptEngine::Close() and

CCmdTarget::ExternalRelease() methods.

// close the script engine

 pScriptEngine->Close();

 // release the script engine (it'll delete itself)

 pScriptEngine->ExternalRelease();

Finally, we let the CDialog base class do its thing.

 CDialog::OnOK();

}

That's all it takes to run a simple script.

The CScriptTestScriptEngine class.The CScriptDialog::OnOK() method demonstrates

how to create, initialize, and use an ActiveX scripting engine through the

CScriptEngine class. Part of that initialization involves naming the application's

automation objects so you can refer to them by name within a script. But a scripting

engine needs more than just the object's name.

That brings us back to the OnGetItemInfo() method, which you'll recall is the one

method you must override in your CScriptEngine-derived class. Its purpose is to

provide information to a scripting engine about your application's automation

objects, specifically those, and only those, named using the

CScriptEngine::AddNamedItem() method.

Through OnGetItemInfo(), the script engine asks for a pointer to the item's IUnknown

interface, a pointer to an ITypeInfo interface describing the object, or pointers

to both. IUnknown and ITypeInfo are COM interfaces. If you're not familiar with them,

don't worry. In the code described below, you'll see how to obtain them.

The implementation of CScriptTestScriptEngine::OnGetItemInfo() appears below with

comments and without most of the error-handling code.

HRESULT CScriptTestScriptEngine::OnGetItemInfo(

 /* [in] */ LPCOLESTR pstrName,

 /* [in] */ DWORD dwReturnMask,

 /* [out]*/ IUnknown** ppUnknownItem,

 /* [out]*/ ITypeInfo** ppTypeInfo)

{

Let's begin with OnGetItemInfo()'s input parameters and output value.

When calling the OnGetItemInfo() method, the script engine asks for information

about a particular object by name, the same name specified in one of the calls to

the CScriptEngine::AddNamedItem() method. The engine specifies the object's name

through the pstrName parameter, which is always an OLE string.

The script engine uses the next parameter, dwReturnMask, to indicate whether it wants

the object's IUnknown pointer or a pointer to an ITypeInfo interface describing the

object. The last two parameters, ppUnknownItem and ppTypeInfo, are pointers to where

you'll store the resulting IUnknown and ITypeInfo pointers.

Finally, the return value is an HRESULT initialized here to S_OK to indicate all

is well.

HRESULT hr = S_OK;

Next, the wide-character-string-case-insensitive-comparison (yikes!) function

wcsicmp()determines if the scripting engine is asking for information about

ScriptTest's "Document" object. It does the comparison against the constant

L"Document" where the L forces the string to be an OLE character string.

// if the script engine wants the Document object ...

 if (wcsicmp(pstrName, L"Document") == 0) {

Your implementation of OnGetItemInfo() should contain one if statement for each

top-level object named using CScriptEngine::AddNamedItem(). Of course, for lots of

top-level objects you might want to use another method, such as a lookup table,

instead of a bunch of if-then-else blocks.

With the object in question identified, our next task is to determine what

information the scripting engine wants by examining the dwReturnMask parameter.

We'll check dwReturnMask against SCRIPTINFO_IUNKNOWN, a constant defined by the

ActiveX Scripting Specification. If the result is TRUE, the scripting engine is

asking for a pointer to the object's IUnknown interface.

 // if the script engine wants the object's IUnknown pointer ...

 if (dwReturnMask & SCRIPTINFO_IUNKNOWN) {

For objects whose class is derived from MFC's CCmdTarget class, we can simply call

CCmdTarget::GetIDispatch() to obtain a pointer to the object's IDispatch interface

and then cast that pointer to a pointer to an IUnknown. That's safe because IDispatch,

like all good COM interfaces, is derived from IUnknown:

// return the document's IDispatch interface as its IUnknown

 ppUnknownItem = (IUnknown)m_pDoc->GetIDispatch(TRUE);

Make sure you pass TRUE to GetIDispatch(). A value of TRUE tells GetIDispatch() to

increment the object's reference count. The script engine will decrement the count

once it's done using the pointer.

Next we'll check the dwReturnMask parameter against SCRIPTINFO_ITYPEINFO. If the

result is TRUE, the engine asks for a pointer to an ITypeInfo interface describing

the object's COM object class (coclass):

 // if the script engine wants the object's ITypeInfo pointer ...

 if (dwReturnMask & SCRIPTINFO_ITYPEINFO) {

If your object generates automation events, and you want your scripts to handle those

events, you must return a pointer to an ITypeInfo; otherwise the script engine won't

know how to connect to your object's events. See the sidebar "Obtaining Your Object's

ITypeInfo Interface" on the next page, for more details on how to get an object's

ITypeInfo.

If your object doesn't generate events, or you don't care to handle them from a script,

you can safely return NULL in the *ppTypeInfo parameter.

 // CScriptTestDoc doesn't support events,

 // so just return a NULL pointer

 *ppTypeInfo = NULL;

 }

 } else {

You'll remember that near the top of OnGetItemInfo() we had an if statement that

compared the input name pstrName against L"Document". Well, here we are in the else

clause, and in it we set the return value hr to E_UNEXPECTED to indicate the script

engine has asked for an unexpected item.

 // the script engine asked for an unknown item

 hr = E_UNEXPECTED;

 }

 return hr;

}

That's it. The CScriptEngine class creates, initializes, and runs an ActiveX

scripting engine and gives that engine additional information about your automation

objects by overriding the CScriptEngine::OnGetItemInfo() method.

Obtaining Your Object's ITypeInfo Interface

Chances are, if you do anything more sophisticated than ScriptTest, you'll want to

supply the scripting engine with an ITypeInfo interface for at least those objects

that generate events. Here's one method that's worked well for me:

// get the object's IUnknown pointer

CCmdTarget* pMyObject = ...;

IUnknown* pUnknown = (IUnknown*)pMyObject->GetIDispatch(FALSE);

// QueryInterface() to get IprovideClassInfo

IProvideClassInfo* pProvideClassInfo = NULL;

Hr = pUnknown->QueryInterface(IID_IprovideClassInfo,

(void**)&pProvideClassInfo);

// if the object supports IprovideClassInfo ...

if (SUCCEEDED(hr) && pProvideClassInfo != NULL) {

 hr = pProvideClassInfo->GetClassInfo(ppTypeInfo);

} else {

 // no luck, just return a NULL

 *ppTypeInfo = NULL;

}

One other way to get an object's ITypeInfo is to load the object's type library

(typelib) by calling ::LoadTypeLib() or ::LoadRegTypeLib(), then calling

ItypeLib::GetTypeInfoOfGuid(). GetTypeInfoOfGuid() requires the class identifier

(CLSID) or (GUID) of the requested type information. You should specify the (CLSID)

of your object's coclass to ensure that you get the correct ITypeInfo.

Finally, a word of warning: You might be tempted, as I was, to call your object's

IDispatch::GetTypeInfo() method to obtain the object's ITypeInfo interface. You'll

get an ITypeInfo for sure, but it'll be the wrong one. Specifically, you'll get the

ITypeInfo for your object's automation methods and properties, not the one

describing your object's COM object class (coclass).

What you might want to do next

Add scripting to your document class. If you really want to integrate ActiveX

scripting into your application, you'll want to integrate it directly into your

application's document object. That entails:

storing the script and its type in CString variables within your document object

serializing (saving and restoring) the script and its type from within your

document's Serialize() method

running the script from your document's OnOpenDocument() method

displaying the script through a form view, assuming your application has a Multiple

Document Interface

Unlike the CScriptDialog::OnOK() method, which closes and releases the script engine

immediately after the script runs, your document's should allow the script engine

to continue to run so it can process events generated by your application.

-

"The richer your application's support for automation, the more useful scripting

will be to your users."

Fill out your application's automation object model. The richer your application's

support for automation, the more useful scripting will be to your users. One of the

most accessible examples of automation object models (the list of objects, methods,

properties, and events supported by an application) is the object model for Microsoft

Internet Explorer, which you can access at

http://www.microsoft.com/intdev/sdk/docs/scriptom/.

Extend your applications

I hope you find ActiveX scripting as useful in your MFC applications as I have in

mine, and with the CScriptEngine class I hope you'll find ActiveX Scripting easy

to implement as well. Most importantly, your users will benefit by being able to

write scripts that extend the usefulness of your applications

References

ActiveX scripting

If you'd like to understand the details behind ActiveX Scripting, check out the

specification at http://www.microsoft.com/intdev/sdk/docs/olescrpt/axscript.htm.

Don Box has written an excellent article in the February 1997 edition of Microsoft

Interactive Developer— "Say Goodbye to Macro Envy with Active Scripting"— that

describes ActiveX Scripting from a COM perspective.

VBScript and JScript

Microsoft's VBScript Web site, located at http://www.microsoft.com/vbscript, is

full of information about VBScript, including information on hosting VBScript in

your applications and how VBScript relates to Visual Basic and Visual Basic for

Applications.

The Microsoft JScript site, located at http://www.microsoft.com/jscript, has

information similar to the VBScript site's, including language documentation.

Automation

Microsoft has published a number of good Knowledge Base and MSDN articles and samples

relate to Visual C++ and Automation. Below are just a few found while searching for

"Automation" in the Visual C++ 4.0 and MSDN documentation:

"SAMPLE: Simple OLE Automation Object Sample" (Article ID: Q107081) explains the

basics of creating OLE automation objects.

"SAMPLE: MFCDISP: Replacing MFC IDispatch implementation" (Article ID: Q140616)

explains how to replace MFC's IDispatch implementation with one that uses a typelib.

"VB Automation of Visual C++ Server Using OBJ1.OBJ2.prop Syntax" (Article ID:

Q137343) explains how to expose nested automation objects within your Visual C++

applications.

"SAMPLE: MFCARRAY: Using Safe Arrays in MFC Automation" (Article ID: Q140202)

demonstrates the use of safe arrays to pass information between an automation client

and server.

"How Visual Basic Automation Statements Map to OLE Calls" (Article ID: Q122288)

explains how Visual Basic's CreateObject() and GetObject() functions are

implemented in terms of OLE and COM functions. Note that VBScript and JScript do

not support CreateObject() or GetObject() functions. Instead, you can add similar

functions through your application's automation objects.

	ActiveX Scripting in MFC

